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1 Abstract

With the advancements on quantum computers, the threat on classical cryptography
becomes more and more imminent. To counter this quantum threat, post-quantum
cryptography is being developed. Formalizations of the specifications, proofs and im-
plementations help to guarantee security and correctness of these new cryptosystems.
Sometimes, the formalization also reveals errors and gaps in the scheme or proofs that
could potentially be used for concrete attacks.

This thesis highlights several aspects of post-quantum cryptography where formal-
ization can be useful. These aspects include hardness assumptions, the verification of
concrete crypto systems, their correctness as well as classical and quantum security
proofs. For every aspect mentioned, a major contribution is described, demonstrating
the possibilities of formalization in post-quantum cryptography with the theorem prover
Isabelle. Since the formalization of post-quantum cryptography is a very new field, my
formalizations often are the first in their respective areas.

The projects for this thesis are: 1) formalizing the Shortest and Closest Vector Prob-
lems for algebraic lattices and their NP-hardness reduction proofs, 2) formalizing the
post-quantum public key encryption scheme Kyber, its correctness and classical security
and 3) formalizing the One-way to Hiding Theorem for security proofs against quantum
adversaries. For the first project, we point out several inaccuracies and problems in the
proofs and give verified alternatives. In the second project, we show that the correctness
error bound was invalid, giving counter-examples in small parameter sets. We verify
the proofs for an alternative bound, showing that correctness is indeed fulfilled. The
classical security proof was formalized without problems. The third project takes a step
towards foundationally formalizing quantum security proofs. We verify and extend the
theorem to possibly infinite dimensional Hilbert spaces, non-terminating adversaries and
give an alternative proof omitting the notions of Bures-distance and fidelity.
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2 Zusammenfassung

Durch die Fortschritte der Quantencomputer sieht sich die klassische Kryptographie
immer mehr bedroht. Um dagegen vorzugehen, wird die Post-Quantum Kryptographie
entwickelt. Die Formalisierung der Spezifikationen, Beweise und Implementierungen hilft
die Sicherheit und Korrektheit dieser neuen Kryptosysteme zu garantieren. Manchmal
zeigen die Formalisierungen auch Fehler und Lücken in den Schemata und Beweisen auf,
die potenziell für konkrete Angriffe genutzt werden können.

Diese Dissertation zeigt verschiedene Aspekte der Post-Quantum Kryptographie auf,
bei denen Formalisierungen hilfreich sind. Diese Aspekte beinhalten die Annahmen zu
NP-schweren Problemen, die Verifikation von konkreten Kryptosystemen, ihrer Korrekt-
heit und der klassischen Sicherheitsbeweisen sowie Sicherheitsbeweisen bezüglich Gegner
mit Zugriff auf Quantencomputern. Für jeden der genannten Aspekte wird ein wichtiger
Beitrag zur Wissenschaft beschrieben und die Möglichkeiten der Formalisierung von
Post-Quantum Kryptographie mit dem Theorembeweiser Isabelle aufgezeigt. Meine For-
malisierungen sind oft die ersten in den jeweiligen Bereichen, da die Formalisierung von
Post-Quantum Kryptographie ein sehr neues Gebiet ist.

Die Projekte dieser Dissertation sind: 1) die Formalisierung des Kürzesten und Nähes-
ten Vektor Problems in algebraischen Gittern und deren Reduktionsbeweise bezüglich
ihrer NP-Schwierigkeit 2) die Formalisierung des Post-Quantum Public-Key Verschlüs-
selungssystems Kyber, dessen Korrektheit und der klassischen Sicherheitsbeweise und
3) die Formalisierung des One-way to Hiding Theorems, das in Sicherheitsbeweisen mit
Quanten-Gegner verwendet wird. Für das erste Projekt weisen wir auf einige Unge-
nauigkeiten und Probleme in den Beweisen hin und beweisen verifizierte Alternativen.
Im zweiten Projekt zeigen wir, dass die Schranke für den Korrektheitsfehler ungültig ist
und geben Gegenbeispiele mit kleinen Parametern an. Außerdem verifizieren wir die Be-
weise für eine alternative Schranke und zeigen, dass die Korrektheit trotzdem noch erfüllt
ist. Der klassische Sicherheitsbeweis wurde ohne Probleme formalisiert. Das dritte Pro-
jekt macht einen Schritt in die Richtung von Grund auf formalisierter Sicherheitsbeweise
gegen Quantencomputer. Wir verifizieren und erweitern das Theorem zu möglicherweise
unendlich-dimensionalen Hilberträumen, nicht terminierenden Gegner und zeigen einen
alternativen Beweis, der die Konzepte der Bures-Distanz und Fidelität nicht benutzt.

4



Contents

1 Abstract 3

2 Zusammenfassung 4

Contents 5

Acronyms 8

3 Introduction 1
3.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Overview on Post-Quantum Cryptography 6
4.1 Approaches to Post-Quantum Cryptography . . . . . . . . . . . . . . . . . 7

4.2 Lattice-based Post-Quantum Cryptography . . . . . . . . . . . . . . . . . 8

4.3 Formalizations in Post-Quantum Cryptography . . . . . . . . . . . . . . . 10

5 Hardness Assumptions 14
5.1 Shortest and Closest Vector Problems . . . . . . . . . . . . . . . . . . . . 15

5.2 Paper 1: Formalizing Hardness Reductions for Lattice Problems . . . . . 16

5.3 Learning With Errors Problem . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Kyber — An Example of Post Quantum Cryptography 20
6.1 Kyber Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.2 δ-Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.3 Classical Indistinguishability under Chosen Plaintext Attack . . . . . . . . 23

6.4 Paper 2: Formalizing Kyber . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7 Security against Quantum Adversaries 28
7.1 Basics of Quantum Computation . . . . . . . . . . . . . . . . . . . . . . . 28

7.2 Quantum Adversarial Model . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.3 One-way to Hiding Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.4 Paper 3: Formalizing the One-way to Hiding Theorem . . . . . . . . . . . 32

8 Conclusion & Outlook 34

Bibliography 36

5



CONTENTS

A Paper 1: Verification of NP-Hardness Reduction Functions for Exact Lattice
Problems 47

B Paper 2: Verification of Corretness and Security Properties for CRYSTALS-
KYBER 66

C Paper 3: Formalizing the One-Way to Hiding Theorem 84

6



Index of Publications

All listed publications are single first author publications.

Core Publications

1) Katharina Kreuzer and Tobias Nipkow. Verification of NP-Hardness Reduction
Functions for Exact Lattice Problems. In Automated Deduction – CADE 29, page
365–381. Springer Nature Switzerland, 2023. DOI: 10.1007/978-3-031-38499-8_
21. Core factor 1.

3) Katharina Kreuzer. Verification of Correctness and Security Properties for
CRYSTALS-KYBER. In 2024 IEEE 37th Computer Security Foundations Sym-
posium (CSF), volume 2283 of LNCS, page 511–526. IEEE, July 2024. DOI:
10.1109/csf61375.2024.00016. Core factor 1.

6) Katharina Heidler and Dominique Unruh. Formalizing the One-way to Hiding
Theorem. In Proceedings of the 14th ACM SIGPLAN International Conference
on Certified Programs and Proofs, CPP 2025, page 243–256, New York, NY, USA,
2025. ACM. DOI: 10.1145/3703595.3705887. Core factor 1.

7

10.1007/978-3-031-38499-8_21
10.1007/978-3-031-38499-8_21
10.1109/csf61375.2024.00016
10.1145/3703595.3705887


Acronyms

AFP Archive of Formal Proofs.

BHLE Bounded Homogeneous Linear Equations problem.

CVP Closest Vector Problem.

FO Fujisaki-Okamoto transform.

IND-CPA INDinduishability under Chosen Plaintext Attack.

KEM Key Encapsulation Module.

LWE Learning With Errors problem.

ML-KEM Module-Lattice-Based Key-Encapsulation Mecha-
nism.

mLWE module Learning With Errors problem.

NIST National Institute of Standards and Technologies
(US).

NTT Number Theoretic Transform.

O2H One-way to Hiding Theorem.

PKE Public Key Encryption.
PQC Post-Quantum Cryptography.
PRF Pseudo-Random Function Family.

QROM Quantum Random Oracle Model.

ROM Random Oracle Model.
RSA Rivest-Shamir-Adleman crypto system.

SIS Shortest Integer Solution problem.
SIVP Shortest Independent Vector Problem.
SVP Shortest Vector Problem.

8



3 Introduction

Already since ancient times, cryptography has enabled people to communicate secret
information: Caesar noting troop movements, Queen Elizabeth I. deciphering documents
which led to Mary Queen of Scots’ execution, the Enigma machine used by the Germans
in World War II, just to name some prominent examples. In all of the examples above,
the cryptographers and cryptanalysts battled for the secret information. Especially in
modern times, with computers at the hand and cryptography being used in everyday life,
we want to make sure that the cryptography protecting our sensitive data and money
stays safe to use and secure against attacks.

A modern approach to tighten the security of crypto schemes is the formalization in
an automated tool. This has already been proposed by Halevi in 2005 [52] and many
researchers have since worked on this idea. Using formalization, we can find errors
in the systems, protocols and proofs. Sometimes these errors can even be exploited to
discover new attacks. For example, Albrecht et al. [79, 6] found active attacks against the
Jitsi video platform and the Matrix chat protocol during formalization. Both software
are widely used by companies and individuals all around the world. Another example
is the Ethereum blockchain which has started an effort to formally verify their smart
contracts1. The cryptocurrency ether managed by Ethereum has the second largest
market capitalization after bitcoin. Small bugs in the code of Ethereum can lead to
huge monetary losses.

In the past decades, a new threat to cryptography has risen: with large-scale quantum
computers all widely-used cryptosystems based on RSA or Diffie-Hellman will be broken
by Shor’s algorithm [104]. Recent advances on quantum computers point towards the
possibility of these large-scale constructions. Already today, a possible attack on sensitive
data is to store it now for decryption once quantum computers become powerful enough.
This is called the harvest-now-decrypt-later attack2.

To counter the quantum threat, a new cryptographic field is evolving, namely post-
quantum cryptography (PQC). PQC describes cryptography that runs on classical com-
puters but is secure against attacks from both classical and quantum machines. The
users of PQC do not need any access to quantum computers. Therefore, these PQC sys-
tems can already be used now to defend against the harvest-now-decrypt-later attack.

However, developing new cryptographic principles may take time and a lot of trial-and-
error. New systems need to be developed basing on different hard underlying problems,
security proofs have to be checked, and new attacks are being found. Formalization
can be a handy tool to find bugs and errors early on, especially when the formalization

1see https://ethereum.org/en/developers/docs/smart-contracts/verifying/
2see https://en.wikipedia.org/wiki/Harvest_now,_decrypt_later
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3 Introduction

and the implementation are developed simultaneously. Therefore, formalizing PQC is
especially interesting and the research area is gaining momentum more and more.

To find good candidates for PQC, the National Institute of Standards and Technology
(NIST) of the US is running a standardization process for PQC since 2017. In August
2024, after three rounds of evaluations, NIST finally published a standard for encryption:
The Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM) standard is based
on the submitted crypto scheme Kyber [95].

The general idea behind Kyber is quite simple: solving a system of linear equations
over Zp (for p prime) with an additional error term is known to be hard on average (under
certain constraints). This is called the Learning With Errors (LWE) problem. Regev
proved that the LWE problem is hard to solve even with the help of quantum computers
[97, 98]. This leads us to our first application of formalization: can we formally verify
these hardness results? Many hardness proofs of problems similar to the LWE were
discovered in the nineties and sometimes lack a rigorous formulation or formalization.
Still, they are the most basic building blocks for PQC.

The algorithms for the Kyber public key encryption (PKE) schemes base on the LWE.
A PKE consists of three algorithms: the key generation, encryption and decryption. For
the key generation of Kyber, the public key constitutes a LWE instance. The encryption
is an extended LWE instance with the message being part of the error term. However,
since both key generation and encryption use (random) error terms, it may be the case
that decryption fails if the errors get too large. Therefore, the Kyber PKE is only
correct up to a correctness error δ. For Kyber to be useful in practice, we must show
that the correctness error is indeed small enough to be negligible. Indeed, with careful
formalization, I could show in this thesis that the original correctness error estimation
was faulty. This may have an impact on the security parameters of Kyber. Fortunately,
Barbosa et al. [10] could show a different, but larger bound that still suffices the security
requirements for Kyber.

Another important aspect of new crypto systems is showing security properties. The
common approach are game-based proofs where we formally model games against a
(potentially malicious) adversary and show that the adversary cannot gain information.
In the case of the Kyber PKE for example, an important security property is not being
able to distinguish a ciphertext from a random instance, even when the plaintext was
chosen by the adversary. This is called the indistinguishability under chosen plaintext
attack (IND-CPA). The first version of Kyber contained a compression of the encryption
that led to an error in the security proof. Such examples show that it is essential to
formalize and thoroughly check security proofs as well. Most often, flaws in security
proofs can directly be used to implement attacks.

Proving and verifying security properties becomes even harder when handling quantum
attackers, that is an attacker with access to quantum computers. An interesting example
is the modelling of pseudo-random functions (PRFs). Classically, we use the random
oracle model to replace PRFs by lazily sampled truly random functions (called an oracle).
Using the classical lazy sampling, we can argue that we cannot distinguish new queries
to the oracle function from values that were already queried. This implies that we can
easily reprogram the oracle for unqueried values. Quantumly, we cannot reason this
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3.1 Research Questions

way. The problem is that the adversary may query all values in superposition in just
one query. It is not straightforward that we can “reprogram” any oracle value at all.
The One-way to Hiding (O2H) Theorem considers the “reprogramming” of an oracle in
the quantum setting. As such mathematical tools for handling quantum adversaries are
quite recent and are being refined more and more, only very few are already formalized
foundationally.

When I started this thesis, formalization of PQC was still in its early stages. During
the realization of this thesis’ projects, other researchers have developed formalizations
for PQC as well. Most notably, the development of tools handling quantum attackers
and PQC has increased. Since many of these tools are quite new, they often lack the
foundational formalizations. With this thesis, I take a first step towards foundational
verification of PQC in Isabelle, the theorem prover of my choice. We will justify choosing
Isabelle (Section 4.3) and compare Isabelle to other theorem provers in our use-case. In
the next section, we will develop the research questions posed in this thesis.

3.1 Research Questions

We outline some important research questions in this field. For example when analysing
a crypto system such as Kyber, we can ask several questions. First of all, we will analyse
the crypto system and its functionality: Is the proposed crypto system correct, i.e. does
the decryption of the encryption always return the original message for a PKE? Next, we
need to analyse its security: What security properties does the crypto system guarantee?
Going to the foundations of the security proofs, we may ask: What underlying hardness
assumptions do the security proofs require? Or considering the difference between clas-
sical and quantum adversaries: Do the security properties hold for both classical and
quantum adversaries? Lastly, once we verified the specifications, we may ask: Is the
crypto system correctly implemented or can we obtain a verified implementation e.g. by
code generation?

Often, the answers to the questions above are given by (sometimes long and hard)
cryptographic proofs. However, as we humans tend to make errors along the way, errors
in cryptographic proofs may lead to attacks on or breaking of said systems. Even in the
first Kyber submission, a small error in the security proof led to a significant security
issue and a change in the system itself [28]. To minimize the risk of errors in proofs,
we formalize the results in theorem provers. Especially when the theorem provers can
also verify the implementation or generate verified code, this is of great interest for high
security applications. Formalizing and verifying PQC in the interactive theorem prover
Isabelle is the main topic of this thesis.

However, as the research questions asked at the beginning of this section are very
general, formalizing all findings is out of reach for just one thesis. Instead, this thesis
contributes steps to the formalization of the following, more concrete questions:
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3 Introduction

Research Questions

1. Can we formally verify a hardness property assumed in cryptography, to
strengthen the foundation of the crypto systems?

2. Can we formally verify the correctness of PQC systems? For example, can
we verify the correctness of Kyber?

3. Can we formally verify security properties against classical and quantum
adversaries? Or can we develop formal foundations for tools used to verify
security proofs?

The focus of this thesis lies on the formalization and verification of specifications and
mathematical tools for post-quantum cryptography. Using these verified specifications,
the next step for follow-up research is the generation of verified code or the verification
of existing code with respect to the formalized specification.

3.2 Contributions and Outline

With this thesis, I take a first step in foundationally formalizing and verifying post-
quantum cryptography in Isabelle. First of all, I give a short overview on PQC in
Chapter 4. We discuss the standardization process by NIST, different approaches to
PQC (Section 4.1) and lattice-based PQC (Section 4.2) in more detail. We also justify
choosing Isabelle for our formalizations in comparison with other theorem provers and
give an overview on the state of the art of formalizations in cryptography, especially in
PQC (Section 4.3). My formalizations were all implemented in Isabelle.

