
Planning and Control in Uncertain and Dynamic Environments using
Generative Models

Ralf Römer
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Motivation
Artificial intelligence (AI) has seen tremendous success in
the last decade and has made a large impact in many sci-
entific domains, such as healthcare, autonomous driving,
and natural language processing (NLP). Yet, the creation
of embodied AI, i.e., the integration of AI techniques into
physical bodies that autonomously operate in and interact
with the real world, remains a largely unsolved problem.
We explore the use of generative models, such as diffusion
models and transformers, for decision-making, as they can
deal with high-dimensional and multimodal data distribu-
tions, which are common in real-world robotics scenarios.

Background
In classical control, the policy π maps the current state s to
an action a, i.e., a = π(s). Reinforcement learning (RL)
can use (visual) observations o as input, but RL policies
are either also deterministic or Gaussian. Compared to
these paradigms, generative modeling allows for a more
flexible policy parameterization.
Definition 1: Generative Models for Decision-Making
Given the current (and potentially past) observations o

and potential additional conditioning variables c, the
next action (or sequence of actions) a is obtained by sam-
pling from a learned conditional distribution pθ, i.e.,

a ∼ pθ(·|o, c). (1)

This formulation offers several advantages:
•Scalability: We can deal with high-dimensional inputs,
such as images, and generate high-dimensional outputs,
such as desired future trajectories.

•Multimodality: We can capture multimodal distributions
that are common in imitation learning and offline RL.

•Conditioning: The action generation can be flexibly con-
ditioned on additional variables, such as constraints to
satisfy or skills to execute.

Safe Offline RL using Diffusion Models
Consider a discrete-time dynamical system with state sk
and action ak at timestep k. We represent a trajectory
as τ = (s0,a0, . . . , sT ,aT ) and denote its cumulative re-
ward by R(τ ). Given a static offline dataset D = {τi}Ni=1,
we can learn the distribution

pθ(τ |O) ∝ p(τ )p(O|τ ), (2)

where O is a binary variable denoting the optimality of τ
with respect to R(τ ), by training a conditional diffusion
model [1, 2]. Online, we can generate desired future tra-
jectories by sampling from this distribution, execute the
first action in the selected trajectory and repeat this proce-
dure in a receding horizon manner. This formulation can
be extended to include additional conditioning variables,
such as constraints or visual observations, and we can re-
duce the complexity by sampling only actions, cf. (1).

Incorporating Constraints
In robotics, we often need to satisfy hard safety con-
straints sk ∈ Sk and/or ak ∈ Ak, k = 0, 1, . . . , that
may not be known prior to deployment, for example, when
operating in dynamic environments. To deal with such un-
seen test-time constraints, we propose to incorporate a pro-
jection method into the backward diffusion process. After
each backward diffusion step, we project the noisy trajec-
tory into the safe set. In this way, we obtain a trajectory
that is both dynamically feasible and guaranteed to satisfy
the constraints.

Evaluation
We evaluate our approach via simulation of two robotic
systems: a mobile robot with acceleration commands and
a 2D quadrotor with thrust commands. The task is to reach
a desired goal while avoiding static and dynamic obstacles.
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Figure 1: Our proposed projection method reduces the number of constraint violations, resulting in a higher
success rate of reaching the goal.
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