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CONVEY

Motivation
Cyber-Physical Systems (CPS): Systems consisting inter-
actions between physical and computational components

•Formal analysis of CPS is extremely important
• Inductive approaches provide an effective mechanism for

safety analysis
•Challenges: Scalability, conservatism and analysis of

complex logic specifications

Research Statement
•Utilizing inductive approaches using barrier certificates

for the formal analysis of discrete-time stochastic CPS
•Tackling the scalability challenges using divide-and-

conquer approaches
•Alleviating conservatism using k-induction
•Analyzing logic specifications using automata-theoretic

approaches

System Definition

A discrete-time stochastic CPS S is a tuple (X, ς, f ) where
•X is the state set
• ς := {ς(t) : Ω → Vς, t ∈ N} is a sequence of indepen-

dent and identically distributed (i.i.d.) random variables
•f : X × Vς → X is the transition function such that for

all t ∈ N:
x(t + 1) = f (x(t), ς(t))

Safety by Induction
•B : X → R is a barrier certificate for S with respect to

a set of initial states X0 and a set of unsafe states Xu if
there exists 0 ≤ ε ≤ 1 such that:

∀x ∈ X0 : B(x) ≤ ε
∀x ∈ Xu : B(x) ≥ 1
∀x ∈ X : E[B(f (x, ς)) | x]−B(x) ≤ 0

•Existence of B means the system is safe with probability:

P{x(t) /∈ Xu for all t ∈ N | x0} ≥ 1− ε.
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Tackling Scalability: Compositional Framework
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Si = (Xi,Wi, ςi, Yi, fi, hi)
︸ ︷︷ ︸

S = I(S1, S2)
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Tackling Conservatism: k-Induction

•B : X → R is a k-inductive barrier certificate for S with
respect to a set of initial states X0 and a set of unsafe
states Xu if there exists k ∈ N, 0 ≤ ε ≤ 1, and c > 0
such that:

∀x ∈ X0 : B(x) ≤ ε
∀x ∈ Xu : B(x) ≥ 1
∀x ∈ X : E[B(f (x, ς)) | x]−B(x) ≤ c
∀x ∈ X : E[B(fk(x, ςk)) | x]−B(x) ≤ 0

•Existence of B means the system is safe with probability:

P{x(t) /∈ Xu for all t ∈ N | x0} ≥ 1− kε− k(k − 1)c
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Note: fk denotes the function f after k time steps with ςk = [ς1; . . . ; ςk−1]

Complex (Hyper)LTL Specifications
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