Motivated by the research questions discussed in the previous section, my contributions
take steps in three different directions: hardness reduction proofs, correctness of crypto
systems, and security proofs against classical and quantum attackers.

In Chapter 5, we introduce basic hardness assumptions for lattice-based PQC. Our
main focus lies on the Shortest Vector Problem (SVP) and Closest Vector Problem
(CVP) (Section 5.1), which were the first lattice problems used in cryptography. My
contribution of formalizing the CVP and SVP hardness reductions contrive the first
step towards a formalization of hardness reductions for lattice-based PQC (Section 5.2).
During the formalization, I uncovered imprecisions and flaws in the literature and found
alternative proofs filling all gaps. This formalization was – to my knowledge – the first
formal verification of any lattice problem hardness reduction so far. At the end of the
chapter, we also introduce a “newer” problem: the Learning With Errors (LWE) problem
(Section 5.3) is the hardness assumption underlying the Kyber PKE.

In Chapter 6, we discuss an example of lattice-based PQC, namely the Kyber PKE.
We define the algorithms of the Kyber PKE (Section 6.1), the notion of δ-correctness
(Section 6.2) and the IND-CPA security notion (Section 6.3). My contribution is a for-
malization of the Kyber PKE, its δ-correctness and classical IND-CPA security proof
(Section 6.4). A notable result of my formalization efforts is finding an essential flaw
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3.2 Contributions and Outline

in the correctness error bound. The result was also acknowledged by authors of Ky-
ber. Since the original error bound was faulty, I formalized an alternative correctness
error bound showing that the correctness is still valid, but with a different bound. My
formalization was – to my knowledge – also the first publicly available and published
formalization of the Kyber PKE.

In Chapter 7, we address the security against quantum attackers. After introducing
the basics of quantum computing (Section 7.1) and the quantum adversarial model
(Section 7.2), we state the O2H Theorem (Section 7.3). Formalizing the proof of the
O2H Theorem (Section 7.4) is my contribution in this chapter. This formalization is –
to my knowledge – the first foundational verification of the O2H Theorem. We also give
an alternative (and for the formalization simpler) proof to the existing literature and
extend the result to infinite dimensions and possibly non-terminating adversaries.

In the end of the thesis, we will shortly summarize the findings in a conclusion (Chap-
ter 8). We also give several ideas for future work following the three main topics:
hardness assumptions, Kyber and quantum adversaries.

This thesis is based on the following core publications:

1) Verification of NP-Hardness Reduction Functions for Exact Lattice Problems [67]
(joint work with Tobias Nipkow, published at CADE29, received the “Best Student
Paper Award”) — Appendix A

2) Verification of Correctness and Security Properties for CRYSTALS-KYBER [66]
(published at CSF24) — Appendix B

3) Formalizing the One-way to Hiding Theorem [55] (joint work with Dominique Un-
ruh, published at CPP25) — Appendix C

The following publications are not part of this thesis, but may be of interest to the
reader:

• Verification of the (1–δ)-Correctness Proof of CRYSTALS-KYBER with Number
Theoretic Transform [65] (preprint, presented at FAVPQC 2023)

• Isabelle formalization: Hardness of Lattice Problems [63] (formalization artefact of
paper 1, published at AFP)

• Isabelle formalization: CRYSTALS-Kyber [61] (formalization artefact of paper 2,
published at AFP)

• Isabelle formalization: CRYSTALS-Kyber Security [62] (formalization artefact of
paper 2, published at AFP)

• Isabelle formalization: O2H: A formalization of the one-way-to-hiding lemma in
Isabelle [54] (formalization artefact of paper 3, public repository, to be published
at AFP)
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4 Overview on Post-Quantum
Cryptography

In the last decades, quantum computers have made extensive progress. In 2019, Google
first claimed quantum supremacy with their Sycamore quantum computer [39]. Quantum
supremacy means achieving a quantum computer that can perform some calculation
faster than any classical computer. After that, in 2020, a group of the University of
Science and Technology of China followed in building Jiuzhang, a quantum computer
also achieving quantum supremacy but using different technology [16]. The main issue
with Sycamore and Jiuzhang is the relatively high error rate on the qubits. In December
2024, Google Quantum AI announced their new quantum computer Willow [86]. Willow
successfully uses quantum error correction and generates more reliable outcomes whilst
increasing the number of qubits [1]. This is a big step towards useful, large-scale quantum
computers.

This major breakthrough of achieving quantum supremacy and quantum error correc-
tion heated up the discussion on quantum computers and their implications. A major
problem of reasonably large quantum computers is that they could factor large prime
numbers and solve the discrete logarithm problem in polynomial (even cubic) time using
Shor’s algorithm [104]. This algorithm was already known since 1994, but gains more
relevance with quantum computers coming into reach. A major application of Shor’s al-
gorithm on scalable quantum computers is breaking the RSA and Diffie-Hellman crypto
systems. Since RSA and Diffie-Hellman are at the core of most widely used cryptosys-
tems, this poses a huge threat on our current cryptography.

To counter this quantum threat, the National Institute of Standards and Technology
(NIST) of the United States [93] has started a standardization process for post-quantum
cryptography (PQC). PQC denotes cryptographic algorithms running on classical ma-
chines that is safe with respect to attacks from both classical and quantum computers.
In this context, classical attackers (or classical adversaries) can perform any polynomial-
time algorithm using classical computers. Quantum attackers (or quantum adversaries)
can perform any polynomial-time algorithm using both classical and quantum comput-
ers.

The research on PQC can be divided into two major categories: key encapsulation
modules (KEMs) for encryption and signature schemes. KEMs are crypto schemes
that use public key encryption (PKE) schemes to securely transmit a symmetric key
for further communication using symmetric cryptography. Signature schemes are used
for digital signatures and verified authentication. Our focus for this thesis will lie on
encryption, especially PKEs.
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4.1 Approaches to Post-Quantum Cryptography

4.1 Approaches to Post-Quantum Cryptography

After many years and rounds of the standardization process, in July 2022, NIST an-
nounced that they have selected an algorithm for KEMs (as well as several signature
schemes). However, the search for good alternatives is still ongoing. This is important
since most PQC proposals are quite new and therefore did not endure the test of time as
long as well-established cryptography. NIST evaluated the new crypto systems during
several stages trying to find the most practical and secure schemes.

As PQC asks for novel approaches to cryptography, there was a variety of submissions
with different underlying concepts. The main ideas to make schemes quantumly secure
can roughly be ordered in five categories:

• Lattice-based cryptography: Lattices are the integer span of basis vectors in
n-dimensional Euclidean space and form the foundation of this category. Using
hard problems on lattices, messages or signatures are obscured. Since lattices
yield a multitude of different hard problems as a basis for cryptosystems, the most
submissions were of this category. Examples for crypto systems are Kyber [102],
Dilithium [101], NTRU [100], and many others.

• Multivariate cryptography: The difficulty of solving systems of multivariate
equations is exploited for cryptographic functions in this category. As many multi-
variate schemes yield relatively short signatures, these schemes are especially useful
to build signatures. Examples for crypto systems include the Rainbow Signature
Scheme [33].

• Hash-based cryptography: The hardness of these schemes stems from the hard-
ness to invert hash functions. Again, most schemes in this category are signature
schemes. However, hash-based cryptography can also be used for zero-knowledge
proofs or other proof based protocols. Examples for crypto systems include the
Merkle signature schemes [81] and SPHINCS+ [103].

• Code-based cryptography: These schemes rely on error-correcting codes, an
idea taken from communication and information theory. The idea is to send redun-
dant information in the encryption, so when some information gets lost over a noisy
communication channel, we can reconstruct these errors using error-correction.
The Goppa code is an example of error-correcting codes used in cryptography.
This category yields both signature and encryption schemes. Examples for crypto
systems include McEliece [80].

• Isogeny-based cryptography: Isogeny graphs of elliptic curves over finite fields
may yield desired properties for crypto systems. Unfortunately, a prominent ex-
ample, called SIKE [38], was broken in 2022 as a new connection with a different
mathematical field was established. There are other crypto systems based on iso-
genies that are still unbroken, for example C-SIDH [32].

In August 2024, NIST published a standard for encryption: The Module-Lattice-
Based Key-Encapsulation Mechanism (ML-KEM) standard is based on Kyber [95]. For
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4 Overview on Post-Quantum Cryptography

signatures, NIST’s standard Module-Lattice-Based Digital Signature Algorithm is based
on Dilithium, a signature scheme similar to Kyber [94]. Both standards belong to lattice-
based cryptography.

Since most submissions to the standardization process and the new standards them-
selves are lattice-based, we lay special interest on this category in this thesis. In the next
section, we will explain the general ideas of lattice-based cryptography in more detail.

4.2 Lattice-based Post-Quantum Cryptography

Lattices are algebraic structures that yield interesting and hard problems. The most
basic problems concerning lattices are the Shortest Vector Problem (SVP — find the
shortest vector in a lattice) and the Closest Vector Problem (CVP — find a closest
lattice point to a target). The NP-hardness for these two problems can be shown in the
worst-case (see [82] for an overview on the complexity of lattice problems). However,
knowing that the worst-case problem instance is hard is not enough for cryptography.

Ajtai [2] took the first step to making lattices useful for cryptography by considering
the average-case hardness of the SVP and CVP. Average-case hardness means that any
instance of these problems is hard with very high probability. More research followed,
finding new interesting problems or showing their average-case hardness reductions. To
name some: Dwork and Ajtai showed the average-case hardness of the Shortest Integer
Solution (SIS — find a short integer vector that solves a system of linear equations)
problem and built a crypto system on that [4], and Regev introduced the Learning With
Errors (LWE) problem and its reduction proofs [97]. We will look more closely at lattice
problems in Chapter 5.

First, let us define lattices. This concept of linear algebra underlies all ideas of lattice-
based cryptography.

Definition 1 (Lattice). Let a1, . . . , an ∈ Rn be a set of linearly independent vectors.
The integer span of a1, . . . , an forms a lattice L, i.e.

L =

{
n∑

i=1

ciai where ci ∈ Z

}

Lattices form a set of points, that form a group with respect to addition. The group
structure is directly inherited from the integer span. The origin is the neutral element
of the group and every addition of two lattice points is again in the lattice.

Note that different choices of basis vectors can result in the same lattice. We look at
an example of a lattice in the Euclidean plane.

Example 4.2.1. Consider the lattice L depicted in Figure 4.1. The lattice on the left
and right pictures is the same, even though it is generated by different basis vectors. In
Figure 4.1a, the generating basis is depicted as red arrows, in the Figure 4.1b as blue
arrows.
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4.2 Lattice-based Post-Quantum Cryptography

a2

a1

(0, 0)

(a) Lattice L with red basis vectors

a2

a1

(0, 0)

(b) Lattice L with blue basis vectors

Figure 4.1: A lattice can have different basis vectors.

In Isabelle, we formalized lattices as a set of integer vectors [63]. The property
is lattice checks if a set of integer vectors is generated by an integer matrix with in-
dependent columns. We also implemented the function gen lattice generating lattices
from an arbitrary matrix. In the latter case, the matrix might not consist of independent
columns, so we have to handle bases of the generated lattices more carefully.

Now that we have introduced lattices, we look at the cryptography we can do with
lattice problems. We give a short overview on the most important lattice-based crypto
systems.

One of the earliest cryptosystem based on lattices is the Goldreich-Goldwasser-
Halevi encryption, developed in 1997 [49]. Even though it was broken shortly after
[87], the idea of using the SVP on lattices started more research in this area.

Another cryptosystem that started in the very beginning of lattice-based crypto was
NTRU developed by Hoffstein, Pipher and Silverman [56]. It is also based on an
interpretation of the SVP on a truncated polynomial ring. There have been many devel-
opments of NTRU over the last decades. For example NTRU Prime and NTRUEncrypt
were both candidates for the NIST standardization process, NTRUEncrypt even making
it to the third round finalists [100, 5]. The NTRUSign algorithms use the NTRU ideas
for signatures.

More recent lattice-based PQC include algorithms like FrodoKEM, NewHope, Saber
and CRYSTALS-Kyber (which we will abbreviate as Kyber); all of them candidates for
standardization of encryption schemes. For signing, well-known lattice-based algorithms
include Falcon and CRYSTALS-Dilithium. Let us inspect these systems more closely.

Most of the newer systems also rely on “newer” lattice problems. We will focus on two
such lattice problems: the Learning With Errors (LWE) and Learning With Rounding
(LWR) problems. Both problems ask to find an integer solution to a perturbed system
of linear equations. In the case of the LWE problem, the system is perturbed by adding
small but random errors, whereas the LWR problem adds disturbances by rounding.
Furthermore, there are extensions of both problems to rings and modules.

9



4 Overview on Post-Quantum Cryptography

FrodoKEM [43] is a cryptosystem based on the LWE problem on algebraically un-
structured lattices. It was discarded from the NIST standardization process after the
third round due to low performance, but is still recommended by German and Dutch
authorities.

Using a variation of LWE over a polynomial ring, NewHope [99, 8] made it to round
two of NIST’s standardization process. The system tries to take advantage of the extra
structure of the polynomial ring; however, it was not clear if this additional structure
did not lead to more possible attacks.

The CRYSTALS-Kyber [28, 102] suite (short Kyber) adds another layer: working
with the LWE on modules, Kyber combines the advantages of polynomial rings and
vectorization. The result is an optimized and refined cryptosystem that was selected for
standardization by NIST after the third round [30, 95]. We will inspect Kyber in more
detail in Chapter 6.

In contrast to the systems above, Saber [36, 68] uses the LWR problem on modules.
Its general construction is very similar to that of Kyber. Saber was a NIST third round
finalist and is now under consideration as an alternative.

Falcon is an acronym for Fast Fourier lattice-based compact signatures over NTRU.
As its name suggests, it is a signature scheme based on a trapdoor construction using
hash-and-sign techniques over special NTRU lattices. The SIS is the hardness assump-
tion for this signature scheme. Falcon was chosen for standardization by NIST.[42]

The signature scheme CRYSTALS-Dilithium [101] also belongs to the CRYSTALS
suite and is therefore very similar to the ideas of Kyber. Using the “Fiat-Shamir with
Aborts” technique by Lyubashevsky, Dilithium is also based on the LWE problem. As
it is very efficient and has very small signatures, it was also chosen for standardization
after round three of NISTs process.

Finally, we still have to think about the Quantum part in lattice-based PQC: After
having developed all these new crypto systems basing on new hard problems, how can
we prove that they are secure also against quantum computers? We will discuss ideas
on this question in Chapter 7.

4.3 Formalizations in Post-Quantum Cryptography

Formalizing cryptographic proofs has become more and more relevant to guarantee secu-
rity and generate verified implementations. Still, it is quite a new field with several new
specialized theorem provers emerging and well-established provers developing relevant
theories.

Use cases for the application of theorem provers are wide: Firstly, one can check and
formalize the system specifications and verify cryptographic proofs for protocols, KEMs,
PKEs, signature schemes and more. Secondly, one can verify foundational knowledge for
cryptography, such as hardness assumptions, background theory, adversarial models, etc.
Thirdly, implementations can be verified against their specifications or even generated
automatically from verified specifications.
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In this thesis, we will mainly look at the first two points. Obtaining verified implemen-
tations was out of reach in this project. In this dissertation project, the formalizations
were carried out in the interactive theorem prover Isabelle/HOL [90, 89, 85]. Why did
I choose Isabelle? Firstly, Isabelle has a powerful term-rewriting engine and good au-
tomation (e.g. the simplifier and the auto command). The sledgehammer proof search
also greatly helps in finding proofs. Secondly, the locale [17, 60] and type class [51]
environments make it easy to group parameters and properties. They are also easy to
instantiate in various contexts (e.g. different security levels of a crypto systems). Thirdly,
there already exist extensive and foundational libraries essential for cryptographic proofs
in the distribution and the archive of formal proofs (AFP)[40], e.g. a huge library on
probability theory, analysis and algebra, as well as a more concrete library for crypto-
graphic proofs called CryptHOL [73].

The CryptHOL library by Lochbihler [73, 74] offers a wide range of cryptographic
definitions and tools for game-based security proofs. However, these security proofs only
cover the case against classical adversaries. To bridge the gap towards quantum adver-
saries, the qrhl-tool by Unruh [106, 109] based on Isabelle is a novel tool for security
proofs in the quantum setting. Unfortunately, the qrhl-tool is not yet foundational.
This thesis also provides a step in making the qrhl-tool foundational by formalizing the
One-way to Hiding Theorem (see Chapter 7).

Of course, there are also other theorem provers used for formalization of cryptography.
In the following, we give a short overview of notable theorem provers dealing with (post-
quantum) crypto.

