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Population Protocols
Population protocols model distributed computation using random en-
counters between identical but independant agents, who can change their
state during each encounter. The number of states may depend on the
number of agents. A protocol is called uniform, if the transitions do not
depend on the number of agents. Previously the expressive power was
only known for very few (o(logn)) or at least a linear number of states.
We characterize the expressive power for Ω(logn)∩O(n1−ε) many states.
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Most protocols described in the literature fall within the shaded region.

Initialisation
The number of agents is encoded in binary and
a unique leader is elected.
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For Loops
Counter agents store an additional bit. The
leader can apply operations to all agents using
a mark-and-increment strategy:
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Once both counter values match, all agents
have been informed.

Digits
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Digits simulate counters of a
Counter Machine. Free agents are
divided into k · f (n) groups, each
representing a digit in base n

k·f (n).
For large enough k, numbers up
to Ω

(
2f (n)·logn

)
can be encoded

this way. Increments and decre-
ments can be performed using for
loops.

Future Work
The expressive power of population protocols
is now known for most f ; however, the result
from [1] for f ∈ o(logn) does not hold for
non-uniform protocols. The expressive power
of a variant model including leaders is also still
open. We conjecture that the expressive power
in both cases is S N S P A C E (f (n) · logn).
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