Most prominent is the EasyCrypt [20, 48] prover which gives a wide toolset for defin-
ing crypto systems and proving security properties. Especially the connection with the
compiler language Jasmin [70] yields a continuous verification chain from implementa-
tion to security proofs. However, a big drawback is that many foundational results on
algebra, analysis and probability theory are assumed as black boxes. As EasyCrypt is a
relatively new theorem prover, this is not surprising since the workload to build every-
thing foundationally is just too high. In that respect, Isabelle is a good alternative since
it provides much more background theory and all its results are indeed foundational.

Another tool for automatic reasoning on cryptography is CryptoVerif [23, 24]. Its fo-
cus lies on the security proof of protocols, but can also handle symmetric and asymmetric
encryptions as well as message authentication codes, signatures and hash functions. It is
developed at INRIA and is computationally sound. Recently, CryptoVerif was extended
to include some reasoning about quantum adversaries as well [25]. Still, CryptoVerif
does not allow the expressivity that we have in Isabelle and their automated provers
tend to be harder to handle in hard cases.

The theorem prover Lean also has its own crypto libraries called cryptolib [77] and
lean-crypto [84]. However, both libraries are just private developments and not yet in
the official lean library. This makes cryptographic formalizations in lean hard to work
with and maintain.

For the theorem prover Coq, the Foundational Cryptographic Framework by Pechter
[96] also allows a foundational formalization of cryptographic proofs. Since I already
knew Isabelle, but not Coq, I decided to work in Isabelle.
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For the rest of the section, we will summarize the state-of-the-art concerning the
three areas of research questions we considered in the introduction: the formalization of
hardness assumptions, of post-quantum crypto systems (i.e. Kyber) and of the security
against quantum adversaries.

Formalization of hardness assumptions. In Isabelle, there is an ongoing effort to show
NP-hardness of several problems. Starting with a full formalization of the Cook-Levin
Theorem [15], Karp’s list of NP-hard problems [46] is being formalized [41]. Gäher and
Kunze formalized the Cook-Levin Theorem in Coq [45].

The Karp problems are a basis for hardness reductions for cryptographic hardness
assumptions in PQC. For example, the CVP is reduced to the Subset Sum problem,
one of Karp’s 21 NP-hard problems. When starting this thesis, there were no hardness
reductions for hardness assumptions used in lattice-based PQC in Isabelle. Therefore,
a formalization of these hardness problems for lattice-based PQC had to start from the
very beginning.

Related to the hardness reductions for lattice problems are algorithms for finding a
good basis for a lattice. For example, the Lenstra-Lenstra-Lovász algorithm [71] is a
well-known technique for the reduction of a lattice basis. The Lenstra-Lenstra-Lovász
algorithm was also formalized in Isabelle by Bottesch et al. [29].

Formalization of post-quantum crypto systems. The basis for formalizations of
crypto systems in Isabelle is the CryptHOL library by Lochbihler et al. [73, 74, 21].
Using this library, a number of cryptographic schemes have been formalized in Isabelle:
the ElGamal encryption system [76], the one-time pad [75], sigma protocols [31] and
commitment schemes [31]. Other Isabelle formalizations of cryptography (independent
of CryptHOL) include basic formalisms for RSA [72] and some classical cryptographic
standards [112]. When starting this thesis, no formalizations of PQC algorithms were
available in Isabelle.

During the course of this thesis, several PQC algorithms have been formalized in other
theorem provers. For example, Barbosa et al. [10] have published a formalization of Ky-
ber in EasyCrypt and Jasmin shortly after my paper [66] appeared. Other formalizations
include a formalization of Saber in EasyCrypt by Hülsing et al. [59] and SPHINCS+ by
Barbosa et al. [19] also in EasyCrypt.

To my knowledge, CryptoVerif, Lean or Coq do not have any formalizations of post-
quantum cryptography yet.

Formalization of security against quantum adversaries. Up to now and to my knowl-
edge, there is no full and foundational proof of any security property of a PQC system
against quantum adversaries. However, tools like qrhl-tool [106, 109] and EasyPQC [18]
give possibilities to (partially) formalize some security results against quantum adver-
saries. Unfortunately, a lot of foundational groundwork still needs to be formalized for
these tools to be applicable to concrete crypto schemes. Many mathematical results,
like the O2H Theorem, are still black-box assumptions up to now. To my knowledge,
there are no formalization of quantum security properties of concrete PQC schemes in
qrhl-tool or EasyCrypt so far.

An important method for extending PKEs to KEMs is the Fujisaki-Okamoto (FO)
transform [44]. The FO transform was machine-checked in the qrhl-tool by Unruh [107].
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For example, Kyber uses the FO transform to generate its KEM from the Kyber PKE.
However, a full formalization of the Kyber KEM for example still needs the formalization
of the Kyber PKE and a connection to the qrhl-tool implementation of the FO transform.
My thesis project of formalizing the Kyber PKE takes a step in this direction.
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5 Hardness Assumptions

The mathematical basis for most crypto systems are hardness assumptions. A hardness
assumption is a mathematical problem that is thought (or proven) to be hard to solve,
but easy to verify. The common hardness assumptions in classical cryptography are
prime factorization and the discrete logarithm problem.

For example, the well-known Rivest-Shamir-Adleman (RSA) crypto system is based
on the prime factorization problem. Taking the product of two very large prime numbers,
the prime factorization problem asks to find the prime factors knowing just the product.
With classical computers, it would take too much time to calculate the prime factors if
the factors are large enough. Therefore, it would also take too much time to break RSA,
yielding a cryptographic security.

As large-scale quantum computers can solve prime factorization using Shor’s algo-
rithm [104], the RSA cryptosystem will be broken. Shor’s algorithm can also break the
discrete logarithm problem used as a hardness assumption in the Diffie-Hellman key
exchange [104]. Therefore, we need other hardness assumptions to base our new PQC
on. Lattice problems have been studied for decades and offer a variety of hard problems
that can be used in cryptography. For example, the SVP and CVP have been the first
lattice problems considered for new cryptosystems [49].

However, just having a worst-case hardness for hardness assumptions is not enough.
For example, the k-colourability of graphs is NP-hard in the worst-case but is polynomial
in expected time for the average-case [35]. Therefore, in cryptography, we often use the
term average-case hardness, to state that a problem is not only hard in the worst-case,
but on average.

But how can we show that a problem is hard? The go-to method is to show a hardness
reduction, that is to reduce a known hard problem to the problem under consideration.
More formally, we consider decision problems (problems that ask for a yes/no answer)
given by a set of instances. For example, the decision problem “Is n ∈ N a prime
number?” constitutes a decision problem with the set of instances being the natural
numbers. We call instances with the outcome “yes” the YES-instances. Following the
example, the set of prime numbers is the set of YES-instances. We denote a decision
problem given the set of instances Γ and YES-instances Y by Y ⊆ Γ (if the set of
instances is clear from context, we may also just say “the problem Y ”). Let us now
define the problem reduction formally:

Definition 2 (Problem reduction). Let A ⊆ Γ and B ⊆ ∆ be two decision problems. A
reduction from A to B is a function f : Γ→ ∆ that can be computed in polynomial
time and that fulfils:

∀a ∈ Γ : a ∈ A⇔ f(a) ∈ B
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If a problem A is NP-hard, a reduction from A to B proves NP-hardness for B as well.
In the formalization, we focus on the property ∀a ∈ Γ : a ∈ A ⇔ f(a) ∈ B and

omit a formal treatment of the polynomial time property. The reason is that formalizing
time properties is not easy and the framework needed (NREST [53] in Isabelle) was only
added to the AFP after the end of this project part.

5.1 Shortest and Closest Vector Problems

As discussed in the previous section, the SVP and CVP were the first lattice problems
considered for cryptography. Let us now define them more formally. Even though the
SVP and CVP can also be stated as search problems, we focus on the decision problem
in this thesis. Recall the definition of lattices (Definition 1) from Section 4.2.

Definition 3 (Shortest Vector Problem). Let L be a lattice in Zn and k an estimate.
The Shortest Vector Problem (SVP) in decision form states:
Decide whether there exists a vector v ∈ L with v 6= 0 and ‖v‖ ≤ k.

Definition 4 (Closest Vector Problem). Let L be a lattice in Zn, b ∈ Zn a target vector
and k an estimate. The Closest Vector Problem (CVP) in decision form states:
Decide whether there exists a vector v ∈ L such that ‖v − b‖ ≤ k.

In the above definitions, ‖ · ‖ denotes a norm on Zn. The most common norms in
the context of lattice problems are p-norms. The p-norm (for p ≥ 1) is defined as
‖x‖p := p

√∑n
i=1 |xi|p for x ∈ Zn. Examples include the Manhattan-norm for p = 1 and

the Euclidean norm for p = 2. The infinity norm ‖ · ‖∞ is defined as the pointwise limit
for p→∞. It can be proven that ‖x‖∞ = maxi |xi| for x = (x1, . . . , xn)T ∈ Zn.

Example 5.1.1. Let us look at an example of instances of the SVP and CVP. Consider
the lattice L from Example 4.2.1. In Figure 5.1, the lattice L is depicted by green points

s2

(0, 0)

s1

(a) An instance of SVP in the lattice L

(0, 0)

s1 b

(b) An instance of CVP in the lattice L

Figure 5.1: Exemplary instances of lattice problems.

with the origin marked by (0, 0). The red vectors are basis vectors of the lattice. The
blue circle represents the estimate k.
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For the SVP in Figure 5.1a, the blue circle is centred around the origin. The SVP
asks whether there exists a lattice point (a green dot) that is different from the origin
with norm less or equal k (in/on the blue circle). This instance is a YES-instance since
s1 and s2 fulfil this property. Note that there are always two shortest vectors, namely
s1 and its negative s2 = −s1.

For the CVP in Figure 5.1b, the blue circle is centred on the target vector b (the red
point). The CVP asks if the is a lattice point with distance to b less or equal to k (in/on
the blue circle around b). This instance is a YES-instance since s1 fulfils this property.

In Isabelle, the SVP and CVP are defined as the set of YES-instances, whereas the
type defines the set of all instances. For example, the SVP is defined as the set of tuples
(L, k) where L is a lattice and ∃v ∈ L.‖v‖ ≤ k. Similarly, the CVP is defined as the set
of tuples (L, b, k) where L is a lattice and ∃v ∈ L.‖v − b‖ ≤ k.

The reductions to SVP and CVP use the well-known Partition and Subset Sum prob-
lems. Let us briefly define these problems formally.

Definition 5 (Subset Sum problem). Let a1, . . . , an and s be integers. The Subset
Sum problem in decision form states:
Decide whether there exists a subset S ⊆ {1, . . . , n} such that

∑
i∈S ai = s.

Definition 6 (Partition problem). Let a1, . . . , an, s be integers. The Partition prob-
lem in decision form states:
Decide whether there exists a partition of {1, . . . , n} into subset I and J := {1, . . . , n}\I
such that

∑
i∈I ai =

∑
j∈J aj.

As an intermediate step in the reduction to the SVP, we use the Bounded Homogeneous
Linear Equations problem. We define it in the following. The scalar product over Zn is
denoted by 〈·, ·〉.

Definition 7 (Bounded Homogeneous Linear Equations problem). Let b ∈ Zn be a
vector and k a positive integer. The Bounded Homogeneous Linear Equations
(BHLE) problem in decision form states:
Decide whether there exists an x ∈ Zn \ {0} with ‖x‖∞ ≤ k such that 〈b, x〉 = 0.

In the next section, we summarize one major contribution to this thesis: the formaliza-
tion of hardness reductions of the SVP and CVP. The reduction chains are from Subset
Sum to CVP (in any p-norm for p ≥ 1) and from Partition to BHLE to SVP (only in
infinity norm).

5.2 Paper 1: Formalizing Hardness Reductions for Lattice
Problems

In the paper “Verification of NP-hardness Reduction Functions for Exact Lattice Prob-
lems” [67], we discuss the formal verification of the NP-hardness reductions for SVP
and CVP in the infinity norm (for CVP also in any p-norm with p ≥ 1). This paper is
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joint work with Tobias Nipkow and can be found in Appendix A. Due to a number of
inaccuracies and problems in the original proofs uncovered by the formalization, we give
examples where proofs fail and fill the gaps when necessary. Our paper [67] goes along
the lines of the pen-and-paper proofs presented by Micciancio and Goldwasser [82] and
Van Emde Boas [110].

First of all, the paper introduces the mathematical background, defining the general
terminology of problem reductions, lattices and the SVP and CVP. The SVP and CVP
are reduced from the well-known Partition and Subset Sum problems. As an intermediate
step, we also formalize the BHLE problem.

The CVP and SVP are the first problems considered in lattice theory. The paper [67]
only treats the exact problems, even though approximation versions are more widely used
in real-world cryptography. However, since our paper [67] presents the first formalization
of hardness reductions for lattice problems at all, we need to start with the most basic
reductions. Even in these well-known foundations, we find a plethora of inaccuracies
and even errors in the proofs. Fortunately, we can fix all the gaps and present a full and
foundational formalization.

Another main limitation of the reductions is the norm under consideration. We for-
malize the reduction of the CVP in all p-norms, including the infinity norm. However, a
deterministic reduction proof for the SVP only exists for the infinity norm. Ajtai [3] gave
a randomized reduction for the SVP in the Euclidean norm. Since there is no formalism
for randomized reductions in Isabelle yet, implementing this proof was out of scope.

For computability reasons, the reductions only consider lattices with bases over the
integers. Bases over the rationals can always be represented by integer bases as well (by
multiplying with the least common multiple of the divisors).

The main part of the paper describes the formalization of the reductions from Subset
Sum to CVP and from Partition to BHLE to SVP in the infinity norm. The proof
of Subset Sum to CVP follows [82, Chapter 3.2, Thm 3.1]. The pen-and-paper source
claims the proof to be true for all p ≥ 1, including p = ∞. However, we find a gap
where the proof breaks for the infinity norm. Adding another entry to the reduction
function solves this problem. In private communication, Micciancio (an author of [82])
suggested using an additional constant solving the problem as well. The reduction of
CVP for p-norms with 1 ≤ p < ∞ is also formalized. There are no problems in the
pen-and-paper proof in this case.

For the proposed reduction of CVP to SVP in [82], we give a counter-example showing
that the proof is invalid. Therefore, we turn to the original NP-hardness reduction for
the SVP in infinity norm by Van Emde Boas [110], taking the BHLE as intermediate
step. Note that the terminology of [110] from the 80s is slightly different than the modern
terminology (closest / shortest / nearest vector problems).

First, we formalize a reduction from Partition to BHLE in the infinity norm. We adapt
the pen-and-paper version for better formalization, restructuring the proof outline and
uncovering several inaccuracies. The main problems during formalization were: finding
rigorous proofs for proof steps based on intuition; handling index sets, especially when
“omitting” an element (which is intuitively easy, but the formalism in Isabelle is way
more complex); handling different number systems (which requires a lot of formalism
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in Isabelle); working with huge sums (rewriting big sums in Isabelle can be tedious,
especially when the automation fails).

Second, we formalize the reduction from BHLE to SVP in the infinity norm as well.
However, we give examples where the reduction is not entirely correct: altering the re-
duction function solves these problems. We outline why these alternations are necessary
and give counter-examples for when the original proof [110] fails.

In the end, we shortly consider the time complexity of the formalized reduction func-
tion. The time complexity is not formalized in Isabelle.

Topics for future work in the area of hardness reductions are developing a framework
for randomized reductions in Isabelle in order to a able to formalize more complex
reductions, or to formalize other reductions for example for the approximation version
of SVP and CVP or other lattice problems.

5.3 Learning With Errors Problem

In the introduction to this chapter, we observed the importance of average-case hardness
in cryptography. The results formalized in the previous section, however, were only
worst-case reductions. So how can we use this to get interesting results for cryptography?
The break-through for lattice problems in cryptography was the worst-case to average-
case hardness reduction from the worst-case approximate Shortest Independent Vector
Problem (SIVP) to the average-case Shortest Integer Solution (SIS) problem by Ajtai [2].
The approximate SIVP is an extension of the approximation version of the SVP. The
SIS problem asks to find a short integer solution to a system of linear equations over Zq
(where q is prime).

With this starting point on average-case hard problems, many other average-case hard
problems useful for cryptography have been developed. The most important problem for
this thesis is the LWE. It is the hardness assumption for the crypto system Kyber and
the new standard ML-KEM. A hardness reduction to average-case hardness of the LWE
was given by Regev [97]. Let us define the LWE formally. Here, the centred binomial
distribution βη is defined by choosing η values ci with P (ci = 1) = P (ci = −1) = 1/4
and P (ci = 0) = 1/2 and returning the value

∑η
i=1 ci.

Definition 8 (Learning With Errors problem). Let A ∈ Zm×kq be a matrix over the
ring of integers modulo q where all entries are taken uniformly at random from Zq. Let
βη be the centred binomial distribution with values in [−η, η]. We draw an error term
e ∈ Zmq and secret s ∈ Zkq randomly and entry-wise from βη and calculate t = As + e.
The pair (A, t) is then called a Learning With Errors instance. The Learning With
Errors (LWE) problem in decision form states:
Decide whether an instance (A, t) is a Learning With Errors instance or is drawn uni-
formly at random from Zm×kq × Zmq .

Without the error term, the Gauss algorithm can easily solve the system of linear
equations given by A and t. However, adding the error term in the LWE instance makes
the secret hard to recalculate. A straightforward algorithm for solving the LWE uses a

18



5.3 Learning With Errors Problem

maximum likelihood method. It can be shown that after O(n) samples, the secret can be
approximated such that only one solution in Rmq remains. This may take 2O(nlog(n)) time.
The best known algorithm for solving the LWE is by Blum, Kalai and Wassermann [26]
using only 2O(n) samples and time. More detailed analyses of the LWE are described by
Regev [98].

A big problem of using the LWE in cryptography are the large key sizes it implies.
Therefore, algebraic methods to get better information density are used. Lyubashevsky,
Peikert and Regev [78] extended the LWE reduction to a version of the LWE over
polynomial rings. Albrecht [7] then extended the hardness reduction from the ring LWE
to a LWE over modules, allowing vectors over polynomial rings. This module LWE takes
advantage of both the polynomial and vector worlds. More formally, the module LWE
is defined as follows.

Definition 9 (module Learning With Errors problem). Let Rq = Zq[x]/(xn + 1) be the
polynomial ring over Zq factored by the ideal generated by xn + 1. Let A ∈ Rm×kq be a
matrix where all entries are taken uniformly at random from Rq. Let βη be the centred
binomial distribution with values in [−η, η]. We draw an error term e ∈ Rmq and secret

s ∈ Rkq randomly entry- and coefficient-wise from βη and calculate t = As+ e. The pair
(A, t) is then called a module Learning With Errors instance. The module Learning
With Errors (mLWE) problem in decision form states:
Decide whether an instance (A, t) is a module Learning With Errors instance or is drawn
uniformly at random from Rm×kq ×Rmq .

We can write the mLWE as a game against an adversary. This is depicted in Figure 5.2.
With passing time, the mLWE game generates two instances: the mLWE instance and

Challenger Adversary

A0 ← uniform(Rm×kq )

s← βkη , e← βmη
t0 = A0s+ e

mLWE

A1 ← uniform(Rm×kq )

t1 ← uniform(Rmq ) random

b← coin flip (Ab, tb)

Output b′

as a guess for b

ti
m
e

Figure 5.2: The LWE in game form.

a random instance (marked by the grey parentheses). Then, a coin is tossed to decide
which instance is shown to the adversary. The adversary must guess which instance was
revealed. He wins if he guesses correctly and loses otherwise. This is how the mLWE is
formalized in Isabelle.

This mLWE is an essential hardness assumption in PQC. It underlies Kyber, Dilithium
and the new standard ML-KEM. In the following chapter, we will look more closely at
the Kyber PKE on which the Kyber KEM and the standard ML-KEM are based.
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The first version of the crypto system Kyber [28, 14] was published in 2017 and was
submitted to NIST’s first round of the standardization process. It was a development
of the NewHope key exchange mechanism [8]. However, D’Anvers found an essential
security flaw concerning the compression of the public key early on [28]. Therefore, the
scheme was changed for the second round [13] omitting the key compression. Further-
more, the modulus was reduced to balance the change of the key size. For the third
round [12], Kyber included small tweaks to increase performance such as splitting the
variable for the centred binomial distribution into two parts and improving the sampling
of the public key matrix. Implementations of Kyber can be found online [102].

Since NIST announced Kyber as a winner to be standardized as the first PQC for
encryption [5], Kyber took center stage of PQC research. Having tighter and formally
verified security guarantees now gained even more importance.

This chapter deals with a formal verification of the PKE behind Kyber in Isabelle,
where I uncovered an essential flaw in the calculation of security guarantees [66, 64]. Also,
my work [66, 61, 62] was the first published verification of the Kyber PKE in a theorem
prover. Shortly after, Barbosa et al. [10] published a formalization of Kyber in EasyCrypt
together with a verified implementation in Jasmin. My work is mostly complementary
to Barbosa et al. [10] since I focus on the correctness and security verification whereas
Barbosa et al. focus on the verification of the implementation to the specification.

Let us try to understand what is going on in the Kyber crypto system in more detail.
For now, we will strip away all technical details and focus solely on the idea behind
Kyber. Let us consider Figure 6.1. As Kyber works over a module, the figure depicts
matrices and vectors over the module Rq = Zq[x]/(xn + 1). The matrix A and vector t
are the public key (in blue) generated together with the secret key s (in green) in the key
generation by Alice. Here, t is calculated using an additional error term e (in yellow).
The key generation is an instance of the mLWE from Definition 9. In the encryption,
Bob uses a personal secret key r (in green) and the public key (in blue) adding error
terms e1 and e2 (in yellow) and the message (in grey) in the last column. The result is
the ciphertext (u, v) (in red). Alice can then decipher (u, v) using her secret key s (in
green). She gets the message back with an additional (small) error (in yellow). If the
error is small enough, it will only affect the least important bits and we can read off the
message using a rounding step. The reader may verify that the decryption indeed yields
only message and error terms.
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Alice

key gen

A s + e = t

decrypt

v −
u

s = m +

Bob

encrypt

r

A t

+ e1 e2

+ 0 m

= u v

public key secret key error
plaintext ciphertext

Figure 6.1: The idea behind the Kyber PKE.

6.1 Kyber Algorithms

The actual scheme is a bit more complicated. In order to decrease the ciphertext size,
a compression function is used. In this section, we define the Kyber algorithms more
formally. First of all, we need to define the compression function. This describes reducing
a value to only d bits where d is called the compression depth.

Definition 10 (Compression and Decompression in Kyber). Let d be the compression
depth with 2d < q (where q is the modulus in the ring Rq). Then the compression
and decompression functions are defined as follows:

compd(x) =

⌈
2d · x
q

⌋
mod 2d

decompd(x) =
⌈q · x

2d

⌋

Formalizations of the compression and decompression function can be found in [61,
Compress.thy].

Another feature intrinsic to Kyber is the “norm” function ‖ · ‖∞ on Rq. This “norm”
is different than anticipated: it is not simply the infinity norm of the representatives in
Z[x]/(xn + 1), but the infinity norm of the centred representatives. Unfortunately, the
centring gets in the way of the absolute homogeneity, with the result that the function
‖ · ‖∞ as originally defined [28] is only a pseudo-norm. The pseudo-norm is formalized
in [61, Abs Qr.thy]

This yields a gap in Kyber’s correctness proof [65, Section 6], since homogeneity
cannot be applied. With my formalization, I show how to fill this gap considering the
implications on corner-cases [65].

We can finally define the Kyber PKE algorithms. These algorithms are probabilistic
since we first sample the keys and errors and then calculate the key generation, en-
cryption and decryption functions. We denote by x ← χ that x is drawn from the
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6 Kyber — An Example of Post Quantum Cryptography

distribution χ, by unif(S) the uniform distribution on a finite set S and by A;B the
sequential execution of first A and then B.

Definition 11 (Kyber PKE). Let Rq be the ring Zq[x]/(xn + 1) where q is prime and
n a positive integer such that n = 2n

′
for some n′ ∈ N. Let βη be the centred binomial

distribution on [−η, η]. Let du and dv be the compression depths of the ciphertext u and
v, respectively. Then the key generation, encryption and decryption of Kyber’s
PKE are:

key gen =




A← unif(Rk×kq );

s← βkη ;

e← βkη ;

t = As+ e;
pk = (A, t);
sk = s;
return pk sk




encrypt(pk,m) =




r ← βkη ;

e1 ← βkη ;

e2 ← βη;
(A, t) = pk;
u = AT r + e1;
v = tT r + e2 + dq/2cm;
c = (compressdu(u), compressdv(v));
return c




decrypt(sk) =




(u∗, v∗) = c;
u = decompdu(u∗);
v = decompdv(v∗);
m = comp1(v − sTu);
return m




The Kyber PKE is formalized in Isabelle [61, 62] in two steps: First, we consider the
deterministic calculation only. Second, we add the probabilistic choices of the variables.
All fixed parameters are subsumed in the locale context kyber spec [61, Kyber spec.thy],
that can be instantiated for various parameter sets (some examples can be found in [61,
Kyber Values.thy]). The moduleRq is formalized as the type ’a qr [61, Kyber spec.thy].
The deterministic calculations for the key generation, encryption and decryption are
defined as key gen, encrypt and decrypt [61, Crypto Scheme.thy].

The second step of including the probability distributions on the input is more com-
plicated to formalize. Here, we need some more theory, namely that of (sub-)probability
mass functions, the Giry monad and generative probabilistic values. A probability
mass functions f is the probability distribution of a discrete random variable X with
weight one, i.e. f(x) = P (X = x) and the weight

∑
x f(x) = 1. A sub-probability

mass function f is allowed to have weight less than one, i.e.
∑

x f(x) ≤ 1. The Isabelle
type spmf (see [37] for an overview) of sub-probability mass functions can formalize state-
less probabilistic algorithms by their distributions. Generative probabilistic values
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(gpv [73]) are an Isabelle type class for handling probabilistic algorithms together with
a state. The most important concept for handling probabilistic algorithms are monads
[91, 92], e.g. the Giry monad [47] for probabilities. The monadic structure allows us
to consecutively bind two probability distributions. This allows us to consider distribu-
tions of entire probabilistic algorithms. Using these formalisms, we formalize the Kyber
algorithms in Definition 11 as pmf key gen and pmf encrypt [62, Correct.thy]. The
decryption stays deterministic, thus we need no separate definition.

In the following section, we consider the correctness property of Kyber.

6.2 δ-Correctness

As Kyber obfuscates the message and secret key using errors, we have to make sure that
the errors are not too large to interfere with the decryption of the message in the end.
Indeed, we can only consider the δ-correctness of the Kyber PKE where δ denotes a
bound on the estimated failure probability. Formally, we define a δ-correct PKE as the
following.

Definition 12 (δ-correct PKE). Consider a PKE K given by the algorithms key gen,
encrypt and decrypt. Let M be the message space. Then the PKE K is δ-correct iff

E
[

max
m∈M

P[decrypt(sk, encrypt(pk,m)) 6= m]

]
≤ δ

where the expectation E is taken over the keys (sk, pk) generated by the key gen algo-
rithm.

The δ-correctness terminology is formalized in the locale pke delta correct [62,
Delta Correct.thy]. When instantiating the locale with a PKE, we can then show the
property delta correct for a specific correctness error bound δ. The correctness bound
δ is an important security parameter. For real-world crypto schemes, it is essential to
show that the bound δ is negligibly small.

6.3 Classical Indistinguishability under Chosen Plaintext Attack

For a crypto system to be of use in real-world scenarios, we need basic security properties.
These security properties usually describe a common attack scenario and require the
crypto system not to leak information to the attacker. One of the most common security
properties is the indistinguishability under chosen plaintext attack (IND-CPA).

The IND-CPA security property requires that an adversary cannot distinguish two
ciphertexts even if he could choose the plaintexts. Usually, attacks are modelled in
game form: The challenger plays a game against an adversary who tries to attack the
cryptosystem and gain information. For the IND-CPA, we consider the game depicted
in Figure 6.2. The game proceeds as follows: First, the challenger generates a public
and secret key pair and gives the public key to the adversary. Then, the adversary may
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Challenger Adversary

(pk, sk)← key gen pk

choose m0, m1

with |m0| = |m1|
m0 and m1

b← coin flip

c = encrypt(mb,pk) c

Output b′

as a guess for b

ti
m
e

Figure 6.2: The IND-CPA security game

choose two messages of same length. The challenger now flips a coin on which message
to encrypt and sends the encryption to the adversary. The adversary must then guess
which message way encrypted.

If a crypto system is not secure against IND-CPA, the adversary can distinguish two
ciphertexts even when choosing the plaintexts. This may leak partial or structural
information. For example, in a block ciphers where some block occurs multiple times
the attacker can distinguish repeating blocks and may gain structural knowledge. Even
though this does not immediately imply that the key is leaked or the cipher is broken,
it still may be pose a threat depending on the security context. As an example: The
enigma machine was broken by analysing reoccurring structures in the ciphertext.

For a crypto system to be secure against IND-CPA, the attacker may not gain any
substantial amount of information. That is, the difference between the output of an
adversary in the IND-CPA game and a coin flip must be negligibly small. In order to
prove this, we typically use a number of game-hops transforming the IND-CPA game
into a game of a known hard problem. In our case, the IND-CPA game for Kyber is
transformed into the mLWE game (which is known to be NP-hard, i.e. the difference of
distinguishing between mLWE/uniformly random instances and a coin flip is negligible).

The IND-CPA game is formalized as a locale in CryptHOL [76, IND CPA.thy]. It can
be instantiated by any PKE, for example the key generation, encryption and decryption
of the Kyber PKE.

Many implementations of crypto systems use pseudo-random function families (PRFs)
to extend a small random seed to a large (equally random) output. A PRF is a family
of deterministic functions where an instance of the PRF cannot be distinguished from a
purely random function by any efficient algorithm. In cryptography, such purely random
functions are called random oracles. Since many security proofs require randomness
instead of determinism, the random oracle model proposes that a change from a
deterministic PRF to random oracles is valid and unnoticeable for an adversary. An
introduction to the ROM can be found in [83]. As an example of the application of the
ROM: In the case of Kyber, the public key part A is generated by a pseudo-random
function extending a seed. The ROM allows us to exchange the PRF of the seed by a
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random oracle with the target distribution. In our formalization, we therefore assume
this seed extension to be uniformly random in the ROM.

In this chapter, we only consider classical, polynomial-time adversaries. However,
Kyber is supposed to be also IND-CPA secure against quantum attackers. We will go
into more detail on quantum attackers and security proofs against them in Chapter 7.

6.4 Paper 2: Formalizing Kyber

In my paper “Verification of Correctness and Security Properties for CRYSTALS-Kyber”
[66], I present a formalization of the Kyber PKE, its δ-correctness and IND-CPA security
proof. A full version can be found in Appendix B. The main contribution is evidence for a
miscalculation in the estimation of the correctness error, leading to a counterexample for
the correctness error bound δ as originally defined [28]. These findings were validated
in private communication with Kyber authors. Furthermore, my formalization is the
first published and publicly available formalization of the Kyber PKE with proofs of the
correctness and IND-CPA security in a theorem prover.

Almeida et al. [10, 9] simultaneously developed a formalization of the Kyber specifica-
tion in EasyCrypt and of the respective implementation in Jasmin. Their paper [10] of
June 2023 focuses on the formalization of the implementation and the verification of the
implementation with respect to the specification in EasyCrypt. It does not contain a
verified proof of correctness or security properties of the specification of Kyber in Easy-
Crypt. In August 2024, shortly after my paper was published, the EasyCrypt Team [9]
also published a formalization of the correctness and security properties of Kyber and
the extension to ML-KEM in EasyCrypt. In accordance to my findings, the original
correctness error bound could not be formalized. The EasyCrypt formalization [9] takes
the unreduced error bound (that I also use), splits it into two parts and additionally
bounds one of the error terms to allow easier approximations. Therefore, the bound in
EasyCrypt should be larger than the bound that I proved. In comparison with the works
in EasyCrypt, my paper shows a detailed analysis of why the original δ-correctness proof
does not work out, giving several counter-examples for small dimensions. Furthermore,
the formal proofs in Isabelle are all foundational, in contrast to the EasyCrypt proofs.

First of all, the paper [66] discusses the formalization of the context of the Kyber
algorithms. This includes the modelling of the polynomial quotient ring Rq used in
Kyber as a type class, as well as a model of the parameter sets as a locale. A locale
bundles all assumptions on parameters and can be instantiated for various parameter
sets. Therefore, the formalization is valid for several security levels, e.g. Kyber768 and
Kyber1024. For the third round implementation of Kyber512 [12], the parameter η for
the centred binomial distribution was split into two different values. This split has not
been formalized and it remains unclear whether the security proof still remains valid
with this split. The formalization in EasyCrypt [10] also omits this split.

Other basics in the formalization include the formalization of the mLWE game, the
compression and decompression functions and the norm-like function used in the cor-
rectness error bound. During the formalization I found a gap in the correctness proof
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due to the misconception that the norm-like function (that is called a norm in [28]) is
actually only a pseudo-norm. I give an example in a border case where this pseudo-norm
breaks the reasoning in the correctness proof. However, I propose an alternative proof
for this problem by including the assumption q ≡ 1 mod 4 on the modulus q. This
assumption is fulfilled by all moduli q that are used for the number-theoretic transform
(NTT) in Kyber. The NTT for Kyber is also formalized together with its convolution
theorem. A more detailed discussion is presented in my preprint [65] for the FAVPQC
workshop.

Then, the probabilistic sampling and the deterministic calculations in the Kyber PKE
are discussed. Together, the Kyber algorithms are formalized as probabilistic algorithms
in the Giry monad [47]. A shortcoming of my formalization is that we sample the matrix
A (that is a part of the public key) uniformly random form Rk×kq . In the actual scheme,
A is extended from a seed by a pseudo-random function since A to keep the size of the
public key as small as possible. The pseudo-random function for extension is assumed
to generate uniformly random values in the original paper [28]. As we work in the
ROM, substituting PRFs by uniformly random variables is reasonable and simplifies the
formalizations.

The next step in the formalization is the δ-correctness of these algorithms. However,
I could not formalize the δ-correctness as originally published [28]. The reason is an
error in the correctness bound estimation. After an author of Kyber validated this
error in private communication, I found a counterexample in a very small parameter set
and confirmed this error in a statistical analysis for various other (but still quite small)
parameter sets. In my formalization, I give an alternative bound δ′ for which we can
formally prove correctness. However, I did not find a way to easily approximate δ′. As
mentioned, the EasyCrypt team [9] found the same problems but give an alternative
solution with a larger bound.

The last part of my Kyber formalization is a verification of the IND-CPA security
proof against the Kyber PKE in the classical ROM. The locale for the IND-CPA game
is taken from CryptHOL [76]. Again, I use the monadic representation of probabilistic
algorithms, sub-probabilistic mass functions and the type for generative probabilistic
values from CryptHOL [73, 76] to formalize the IND-CPA game for Kyber. Using game-
hops, I formalize the reduction of the IND-CPA game for Kyber to the mLWE games.
In this case, the formalization follows closely the pen-and-paper proof and no major
gaps were discovered. Still, the IND-CPA security proof covers a major part of the
formalization since it requires several complicated rewriting steps in the game-hops where
the automation mostly fails.

The main problems encountered during the formalization of the Kyber PKE were
problems and gaps in the pen-and-paper proofs. When communicating with authors of
Kyber and the EasyCrypt team working on a similar formalization, it became apparent
that other parties also experienced these problems. In the case of the error bound δ
this also lead to a concrete counter-example to the existing pen-and-paper proof [28].
Other problems included the huge game descriptions in the IND-CPA proofs. Here, the
automation often failed rewriting the whole game so that I had to break it down into
several smaller steps.
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As a conclusion, this formalization is a starting point for a fully foundational verifi-
cation of Kyber. The next steps include formalizing the FO transform to get the Kyber
KEM from the PKE, verifying the specification against the implementation or generating
a verified implementation from the formalization, as well as verifying security properties
against quantum adversaries.
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In the previous chapter, we only considered classical attackers in the security games.
However, since PQC is developed to counter the threat by quantum computers, we also
need to prove security against attackers with access to quantum computers. Therefore,
we need to extend our adversarial model: Quantum adversaries are adversaries with
access to classical and quantum computers. We often model the classical part as a
sub-register of the quantum part.

The first question that arises when mentioning quantum computers is: What is the
difference between classical and quantum attackers in the security context? A very
intuitive example is the “reprogramming” of a function (e.g. a hash function) where we
change the outcome of the function on a subset of inputs. Classically, the adversary
can only realize that we reprogrammed some outputs when he queries exactly these
outputs. If the input space is comparatively large with respect to the change set, the
probability that the adversary notices is relatively small. However, in the quantum case,
the adversary may query every input in superposition at once. Therefore, it is not clear
whether we can reprogram the function at all or whether the adversary can notice the
change.

In this chapter, I give a short overview on basic quantum computation and the mod-
elling of quantum adversaries. However, we will not prove or formalize the security of
Kyber in the quantum setting. This is still out of reach in Isabelle, since we lack many
foundational theorems needed in the quantum world. Still, we take a step in this di-
rection and describe the formalization of a central theorem for security proofs against
quantum adversaries, namely the One-way to Hiding (O2H) Theorem.

7.1 Basics of Quantum Computation

To understand quantum attackers better, we must look deeper into quantum computing.
More detailed information on quantum computing and quantum information theory can
be found in introductory books to this topic (e.g. [88, 111]). First of all, what exactly is
a quantum computer and what can it do? A quantum computer is a computer exploiting
quantum mechanics to “calculate”. We can use the laws of quantum mechanics to model
a quantum computer. We will not concern ourselves with the physical realization of a
quantum computer but keep to the abstract model.

Formally, a quantum computer is modelled by its state register and transitions on
these states. For simplicity, we will introduce the notion of quantum states over finite
dimensional Hilbert spaces only. The generalization to infinite dimensions is technically
more refined and requires additional assumptions for working with bounded operators.
An important class of operators over infinite-dimensional Hilbert spaces are trace-class
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operators, which are operators whose trace converges and is well-defined. Generally
speaking, infinite-dimensional quantum states can be represented by trace-class opera-
tors.

The smallest unit of quantum information is a qubit. A qubit can be represented by
a complex Hilbert space vector in C2 or in the ket notation |·〉. The computational basis
of a qubit are the states |0〉 = ( 1

0 ) and |1〉 = ( 0
1 ), the embeddings of a classical bit into

the qubit. A general qubit has the state α |0〉+β |1〉 where α, β ∈ C and |α|2 + |β|2 = 1.
Equivalently, the qubit can be represented by the vector ( αβ ) with norm 1. We call these
qubits a superposition of the computational basis.

A quantum register is a system of multiple qubits. We embed a classical bit-string by
taking the tensor product of the computational basis qubits, e.g. the bit-string 101 is
represented by the tensor |1〉 ⊗ |0〉 ⊗ |1〉 or a vector in the Hilbert space C2 ⊗ C2 ⊗ C2.
A quantum register can also be in the superposition of a subset of the computational
basis. For example, in a two qubit register, the states |0〉 ⊗ |1〉 and |1〉 ⊗ |0〉 are part of
the computational basis, whereas the state 1√

2
(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉) is a superposition.

When considering multiple qubits, another essential quantum mechanics effect comes
into play: the quantum entanglement. Consider the example of a two qubit register.
Then, the superposition state 1√

2
(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉) cannot be represented by a single

tensor product. We call such states entangled. An example of a superposition that is

not entangled is the state 1√
2
(|0〉 ⊗ |1〉+ |0〉 ⊗ |0〉) = |0〉 ⊗

(
1√
2
(|1〉+ |0〉)

)
, since we can

write the state as a tensor product of two qubits.

Quantum states are typically divided into pure and mixed states. A pure state
is a quantum state where we have full information over the outcomes. They can be
represented by a complex Hilbert space vector ψ of norm 1 or its density operator
ψψ∗ (where ∗ denotes the conjugate transpose). For example, all computational basis
states and superpositions thereof are pure. In contrast, mixed states describe quantum
systems whose information is not fully known. For example, when our quantum register
is entangled with another register we do not have control over, our register is in a mixed
state. Mixed states cannot be described by Hilbert space vectors of norm 1, but will be
denoted as density operators. For example, a probability distribution on pure states ψi
with probabilities pi is a mixed state that can be represented by the operator

∑
i piψiψ

∗
i .

In Isabelle, we work with several types:

• ’a ell2 is the type of square-summable functions denoting Hilbert space vectors
indexed by the type ’a

• (’a,’b) cblinfun is the type of complex bounded linear functions from type ’a

to type ’b. This denotes operators from ’a to ’b

• ’a update is a type shorthand for (’a ell2, ’a ell2) cblinfun. This denotes
operators over a Hilbert space.

• (’a,’b) trace class is the type of trace-class operators from ’a to ’b.
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Using these type classes, we can formalize the quantum adversarial model described in
the next section.

7.2 Quantum Adversarial Model

When defining the quantum adversary, we first have to extend the classical ROM to a
quantum correspondence. The quantum random oracle model (QROM) [27] allows
the adversary to quantumly access a classical random oracle function (e.g. querying
values in superposition). All our security proofs will be performed in the quantum
random oracle model.

Since the classical memory is embedded in the quantum register (as the computational
basis states), we need to define how the quantum computer can access the oracle.

Definition 13 (Quantum access to random oracles). Let H : X → Y be a random
oracle. Let X and Y be sets of classical memory embedded in the quantum register
of the adversary. Then the quantum oracle query is a unitary UH defined by its
behaviour on the computational basis |x〉 ⊗ |y〉 of X ⊗ Y :

UH(|x〉 ⊗ |y〉) = |x〉 ⊗ |H(x) + y〉

The function UH is formalized as Uquery H in Isabelle. It is defined as the extension
of the classical operator UH defined on the basis |x〉 ⊗ |y〉 for x ∈ X and y ∈ Y .

An oracle query that is performed on quantum memory must be reversible. So, both
input and output domains of the oracle function H must be embedded into the quantum
register. Furthermore, the oracle query itself must also be reversible. Therefore, we still
need to embed the above function into the memory register.

This formalization is slightly more complicated. Let mem be the quantum register
with the classical sets X and Y embedded as two subregisters X and Y in mem. We
write XY (UH) for the extension of the application of UH on mem. This is formalized
as (X;Y)(Uquery H), with the formalism of subregisters taken from the AFP entry on
quantum registers [108].

Consider an adversary that has access to a random oracle d times. Then, we should
model the adversary to do any computation they want before, between and after the
oracle calls. Here, ◦ denotes functional composition.

Definition 14 (Adversary call). An adversary A with access to an oracle function O
at most d times can be modelled by functions {fi}i∈{0,...,d}. Then the adversary call
on an input x is:

A(x) = fd ◦O ◦ fd−1 ◦ · · · ◦ f1 ◦O ◦ f0(x)

The above definition abuses the formal notation: depending on the type of the func-
tions fi, the adversary can be defined for Hilbert space vectors or operators. How-
ever, the oracle query function O also has to be adapted, embedding the oracle into
the quantum register and extending it to the Hilbert space vectors/operators we work
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with. In Isabelle, this universal definition of an adversary call is formalized by sev-
eral functions, depending whether we work with pure/mixed states or on Hilbert space
vectors/operators/trace-class operators.

In the setting of the O2H Theorem, we need to distinguish pure and mixed adversaries,
that is adversaries that run only on pure states or that also allow mixed states. For pure
adversaries, the update functions are unitaries Ui. Since unitaries are norm-preserving,
pure states also remain pure.

For mixed adversaries, the update functions are probability distributions on pure
updates. The mathematical equivalent are Kraus maps. A Kraus map E consists of a
set of operators Ej with

∑
j E
∗
jEj = I (where I is the identity). An application of the

Kraus map E on a mixed state ρ is defined as E(ρ) =
∑

j EjρE
∗
j .

The formalizations of pure and mixed adversaries follow Definition 14 with differ-
ent type classes and properties for unitaries or Kraus maps. For example, the func-
tion run pure adv formalizes a pure adversary on the type of Hilbert space vectors,
whereas run pure adv update lifts this definition to operators and run pure adv tc to
trace-class operators. Mixed adversaries are defined as run mixed adv over trace-class
operators. Formalizations can be found online [54, Run Adversary.thy].

Another important concept for the O2H Theorem are the semi-classical adversary
calls (also called punctured adversary calls). Let A be an adversary with quantum access
to an oracle H. We want to “puncture” the oracle on a change set S, i.e. detect if the
adversary notices any changes in values in S. Then, AH\S defines the adversary with
access to the semi-classical oracle: The oracle H is queried as a normal quantum random
oracle, but additionally we measure whether the input is in the change set S.

7.3 One-way to Hiding Theorem

As described in the introduction to this chapter, “reprogramming” an oracle function
in the quantum setting is not trivial. Since many classical cryptographic proofs make
use of this technique, a similar method in the quantum setting is much desired. The
One-way to Hiding (O2H) Theorem yields such an analogue by bounding the probability
that the adversary can distinguish two games where the oracle was “reprogrammed” on
a change set S.

Intuitively, the O2H Theorem [11, Theorem 1] states the following: For two oracles
H and G that agree everywhere but on a change set S, we consider two games: the first
is an adversarial run with access to H and the second with access to G, both at most d
times. We denote by Pfind the probability that the adversary queries values in S. Then
the difference between the two games is at most 2

√
(d+ 1)Pfind. The proof of the O2H

Theorem goes deep into quantum computing and may be hard to follow, even if the
presentation in [11] is quite accurate. Therefore, a formalization provides more trust in
the theoretical background of the O2H.

The O2H is used in many variations and in many quantum security proofs. For
example, there are several quantum security proofs of the FO-transform using versions
of the O2H resulting in different bounds: Kuchta et al. [69] use the measure-rewind-
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measure O2H; Unruh [107] or Hövelmanns et al. [57] use the semi-classical O2H. A
more general version of the FO transform is the generic authenticated key exchange.
Hövelmanns et al. [58] show its quantum security proof making use of the semi-classical
O2H Theorem as well. The most well-known versions of the O2H Theorem include
the original version [105], the semi-classical O2H [11], the double-sided O2H [22], the
measure-rewind-measure O2H [69], the O2H on compressed oracles [34] and an O2H for
adaptively chosen positions [50].

We formalized the following version of the semi-classical O2H Theorem. It is a slightly
weaker version as [11, Theorem 1] by an additional factor of 2 in the inequality (7.1).

Theorem 7.3.1 (O2H Theorem). Let A be a quantum adversary with query depth d,
G,H : X → Y be two oracle functions, S ⊆ X a change set such that G(x) = H(x) for
all x /∈ S, and z a bit-string. G, H, S and z may be chosen by a joint distribution. We
denote by AO(z) the adversary with access to the oracle O and input string z (here O
can be replaced by both oracles G and H). Let AH\S be the adversary with access to the
semi-classical oracle. Let Find denote the event that we measured an oracle input in S.
Let furthermore:

Pleft = Pr[b = 1 : b← AH(z)]

Pright = Pr[b = 1 : b← AG(z)]

Pfind = Pr[Find : AH\S(z)]

Then the One-way to Hiding (O2H) Theorem states that

∣∣Pleft − Pright

∣∣ ≤ 4
√

(d+ 1) · Pfind (7.1)

∣∣∣
√
Pleft −

√
Pright

∣∣∣ ≤ 2
√

(d+ 1) · Pfind

In the following section, we summarize the contribution of formalizing the O2H in
Isabelle.

7.4 Paper 3: Formalizing the One-way to Hiding Theorem

In the paper “Formalizing the One-way to Hiding Theorem” [55], we present a formal-
ization of the semi-classical O2H Theorem by Ambainis, Hamburg and Unruh [11] in
Isabelle. This paper is joint work with Dominique Unruh and can be found in Ap-
pendix C. The formalizations can be found online [54]. This is the first foundational
formalization of the O2H. Furthermore, the paper extends the O2H Theorem to infinite-
dimensional Hilbert spaces and non-terminating adversaries. For the O2H Theorem with
mixed states, an alternative and novel proof is given.

For the formalization of the O2H, we first extend some foundations. Building on the
formalization of quantum registers [108] and Kraus maps [109, qrhl-tool/isabelle-thys/
Kraus_Maps.thy], we develop a formal model of quantum adversaries in Isabelle. Here,
we distinguish between pure and mixed adversaries, i.e. adversaries that calculate on
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pure states only or that also allow mixed states. We also take account of the embedding
of a classical oracle function in the quantum register and their oracle queries. The ad-
versary runs are also generalized to density operators over infinite-dimensional Hilbert
spaces.

A shortcoming of the formalization of the oracle queries by the adversary is that the
formalization only allows sequential queries instead of potentially parallel queries. The
reason is that the type of parallel queries would depend on a parameter (i.e. the number
of parallel queries in each oracle call). Since Isabelle does not have dependent types, this
formalization needs careful treatment.

The formalization of the O2H proof is split into two parts (as is the pen-and-paper
proof): First, the O2H is proven for pure states and pure adversaries only. Second, the
O2H for mixed states and mixed adversaries is separated into many instances of the
pure O2H. For the first step, the formalization closely follows the pen-and-paper proof
in [11]. However, for the second step, we give an alternative proof. The pen-and-paper
version [11] heavily uses the Bures distance and fidelity of quantum states. Formalizing
these in Isabelle would have taken too much time, so we give an alternative proof instead.
A slight drawback is that the resulting final inequality is weaker by a factor of 2 (only in
the inequality (7.1)). However, we generalize the O2H in other directions by extending to
infinite dimensional Hilbert spaces and taking non-terminating adversaries into account.
The non-termination yields an additional factor in the final bound.

A shortcoming in the formalization of the theorem is that, up to now, we only consider
discrete distributions on the oracles H, G, the change set S and input z. A general-
ization to arbitrary distributions would certainly be possible but entails more work on
convergence arguments.

The main challenge during the formalization process was adapting the proofs to work
with concepts that were already formalized or did not require formalizing new concepts
(like the Bures distance and fidelity). A more technical detail was the lifting of differ-
ent types through several layers of generalizations: from Hilbert space vectors for pure
states to operators for mixed states and trace-class operators for convergence properties.
Other challenges included the exact formalism for definitions, index sets and decompo-
sition of mixed adversaries into a linear combination of pure adversaries. Furthermore,
the formalization is much more explicit concerning convergence arguments. Where the
pen-and-paper proof often abstracts away the convergence of sums, traces or linear com-
binations, we often had to prove these facts explicitly in Isabelle.

For the future, one can now formalize the concrete bound on the probability of finding
a reprogrammed value as in [11, Theorem 2]. For the application to cryptography,
the formalization of different versions of the O2H is also very interesting. The most
interesting follow-up work is the connection of the O2H formalization to the qrhl-tool.
The biggest challenge here is aligning the adversarial models (this need solving the
parallel queries issue in our model).
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8 Conclusion & Outlook

This thesis takes several steps towards a foundational formalization of post-quantum
cryptography. First, we give a short introduction to post-quantum cryptography in
general and lattice-based schemes in more detail. Then, we give an overview on the state
of the art on formalizations in post-quantum cryptography. The main contributions to
this thesis can be divided in three parts:

1. Hardness assumptions: We introduce basic lattice problems such as the Short-
est Vector Problem and the Closest Vector Problem, as well as the module Learning
With Errors problem. We discuss my paper “Verification of NP-hardness Reduc-
tion Functions for Exact Lattice Problems” [67] which describes a formalization of
the NP-hardness reduction functions for the Shortest and Closest Vector Problems.
This is the first formalization of hardness reductions for post-quantum cryptogra-
phy.

2. Kyber: As a prominent example for post-quantum cryptography, we consider the
public key encryption scheme of Kyber. We define the algorithms, correctness
terminology and security against the indistinguishability under chosen plaintext
attack. My contribution is a formalization of the Kyber public key encryption
scheme, its correctness and security property in the paper “Verification of Correct-
ness and Security Properties for CRYSTALS-Kyber” [66]. A major outcome of my
formalization is the discovery of an error in the correctness bound calculation. I
find a counter-example with a small parameter set showing that the proof has an
essential flaw and propose an alternative bound. My formalization was the first
publicly available formalization of the Kyber public key encryption scheme.

3. Quantum adversaries: The security against quantum adversaries makes post-
quantum cryptography interesting for the future. We give a short introduction
to quantum computing and the quantum adversarial model. Then, we introduce
the One-way to Hiding Theorem, a central theorem used in many security proofs
against quantum adversaries. My paper “Formalizing the One-way to Hiding The-
orem” [55] describes the first foundational formalization of the One-way to Hiding
Theorem in Isabelle. Many tools for reasoning against quantum attackers are being
developed, but none formalized the One-way to Hiding Theorem foundationally so
far. My work provides an essential foundation for these tools.

Since the verification and formalization of post-quantum cryptography is a vast and
open field, this thesis only takes small steps to broaden the foundational work needed.
Still, many areas and research questions remain open for future work. Going along the
lines of my contributions, new follow-up research questions can be posed:
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1. Hardness assumptions: Can we formalize the probabilistic reductions for ap-
proximate lattice problems or the worst-case to average-case reductions needed for
cryptography? Can we develop a reasonable framework for probabilistic reduction
proofs in a theorem prover such as Isabelle? And can we, ultimately, show average-
case NP-hardness for lattice problems used in post-quantum cryptography such as
the module Learning With Errors problem?

2. Kyber: Can we find an alternative correctness error bound showing the claimed
correctness in [28] and formalize it? And if we find a better error bound, can
we also formalize its estimation? Can we formalize the security proofs against
quantum computers as well (and can we do this foundationally)? Ultimately, can
we get a fully verified implementation from the formalized specification or formally
show that the current implementation matches the formalized specification?

3. Quantum adversaries: Can we foundationally formalize the needed theorems
for security proofs against quantum adversaries? Once we have, can we connect
these formalizations to higher-level tools developed for this purpose such as qrhl-
tool? And, ultimately, can we foundationally prove security properties for Kyber
in the quantum setting?

These and many more questions remain for future work in the area of verification and
formalization of post-quantum cryptography. With this thesis, we have come a step closer
to the formalization, verification and understanding of post-quantum cryptography.
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Schmidt, and Pierre-Yves Strub. EasyCrypt: A Tutorial. In Lecture Notes in Com-
puter Science, vol 8604, page 146–166. Springer International Publishing, 2014.
doi:10.1007/978-3-319-10082-1_6.

[21] David A. Basin, Andreas Lochbihler, and S. Reza Sefidgar. CryptHOL: Game-
Based Proofs in Higher-Order Logic. Journal of Cryptology, 33(2):494–566, Jan-
uary 2020. doi:10.1007/s00145-019-09341-z.

[22] Nina Bindel, Mike Hamburg, Kathrin Hövelmanns, Andreas Hülsing, and Edoardo
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Abstract. This paper describes the formal verification of NP-hardness
reduction functions of two key problems relevant in algebraic lattice the-
ory: the closest vector problem and the shortest vector problem, both
in the infinity norm. The formalization uncovered a number of problems
with the existing proofs in the literature. The paper describes how these
problems were corrected in the formalization. The work was carried out
in the proof assistant Isabelle.

Keywords: verification · NP-hardness · lattice problems · integer
programming.

1 Introduction

In recent years, algebraic lattices have received increasing attention for their
use in post-quantum cryptography. Algebraic lattices are additive, discrete sub-
groups of Rn, i.e. a set of points in Rn with certain structures. One can also define
lattices over finite fields, rings or modules as used in many modern post-quantum
crypto systems such as the CRYSTALS suites, NTRU and Saber.

Two problems form the very basis for computationally hard problems on lat-
tices, namely the closest vector problem (CVP) and the shortest vector problem
(SVP). Given a finite set of basis vectors in Rn, the set of all linear combinations
with integer coefficients forms a lattice. In optimization form, the SVP asks for
the shortest vector in the lattice and the CVP asks for the lattice vector closest
to some given target vector, both with respect to some given norm.

When working over the reals, the p-norm (for p ≥ 1) is defined as p
√∑

i |xi|p.
The most common examples are the Euclidean norm ‖x‖2 and the infinity norm
‖x‖∞ = maxi{|xi|}, which is the limit for p→∞.

We have formalized, corrected and verified a number of NP-hardness proofs
from the literature, uncovering a number of mistakes along the way. The first
NP-hardness proof of the CVP and SVP in infinity norm is due to van Emde-
Boas [7]. For other norms (especially for the Euclidean norm), there is only a
randomized reduction for the NP-hardness of the SVP so far [2]. For the CVP,
? This work was supported by the Research Training Group GRK 2428 CONVEY of
the German Research Council (DFG).
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NP-hardness has been shown in any p-norm for p ≥ 1. One exemplary proof can
be found in the book by Micciancio and Goldwasser [15, Chapter 3, Thm 3.1].

The CVP and SVP were the starting point for lattice-based post-quantum
cryptography [16]. Moreover, the relevance of these problems can also be seen
from the rich literature on approximation results. For example, the LLL-algorithm
by Lenstra, Lenstra and Lovász [12] gives a polynomial-time algorithm for lattice
basis reduction which solves integer linear programs in fixed dimensions. Using
this reduced basis, one can find good approximations to the CVP using Babai’s
algorithm [3] for certain approximation factors. Still, for arbitrary dimensions,
the problem remains NP-hard. Further approximation results for the CVP, SVP
and integer programming can be found elsewhere [6,9,10,14,19]. These approx-
imation problems are used in cryptography. However, we will focus on the exact
CVP and SVP in this paper.

A number of more basic NP-hardness proofs have been formalized in several
theorem provers so far. For example, there are formalizations of the Cook-Levin
Theorem in Coq [8] and Isabelle [4]. Formalizing Karp’s 21 NP-hard problems
(including the Subset Sum and Partition Problems assumed to be NP-hard in
this paper) in Isabelle is an ongoing project.

1.1 Contributions

In this paper we present NP-hardness proofs of the CVP and SVP in infinity
norm that have been verified in a proof assistant. We roughly follow the book by
Micciancio and Golwasser [15, Chapter 3, Thm 3.1] and the report by van Emde-
Boas [7]. However, many problems with the original proofs were encountered
during the formalization efforts. We will have a look at different approaches and
their advantages or problems.

We also verified the proof of NP-hardness of the CVP for any finite p ≥ 1
from the book by Micciancio and Goldwasser. This verification did not uncover
any problems with the informal proof. Thus we do not discuss it in detail.

These formalizations were carried out with the help of the proof assistant
Isabelle [17, 18] and are available online [11]. They comprise 5200 lines. To the
authors knowledge, they are the first formalizations of hardness proofs for lattice
problems. Because of the importance of the SVP and CVP and the problems
in existing proofs, we consider our proofs a contribution to the foundations of
verified cryptography. However, we do not claim that these hardness results
directly imply quantum-resistance of any lattice-based cryptosystems.

1.2 Overview

The paper is structured as follows. Section 2 introduces the foundations. The
rest of the paper is dedicated to the proofs, which are phrased as the following
two polynomial time reduction chains:

– Subset Sum ≤p CVP
– Partition ≤p Bounded Homogeneous Linear Equations ≤p SVP
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Subset Sum and Partition are famous fundamental problems whose NP-hardness
has been proved many times in the literature and which we take for granted.

Section 3 presents the reduction of Subset Sum to the CVP. Differences
between our formalization and the book by Micciancio and Goldwasser [15] are
presented with examples that demonstrate problems with the original proof.
Moreover, an example is given why the generalization to the SVP given in [15]
does not work.

Therefore we turn to the early proof of NP-hardness of the SVP by van Emde
Boas [7]. This proof uses the Bounded Homogeneous Linear Equations problem
(BHLE) which is introduced in Section 4. The formalization of this proof is one
of the major achievements in this paper. It posed a significant challenge since
it often relied on human intuition and had to be restructured appropriately to
allow a formal proof. The main proof steps are explained and difficulties in the
formalization effort are described. This proof only works in infinity norm and
we explain why. In Section 5, the reduction from BHLE to the SVP is given.
Again, this proof was quite elaborate to formalize as there were inaccuracies and
a lot of intuition was involved. Differences between the formal proof and [7] are
explained by examples.

In Section 6, we have a quick look at the reduction proof for the CVP in
p-norm (for finite p ≥ 1). In the case of the SVP there only exists a randomized
hardness proof in Euclidean norm by Ajtai [1] up to now.

Finally, the time complexity of the reduction functions are considered in
Section 7. We conclude the paper with a short summary and outlook.

2 Foundations

This section introduces known foundations mainly to fix the terminology and
notation: problem reductions, lattices, and the combinatorial problems under
consideration (CVP, SVP, Partition and Subset Sum).

2.1 Problem Reductions

Formally, a decision problem is given by the set of YES-instances P and a set
Γ of problem instances, where P ⊆ Γ . We often associate the decision prob-
lem with the set of YES-instances, when the instance set Γ is obvious and not
explicitly defined. In this paper we will often phrase problems informally (e.g.
“decide if p is prime”) rather than give them explicitly as sets. For example, the
decision problem “decide if a natural number p is prime” will be formalized in
the following way: the set of problem instances is Γ = N (in Isabelle these are
all elements of type nat); and the YES-instances are P = {p ∈ N | p is prime}
(in Isabelle this is a set of type nat set).

Definition 1 (Problem reduction). Let A ⊆ Γ and B ⊆ ∆ be two problems.
A function f : Γ → ∆ is a reduction from A to B if it fulfills the following
properties:
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– ∀a ∈ Γ. a ∈ A⇔ f(a) ∈ B
– f can be computed in polynomial time

If A is NP-hard, a reduction to B proves NP-hardness of B.
In this paper we present reduction functions informally (e.g. “an a is reduced

to a b that is constructed like this”) and often with copious amounts of “. . . ” to
construct vectors etc. Of course in the formalization these reduction functions
are spelled out in complete detail. Since all operations used in the reduction
functions in this paper are elementary, the polynomial time property has not
been formalized but is briefly discussed in Section 7. The focus of our paper are
the proofs a ∈ A⇔ f(a) ∈ B.

2.2 Lattice-based Computational Problems

To have a better understanding, we will first introduce lattices as such. Lattices
are a structured set of points. They form an additive, discrete subgroup of Rn.
Formally, we define the following.

Definition 2 (Lattice). Let A = {a1, . . . , an} ⊂ Rn be a set of linearly inde-
pendent vectors. Then the integer span of A forms a lattice L, that is:

L =
{

n∑

i=1
ciai | ci ∈ Z

}

(a) Lattice with rectangular basis vectors (b) Lattice with triangular basis vectors

Fig. 1: Two exemplary lattices in R2

Example 1. In Figure 1 two examples of lattices in R2 are depicted. The red
point is the origin. The two blue arrows show the basis vectors a1 and a2 that
are linearly independent and span the lattice. Every integer combination of the
two blue arrows is a black point, an element of the lattice.

We can see that the grid spanned by the basis vectors is discrete and has
some recurring structures. These structures are determined by the basis vectors:
the angle between them and their length. In Figure 1a, the angle between the
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two basis vectors is 90◦ yielding a rectangular fundamental domain. Whereas in
Figure 1b, we have an angle of 60◦ between the basis vectors and equal length.
This produces a fundamental domain of an equilateral triangle.

Indeed, the automorphism group of a lattice is a symmetry group, see Con-
way [5, Chapter 3.4]. For example, in Figure 1a the symmetry group is pmm
and in Figure 1b is it p3m1 [13].

In the rest of the text and in the formalization we restrict to finite bases over
Z (instead of R), simply for computability reasons. Of course bases over Q can
be transformed into bases over Z by scaling all basis vectors.

The starting point of most known hard problems on lattices are the shortest
vector problem and the closest vector problem. They are defined below (as usual
in decision and not in optimization form). The lattice L ⊆ Zn is assumed to be
generated by a finite basis in Zn.

Definition 3 (Closest Vector Problem (CVP)). Given a lattice L, a vector
b ∈ Zn and an estimate k, decide whether there exists a vector v ∈ L such that

‖v − b‖ ≤ k

Definition 4 (Shortest Vector Problem (SVP)). Given a lattice L and an
estimate k, determine whether there exists a vector v ∈ L such that

‖v‖ ≤ k and v 6= 0

2.3 Partition and Subset Sum Problems

Recall that we plan to prove NP-hardness of the CVP and SVP in the case of
the infinity norm by reducing the well-studied NP-complete Subset Sum and
Partition problems to the CVP and SVP. We state the definitions.

Definition 5 (Partition problem). Given a finite list of integers a1, . . . , an,
does there exist a partition of {1 . . . n} into subsets I and {1 . . . n} \ I such that

∑

i∈I

ai =
∑

i∈{1...n}\I
ai

The Partition problem can be seen as a special case of the Subset Sum
problem.

Definition 6 (Subset Sum problem). Given a finite list of integers a1, . . . , an

and an integer s, decide whether there exists a subset S of {1 . . . n} such that
∑

i∈S

ai = s
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2.4 Notation

Throughout the paper we use traditional mathematical notation, in particular
the graphical “...”. The formal Isabelle notation is by necessity more verbose (and
precise). Our formalization employs both lists and vectors as a type for finite se-
quences and converts between them where necessary. For reasons of presentation
we blur this distinction in the paper.

3 CVP

In this section, we formalize the proof of the NP-hardness of the CVP in the
infinity norm along the lines of [15, p 48., Chapter 3.2, Thm 3.1] by reducing
Subset Sum to the CVP.

An instance a1, . . . , an, s of Subset Sum is mapped to the following instance
of the CVP:

L =




a1 · · · an

a1 · · · an

2 0
. . .

0 2



· Zn b =




s− 1
s+ 1

1
...
1




k = 1 (1)

We proved the following theorem:

Theorem 1. The above mapping is a reduction from the Subset Sum problem
to the CVP (in infinity norm).

This implies that the CVP (in infinity norm) is an NP-hard problem.
The reduction function used by Micciancio and Goldwasser [15] actually looks

a bit different. The image of a1, . . . , an, s would be

B =




a1 · · · an

2 0
. . .

0 2


 L = B · Zn b =




s
1
...
1


 k = 1 (2)

However, the proof in [15, p.49] with this reduction function works only for
p < ∞. It goes along the lines of the following idea: Take k = p

√
n. In the case

of p = ∞, we get k = limp→∞ p
√
n = 1. Then we can formulate the following

equality (equation (3.5) in [15, p.49]):

‖Bx− b‖p
p =

∣∣∣∣∣
n∑

i=1
aixi − s

∣∣∣∣∣

p

+
n∑

i=1
|2xi − 1|p (3)

Given a YES-instance a1, . . . , an, s of Subset Sum, there exists a vector x =
(x1, . . . , xn) ∈ {0, 1}n, such that

∑n
i=1 aixi − s = 0 and |2xi − 1| = 1. Then

‖Bx− b‖p
p = n which proves this case.
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Given a YES-instance of the CVP defined by L, t and k that are the image of
a1, . . . , an, s under the reduction function as in (2), we get ‖Bx− b‖p

p ≤ n. Since
all values are integers, we have |2xi−1| ≥ 1. It follows that

∑n
i=1 aixi−s = 0 and

|2xi− 1| = 1. Thus, we can deduce that a1, . . . , an, s was indeed a YES-instance
of Subset Sum.

The major problem we encountered was that this proof works fine for p <∞
but for p =∞, the sum in (3) becomes a maximum instead. The equation then
reads

‖Bx− b‖∞ = max
(∣∣∣∣∣

n∑

i=1
aixi − s

∣∣∣∣∣ , |2xi − 1| for 1 ≤ i ≤ n
)

This invalidates the arguments in the proof since |∑n
i=1 aixi − s| can now be in

the range {−1, 0, 1}. The constraints are too lax to ensure the equality to zero.
A solution was to alter the matrix and target vector and add another entry.

The matrix and target vector we used are given in equation (1). The alternation
to s − 1 and s + 1 forces a linear combination of the ai to be exactly s in the
hardness proof, since |∑i ciai − (s± 1)| ≤ 1.

After communicating with Daniele Micciancio, one of the authors of [15], he
suggested using a constant c > 1 and the generating instance

L =




c · a1 · · · c · an

2 0
. . .

0 2


 · Z

n b =




c · s
1
...
1


 k = 1

This solves the problem as well and can be implemented using e.g. c = 2. This
technique is described later in the book [15, p.49-51] when trying to explain the
NP-hardness proof for the SVP in the infinity norm.

3.1 Towards the SVP

The authors of [15] argue that the reduction argument of the SVP can be deduced
generating an instance of the SVP using the Subset Sum instance a1, . . . , an, s
in the following way. For c > 1, e.g. c = 2, take

B =




c · a1 · · · c · an c · s
2 0 1

. . . 1
0 2 1


 L = B · Zn+1 k = 1

The authors claim that every shortest vector in the image of the reduction func-
tion has −1 as last coefficient. For example, let a YES-instance of the SVP be
defined by the generating matrix B of the lattice and let x = (x1, . . . , xn,−1)T
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be the coefficients such that Bx is a shortest vector. Then we know that

‖Bx‖∞ =

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣




c · (x1a1 + · · ·+ xnan − s)
2x1 − 1

...
2xn − 1




∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
∞

≤ 1

Since c > 1, it follows, that x1a1 + · · · + xnan − s = 0, which yields a solution
for the given Subset Sum instance a1, . . . , an, s.

However, this reduction does not always work as the following example shows:

Example 2. Given the Subset Sum instance (a1, a2, a3, s) = (1, 1, 1, 1). This is a
YES-instance, since a solution is given by x1 = 1, x2 = 0 and x3 = 0. The basis
matrix of the corresponding SVP would be (with c > 1)

B =




c c c c
2 0 0 1
0 2 0 1
0 0 2 1




Take for example the vector v = B · (−1,−1,−1, 3)T = (0, 1, 1, 1)T . It has
infinity norm 1 and is thus a shortest vector in the lattice generated by B.
However, this vector has the last coefficient 3 and not −1, even though it clearly
is a shortest vector of the lattice given by B. The corresponding scaled “solution”
for Subset Sum would be (1/3, 1/3, 1/3,−1) but since only integer values are
allowed in the solution space, this is not a solution in our sense.

We consider another example. Let the Subset Sum instance be a′1 = 3, s′ = 1.
We can easily see that this is not a YES-instance, i.e. there exists no solution.
Still, the corresponding SVP instance given via the reduction function is gener-
ated by the matrix

B′ =
(
c · 3 c · 1

2 1

)

In this case the coefficients (−1, 3)T yield a shortest vector in the lattice spanned
by B′, since ∣∣∣∣

∣∣∣∣B′
(
−1
3

)∣∣∣∣
∣∣∣∣
∞

=
∣∣∣∣
∣∣∣∣
(

0
1

)∣∣∣∣
∣∣∣∣
∞
≤ 1

Thus, B′ defines a YES-instance of the SVP, but the original Subset Sum in-
stance is not a YES-instance.

In [15], it is stated for the infinity norm that any shortest vector yields a
solution for the Subset Sum Problem, which is not the case in these examples:
we cannot ensure that a shortest vector always has −1 as a last coordinate.

Although the proof in [15] does not work out as expected, there is still the re-
duction proof by van Emde-Boas [7] which reduces a problem called the Bounded
Homogeneous Linear Equation problem to the SVP in infinity norm. This will
be discussed in the next two sections.
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4 Bounded Homogeneous Linear Equations
A technical report by Peter van Emde-Boas [7] gives another reduction proof
for the NP-hardness of the SVP in infinity norm. The author first reduces the
Partition Problem to a problem called Bounded Homogeneous Linear Equation
(BHLE) which is then reduced to the SVP.
Definition 7 (Bounded Homogeneous Linear Equations problem).
Given a finite vector of integers b ∈ Zn and a positive integer k, decide whether
there exists an x ∈ Zn \ {0} with ‖x‖∞ ≤ k such that

〈b, x〉 = 0

We have verified a reduction from Partition to BHLE, and thus BHLE is
NP-hard.
Theorem 2. There is a reduction from Partition to BHLE in infinity norm.
The proof is carefully engineered and rather intricate. Differences to the original
proof and problems encountered during the formalization are:
– Our formal proof has a different structure than the proof in the technical

report [7]. Indeed, the technical report first proves the reduction of a weaker
form of Partition to BHLE and then argues that “omitting” an element yields
the desired result as it adds stricter constraints. In the formalization we skip
this intermediate step and directly prove the existence of an appropriate
reduction function.

– Steps that seem trivial in the technical report often require a long formal
proof. What can be reasoned by intuition in a pen-and-paper proof has to
be elaborated in the formal proof. Intuition is also sometimes used for hand-
waving over small gaps or imprecisions.

– Indexing vectors and lists has been a problem in the formalization. In pen-
and-paper proofs, one can argue easily about “omitting” an element of a
list even though this is imprecise and often misuses the notation. In the
formalization one cannot simply skip an index. All indexing functions in the
formalization have to be total. “Omitting” an element can only be solved by
re-indexing and re-structuring the lists in the proof.

– Numbers are interpreted in different number systems during the proof. In
contrast to the original proof, the formalization has to explicitly state the
digits for a change of basis and show equivalence. This leads to verbose and
elaborate proofs. To make proofs easier, we use the concrete basis d = 5
instead of an unspecified basis d > 4 as in [7]. Furthermore, the number
M must use the absolute values of the ai (omission in the definition of M
in [7]). The formal definition is stated below.

– The proof involved many arguments about manipulations of huge sums.
Working with huge sums entails very large proof states where the exist-
ing proof automation mostly failed on. These proof states require detailed
(but still readable) proofs and occasional manual instantiation of theorems.
Another possible solution to get smaller proof states is to introduce local
abbreviations for subterms.
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Let us have a look at the proof and its difficulties in the formalization in
more detail. We start from a Partition instance a = a1, . . . , an . Note that we
ignore the trivial case n = 0 in this presentation (but deal with it in the formal
proofs) — this means n− 1 ≥ 0. We reduce a to a BHLE instance b as follows:

– Define
M = 2 · (

n∑

i=1
|ai|) + 1 (4)

– For 1 ≤ i < n generate a 5-tuple

bi,1 = ai +M · (54i−4 + 54i−3 + 54i−1) (5)
bi,2 = M · (54i−3 + 54i)
bi,3 = M · (54i−4 + 54i−2)
bi,4 = ai +M · (54i−2 + 54i−1 + 54i)
bi,5 = M · (54i−1)
bi = bi,1, bi,2, bi,4, bi,5, bi,3

Note that bi,3 has moved to the last position in bi.
– For i = n generate only a 4-tuple:

bn,1 = an +M · (54n−4 + 54n−3 + 54n−1)
bn,2 = M · (54n−3 + 1)
bn,4 = an +M · (54n−2 + 54n−1 + 1)
bn,5 = M · (54n−1) (6)
bn = bn,1, bn,2, bn,4, bn,5

Note that
• bn,3 is omitted from bn to restrict the constraints necessary for the proof

and
• that in bn,2 and bn,4 the last summand changes to a +1 in comparison

to the other bi,2 and bi,4.

In summary, the entry bi,3 is uniformly in the last position in the bi but omitted
from the final bn.

The Partition instance a of length n is reduced to a vector b of length 5n−1:

b = (b1, . . . , bn−1, bn) (7)

The NP-hardness proof now follows in three steps:

1. We need to show an auxiliary lemma.
2. We show that a YES-instance of Partition is reduced to a YES-instance of

BHLE.
3. We show that the pre-image of a YES-instance of BHLE is indeed a YES-

instance in Partition.
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4.1 Auxiliary Lemma

As a first step, the proof needs a short auxiliary lemma from number theory.

Lemma 1. Let x, y, c ∈ Zn and M be an integer. Assume that M >
∑n

i=1 |xi|
and that |ci| ≤ 1 for all 1 ≤ i ≤ n. Furthermore, let the following equation hold:

n∑

i=1
ci · (xi +M · yi) = 0 (8)

Then we have
〈c, x〉 = 0 and 〈c, y〉 = 0

In this lemma, we can reinterpret xi +M · yi from (8) as a number in basis M
with lowest digit xi. Even with a coefficient ci, the lowest digit in basis M has
to be zero, as well as the rest. By splitting off the lowest digits consecutively, we
can show, that indeed all digits in basis M have to equal zero.

4.2 a ∈ Partition =⇒ b ∈ BHLE

This direction is quite easy. Let a1, . . . , an be a YES-instance of partition with
partitioning set I. We will show that the following vector x is a solution to the
corresponding BHLE:

x = (x1, . . . , xn−1, xn)

xi =





1,−1, 0,−1, 0 i ∈ I ∧ n− 1 ∈ I
0, 0,−1, 1, 1 i ∈ I ∧ n− 1 /∈ I
0, 0,−1, 1, 1 i /∈ I ∧ n− 1 ∈ I
1,−1, 0,−1, 0 i /∈ I ∧ n− 1 /∈ I

1 ≤ i < n

xn = 1,−1, 0,−1

We have to show that 〈b, x〉 = 0. This is proven by plugging in the definitions
and rearranging terms in the sum of the scalar product such that they cancel
out. As a last step in the proof, we need to show that ‖x‖∞ ≤ 1. For the infinity
norm this is quite easy. However, it would not be true for other norms. For p ≥ 1
and p <∞ we have for n ≥ 1:

‖x‖p = p
√

3n > 1

Thus, the chosen constraints x only work in infinity norm.

4.3 a ∈ Partition ⇐= b ∈ BHLE

This direction is harder. Let b be a YES-instance of BHLE. That is, there exists
a nonzero x such that 〈b, x〉 = 0 and ‖x‖∞ ≤ 1. We have to show that there is
a partition I on a1, . . . , an with

∑
i∈I ai =

∑
i∈{1...n}\I ai.
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The proof idea works as follows. First, we apply the auxiliary lemma and
get a constraint on the ai on the one hand, and a condition on the xi with
coefficients that are powers of 5 on the other hand. Using this condition on the
xi, we generate equational constraints on the entries of x by looking at the digits
in basis 5. We argue that a number equals zero if and only if all its digits are
zero.

The generated equations lead to a good characterisation of x, namely the
weight w = x5(n−1)+1. From the assumption that ‖x‖∞ ≤ 1, we deduce |w| ≤ 1.
Again, this step can only be reasoned in the infinity norm. For other p-norms, this
argumentation breaks as we need the property |w| ≤ 1 to complete the proof.
Using the value of w, we can constuct a partitioning set I with the required
property from the equation on the ai.

5 SVP

Knowing that the BHLE is indeed an NP-hard problem, we reduce it to the
SVP. Then we can conclude that the SVP in infinity norm is NP-hard.

Theorem 3. There is a reduction from BHLE to the SVP in infinity norm.

Again some difficulties were met when formalizing the proof for the above
theorem. First of all, note that the terminology in [7] and nowadays is a bit
different. In [7], the shortest vector problem only denotes the shortest vector
problem in the Euclidean norm. What we call the shortest vector problem in
the infinity norm is named closest vector problem in [7]. To make terminology
even more confusing, our understanding of the closest vector problem is called
the nearest vector problem in [7]. To make the notation clear, we provide a table
for reference in Figure 2.

technical report [7] our notation
closest vector problem SVP in infinity norm
shortest vector problem SVP in Euclidean norm
nearest vector problem CVP

Fig. 2: Notation

A more mathematical problem encountered was that the reduction itself used
in [7] was not entirely correct. In the reduction two factors k′ = k+1 and k′′ were
introduced. These factors should have certain properties to allow the arguments
of the reduction proof to go through. However, this is only true when tweaking
these factors a bit to make the whole proof watertight. We will now have a closer
look.
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Given the BHLE instance b = (b1, . . . , bn) and k, create the following SVP
instance:

L =




1 0 0
. . . ...

0 1 0
− (k + 1) · b − k′′


 · Z

n k = k

where k′′ is the factor in question. In the technical report, we have

k′′ = 2 · (k + 1) · (
∑

i

bi) + 1

The following example however shows that this factor is not enough.

Example 3. Consider the BHLE instance given by b = (1,−1) and k = 1. This
is a YES-instance, since the vector (1, 1) yields the expected properties.

Define the following matrices.

B0 =




1 0 0
0 1 0
2 −2 1


 B1 =




1 0 0
0 1 0
2 −2 9


 B2 =




1 0 0
0 1 0
6 −6 25




The associated SVP instance is the lattice generated by B0. Then the vector
(0, 0, 1)T with infinity norm 1 is a solution to the SVP instance generated by the
basis matrix B0. However, since the last entry is nonzero, this does not provide
a solution for BHLE. Contrary to this example, the proof in the technical report
shows that for all SVP solutions the last entry must be zero.

The reason, why the argument in the technical report breaks at this point is
because b1 + b2 = 0, thus making k′′ = 1 very small. One step to prevent this is
to use the absolute values of the bi in k′′ instead. The new k′′1 we consider is

k′′1 = 2 · (k + 1) · (
∑

i

|bi|) + 1

With this new factor k′′1 we get the generating matrix B1 and the vector
(0, 0, 1) is no longer a shortest vector.

Still, this is not enough. Consider the same b = (1,−1) as above, but let k = 5.
Then we get B2 as the generating matrix of the SVP lattice. The vector x =
(0, 5, 1)T is a shortest vector whose last entry is nonzero. Again it contradicts the
proof in the technical report. The reason this time is the following: the argument
that (k + 1) (

∑n
i=1 xibi) and k′′1 have different relative sizes fails. Indeed, we have
∣∣∣∣∣∣

∣∣∣∣∣∣




1 0 0
0 1 0
6 −6 25


 ·




0
5
1



∣∣∣∣∣∣

∣∣∣∣∣∣
∞

=

∣∣∣∣∣∣

∣∣∣∣∣∣




0
5
−5



∣∣∣∣∣∣

∣∣∣∣∣∣
∞

= 5 ≤ k

We can obtain different relative sizes of (k+1) (
∑n

i=1 xibi) and k′′1 by defining

k′′2 = 2 · k · (k + 1) · (
∑

i

|bi|) + 1 (9)
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Now we can make sure that the last entry of a solution to the SVP problem
is indeed zero. For the proof of Theorem 3 we consider the reduction given by

L =




1 0 0
. . . ...

0 1 0
− (k + 1) · b − k′′2




︸ ︷︷ ︸
B

·Zn k = k

where B denotes the basis matrix generating the lattice L as given above.
Consider a solution x = (x1, . . . , xn+1) of the SVP with ‖Bx‖∞ ≤ k. Then

we have

Bx =




1 0 0
. . . ...

0 1 0
− (k + 1) · b − k′′2


 ·




x1
...
xn

xn+1


 =




x1
...
xn

(k + 1)(
∑n

i=1 xibi) + xn+1 · k′′2




As this yields a solution to the SVP, we get:

|(k + 1)(
n∑

i=1
xibi) + xn+1 · k′′2 | ≤ k (10)

Then we calculate:

(k + 1)(
n∑

i=1
xibi) + xn+1 · k′′2 ≤ (k + 1)(

n∑

i=1
|xi||bi|) + xn+1 · k′′2 ≤

≤ (k + 1)k(
n∑

i=1
|bi|) + xn+1 · k′′2

Assuming that xn+1 6= 0, we have

|(k + 1)k(
n∑

i=1
|bi|)| < |2 · k · (k + 1) · (

∑

i

|bi|) + 1| = |k′′2 | ≤ |xn+1 · k′′2 |

Thus the two summands indeed have different relative sizes and can never cancel
out the other summand. This leads to a contradiction to (10). Therefore, xn+1 =
0 must be true and (x1, . . . , xn) constitutes a solution to the BHLE when using
k′′2 as in (9).

6 Other p-Norms

Up to now, we have investigated lattice problems under the infinity norm. Even
though this yields nice hardness results, in practice the Euclidean norm is used
more often. Unfortunately, when considering p-norms things do not play out as
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nicely. In this section, we assume 1 ≤ p <∞ whenever we talk about a specific
p.

For the CVP, there is a generalisation of the proof for every p-norm in [15,
p.48, Chapter 3.2, Thm 3.1] which we also formalized. Let a1, . . . , an, s be an
instance of Subset Sum. The reduction function maps this instance to:

L =




a1 · · · an

2 0
. . .

0 2


 · Z

n b =




s
1
...
1


 k = p

√
n

Then the following theorem holds:

Theorem 4. The above mapping is a reduction from the Subset Sum problem
to the CVP in p-norm.

This implies that the CVP in p-norm is an NP-hard problem. The outline to
the proof is given in Section 3 after Theorem 1. The important difference to the
infinity norm is that the bound k scales with the dimension n of the lattice.

For the SVP, there is no known deterministic NP-hardness result in the
Euclidean norm, or even any p-norm. However, Ajtai [1, 2] found an interesting
alternative which is quite useful for the application in cryptography, namely
randomized reductions using polynomial-time probabilistic reduction functions.
In cryptography, these results guarantee the hardness of “average” cases. That
is, given an average instance according to a probability distribution, it will most
likely be intractable.

7 Time complexity

As stated in Section 2, time complexity of the above reduction functions has
not been formalized. However, we give a short explanation why all reduction
functions are indeed in polynomial time.

Subset Sum to CVP: The reduction function as given in equation (1)
creates (n + 2)(n + 1) + 1 values using only memory access or one addition.
Therefore, the time complexity in this case is O(n2).

Partition to BHLE: In this case, the reduction function maps the input
a of length n to b as defined in equation (7). The value k = 1 is fixed. Then
a is mapped to a vector of length 5n − 1. When calculating the bi, we need to
calculate the value of M as in (4). As we sum over all input values, this lies in
O(n). Each bi can then be calculated in O(n) since it only contains a constant
number of additions of the input with fixed cofactors (see (5) - (6)). Putting the
construction of the list and the calculation of the bi together, we find that the
whole reduction function is in O(n2).

BHLE to the SVP: Consider the reduction function as given in equation (5)
using the value k′′2 as in (9). Calculating k′′2 requires n+2 memory accesses which
are processed in n + 4 arithmetic operations, thus having a time complexity of
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O(n). Every other entry in the matrix is calculated on O(1), since they contain
at most two memory accesses and at most two arithmetic operations. The input
generates (n+ 1)2 + 1 values, of which (n+ 1)(n+ 1) are in O(1) (namely all the
zeros and ones, the vector (k+ 1) · a and the constraint k) and one is calculated
in O(n) (namely k′′2 ). Thus, the whole reduction function lies in O(n2).

8 Outlook

With this paper, we now have a formal proof for NP-hardness of the CVP and
SVP in the infinity norm, as well as a formal proof of the CVP in p-norm (for
1 ≤ p < ∞). In the formalization process, many gaps and imprecisions in the
pen-and-paper proofs were fixed. The changes to the original proofs have been
elaborated with explanations and examples. Unfortunately, giving a determin-
istic reduction proof of the SVP in p norm for p < ∞ is still an open problem.
Under probabilistic assumptions, Ajtai showed NP-hardness of the SVP in Eu-
clidean norm in [2].

An interesting topic for future work is to develop a framework for probabilistic
reductions such as in [2]. This will give the foundation to extend formalization
of hardness proofs to other problems in lattice theory, especially those used in
lattice-based cryptography, such as the Learning with Errors (LWE) Problem,
Ring-LWE and Module-LWE. This will underline the security of many lattice-
based crypto systems. Another topic for future work is to formalize the hardness
proofs for approximate versions of the CVP and SVP.
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this work by the research training group ConVeY funded by the German Re-
search Foundation under grant GRK 2428.
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Abstract—Since the post-quantum crypto system CRYSTALS-
KYBER has been chosen for standardization by the National
Institute for Standards and Technology (US), a formal verification
of its correctness and security properties becomes even more
relevant. Using the automated theorem prover Isabelle, we are
able to formalize the algorithm specifications and parameter
sets of Kyber’s public key encryption scheme and verify the δ-
correctness and indistinguishability under chosen plaintext attack
property. However, during the formalization process, several gaps
in the pen-and-paper proofs were discovered. All but one gap
concerning the error bound δ could be filled. Calculations in
smaller dimensions give examples where the bound δ is less
than the actual error term, violating the correctness property.
Since the correctness proof could be formalized up to an
application of the module-Learning-with-Errors assumption, we
believe that the discrepancy of the original error bound and the
formalized version is relatively small. Thus the correctness could
be formalized up to a minimal change to the error bound.

Index Terms—post-quantum cryptography, CRYSTALS-
KYBER, number theoretic transform, security, verification,
Isabelle.

I. INTRODUCTION

With large-scale quantum computers all crypto systems
based on RSA and Diffie-Hellman can be broken using Shor’s
algorithm. Since recent developments in quantum computing
lead to believe that these feasible quantum computers are not
too far off in the future, methods for cryptography which
are resistant even to attacks by quantum computers are hot
research topics. In the course of the standardization process
initialized by the National Institute of Standards and Tech-
nology (NIST) of the US, a variety of post-quantum crypto
systems have been designed [33]. Most prominent are the so-
called lattice-based crypto schemes.

The winner of the NIST standardization process for public
key encryption (PKE) and key encapsulation methods (KEM)
was announced in July 2022. It is the KEM CRYSTALS-
KYBER (abbreviated as Kyber throughout this presentation)
which was originally developed by Bos et al. [11]. In the
first submission to the NIST standardization process [6], the
algorithms from the original paper are extended by sam-
pling methods using pseudorandom functions and an encoding
and decoding function for mapping bits to polynomials and
vice versa. A main change to the submission in the second

This work was supported by the Research Training Group GRK 2428
CONVEY of the German Research Council (DFG).

round [5] was excluding the compression and decompression
functions in the key generation and encryption functions.
The reason is that a problem in the security proof for the
indistinguishability under chosen plaintext attack (IND-CPA)
was found by D’Anvers [11, footnote 6]. Furthermore the
use of a slightly different algorithm for fast multiplication
allowed the use of a smaller prime for the finite field. For
the last submission in round three [4] in October 2020, some
parameter changes have been made. Most notable is the change
of splitting the variances of the centred binomial distribution
for the error terms in the encryption. This could not be
formalized since the underlying hardness assumption requires
the errors to be of the same distribution. However, this only
affects the proofs for Kyber512, since in Kyber 768 and
Kyber1024 there is no such split. Throughout this paper, we
focus on the formalization of the most recent version (namely
3rd round with security levels Kyber768 and Kyber1024) for
Kyber’s PKE scheme which we refer to as Kyber if not stated
otherwise.

The underlying hard problem for Kyber is the module-
Learning-with-Errors (module-LWE) problem. It states that
it is hard to recompute a small vector when given a matrix
and the matrix-vector-product perturbed by additional small
errors. Without the error term, this problem can be solved by
Gaussian elimination, but with the error it becomes NP-hard
under certain conditions [25].

Since Kyber’s key generation and encryption are based on
masking the output with an error using module-LWE instances,
this may result in a positive probability that the errors get
too large so that we cannot decrypt correctly. We therefore
need to consider δ-correctness, where δ bounds the correctness
error. The correctness error is defined as the probability of an
incorrect decryption in the worst case over all messages and
in the mean over the generated public and secret key pairs.

As cryptography is used in many safety critical areas,
security of the schemes and correctness of their mathematical
proofs is crucial. The standard to ensure correctness of proofs
for many years was to check and recheck proofs manually.
However since humans are inevitably prone to errors, flaws in
proofs may go unnoticed for years. Formalization in automated
theorem provers can help to uncover such flaws, inconsis-
tencies or simple calculus errors. Especially in cryptography,
formal analysis and verification can uncover a number of



vulnerabilities of crypto systems or protocols. Some examples
are vulnerabilities found in the Matrix messenger [1] and the
Jitsi video conference tool [29] during a formalization. In
recent years, formalizing proofs in cryptography has gained
more and more attention. This motivates checking correctness
and security properties also for post-quantum crypto systems
like Kyber.

A. Our Contribution

With this paper, we introduce a formalization of Kyber’s
PKE scheme, its correctness and IND-CPA security property
in Isabelle. The formalization includes the algorithms for key
generation, encryption and decryption of both the original
[6], [11] and the latest versions [4], [5]. Using minimal
assumptions in the formalization, we allow for instantiations
with various parameter sets.

During the formalization of the correctness of Kyber, we
encountered two problems: Firstly, we could only verify the
δ-correctness for a modified δ′. We give a counter-example
for a small parameter set where the originally claimed δ
[11] violates the δ-correctness property. Further experiments
with different parameter sets result in similar findings. This
issue has been acknowledged by Kyber authors in private
communication. Secondly, we notice that the function ‖ · ‖∞
as defined in [11] is not the usual maximum norm, but only
a pseudo-norm. This results in a failing proof step which can
be resolved by adding an assumption on the modulus q. The
additional assumption is fulfilled by all Kyber parameter sets.
Overall, the correctness of Kyber could be formally proved
with only a small change on the error bound.

Kyber uses the number theoretic transform (NTT) for fast
multiplication. The aforementioned additional assumption is
implied by assumptions on Kyber for the NTT. The NTT in
the case of Kyber, as well as its convolution theorem have also
been formalized for this article. However, we will not go into
detail in this presentation, but include a short overview in the
Appendix for the readers convenience.

The formalization is foundational, i.e. that everything is
proven with respect to the higher order logic (HOL) kernel of
Isabelle/HOL. The only computational assumption we make
is that the underlying hardness assumption of the module-
Learning-with-Errors problem (module-LWE) holds.

B. Related Work

A short version on the formalization of the δ-correctness of
the original version of Kyber can be found in [24]. Meijers
et al. [9], [10] announced a formalization of Kyber in Easy-
Crypt [14]. Furthermore, a post-quantum version of EasyCrypt
called EasyPQC is being developed [8]. Recently, Almeida et
al. [2] introduced a formalization of the implementation code
to the specification in the frameworks EasyCrypt and Jasmin.
The formalization in EasyCrypt/Jasmin is complementary to
this presentation, since it does not verify the mathematical
proofs of correctness or security properties of the specifica-
tions. To the best of the authors’ knowledge, there is, up
to now, no publication or publicly accessible formalization

of Kybers correctness proof or the IND-CPA security proof.
Private conversation with Kyber authors showed that the flaw
uncovered by this formalization effort in the correctness proof
was known, but a solution was not yet found.

In 2022, the NTT was verified in CryptoLine by Hwang
et al. in [18]. CryptoLine is a tool for low-level verification
of implementations which stands in contrast to our high level
verification of the mathematics behind Kyber.

C. Isabelle

All formalizations and verifications were implemented in
the theorem prover Isabelle. An introduction to Isabelle can
be found in [32] and [31]. In contrast to other cryptographic
verification tools, Isabelle is foundational meaning everything
is proved from the axioms of higher order logic. The formal-
izations for this work are performed on the specification level
of Kyber and are not restricted to an implementation.

Two main features in Isabelle support abstraction over a
context of assumptions: The type class constraints (introduced
in [15]) and explicit assumptions summarized in a context
called locale (introduced in [7]). These abstractions allow
instantiations with several parameter sets, making changes for
example on the underlying prime (e.g. [6] to [5]) easy.

For our formalizations, we make extensive use of several
libraries for Isabelle, including algebra, analysis, probability
theory and CryptHOL [26] (a library for cryptography). Tuto-
rials on the latter can be found in [27].

D. Structure

In this paper, we discuss the formalization and verification
of Kyber and its δ-correctness proof, as well as the game-based
IND-CPA security proof for Kyber. First, we have a look at
the specifications and parameters of Kyber in Section II-A. We
elaborate on the representation of the ring Zq[x]/(xn+1) as a
type class in Isabelle. Since the formalization is independent
from the actual parameters, in Section II-B we look at the
instantiation of our formalization for some parameter sets.
Next, we describe the formalization of the algorithms for
compression, decompression, key generation, encryption and
decryption of Kyber in Section III. In Section IV, we proceed
with the verification of the δ-correctness proof of Kyber. Here,
we recognize two problems in the proof: On the one hand, we
can only show δ-correctness for a modified δ′ as described in
Section IV-C. We analyse why the original proof could not
be formalized and how a modification on δ can fix this issue.
Indeed, we showcase small dimensional examples where the
proof fails for the original δ. On the other hand, we inspect
a problem with the inequalities in the proof which we can
solve by adding an assumption on the modulus q. This is
discussed in Section IV-F. This newly found assumption is
already fulfilled when working in the NTT domain. More
on the formalization of the NTT on polynomials and its
convolution theorem can be found in the Appendix X-D.
In Section V, we give a short introduction to game-based
cryptography and define the game versions of the IND-CPA
security game and the module-LWE problem. As the security



proof was formalized using the framework CryptHOL [26],
we point out important concepts for formalizing cryptographic
security proofs in Isabelle in Section VI. The formalization
of the game-based security proof of Kyber against IND-CPA
follows in Section VII. In the end, we give a short outlook
on further research questions. The full formalization can be
found in [21] and [22].

Throughout this paper, we will use bold font to highlight
vectors and matrices (e.g. v, A) and roman font for polyno-
mials (e.g. x).

II. FORMALIZING THE CONTEXT OF KYBER

Starting a formalization of the specification of Kyber re-
quires a framework to state and calculate with Kyber’s poly-
nomial quotient ring. Isabelle offers possibilities to implement
the framework and parameter set in a flexible way using type
classes and locales.

A. Formalizing the Polynomial Quotient Ring

Let q be a prime and n a power of two, i.e., there is an n′

such that n = 2n
′
. Let Rq denote the ring Zq[x]/(xn + 1).

This is the space where the Kyber algorithms work in. Note
that xn + 1 is the 2n

′+1-th cyclotomic polynomial which is
irreducible over the integers Z, but reducible over the finite
field Zq .

There are various concepts behind this construct which are
not easy to formalize in Isabelle. To still be able to work
over these complicated spaces without too many premises, we
chose to use type class constructs.

First of all, the existing formalization of the finite field uses
the type class mod ring over a finite type. The modulus prime
is encoded as the cardinality of the finite type. It represents
the residue classes of the ring Zq where q is the cardinality
of the finite type.

Polynomials can be easily constructed using the poly type
constructor. The poly constructor defines a polynomial to be
a function from the natural numbers to the coefficient space
which is 0 almost everywhere. A polynomial p in R[x] is thus
represented by the function of coefficients f : N −→ R such
that p =

∑∞
i=0 f(i)xi. Since p has only finitely many non-

zero coefficients, f is 0 almost everywhere. For example the
polynomial p = x2 + 2 is represented as the function f with:

f(i) =





if i = 0 then 2

if i = 2 then 1

else 0

The most difficult part is to construct the quotient ring
Rq . First, an equivalence relation needs to be established
for residue classes modulo xn + 1. Then, one can factor
out the equivalence relation using the command quotient type
[19]. The concrete Isabelle formalization is explained in Ap-
pendix X-A1. The resulting structure inherits basic properties
like the zero element, addition, subtraction and multiplication
from the original polynomial ring through lifting and transfer
[17].

Vectors are implemented using a fixed finite type as an index
set. Since Isabelle does not allow dependent types, a separate
finite type for indexing is used to encode the length of a vector.
This idea was introduced by Harrison [16]. For example, when
working with vectors in Zk, we use the type (int, ’k) vec. Here,
’k is a finite type with cardinality exactly k used for indexing
the integer coefficients.

An important fact to note when dealing with formalizations
is that the functions translating between the different types
always need to be stated explicitly. In the mathematical
literature, this distinction is often abstracted away to enable
a shorter presentation.

B. Formalizing the Parameters of Kyber

Kyber depends on a number of parameters defining the
module, the compression and decompression. These are:
• n = 2n

′
, the degree of the cyclotomic polynomial

• q, the prime number and modulus
• k, the dimension of vectors in the module
• du and dv , the number of digits for compression and

decompression of u and v, respectively
Since the framework for the context of Kyber is formalized

independently from the actual parameters, we can instantiate
the formalization with any parameters sufficing all required
properties:
• n, n′, q, k, du, dv are positive integers
• n = 2n

′
is a power of 2

• q > 2 is a prime with q mod 4 = 1 (the latter
is an additional assumption and will be discussed in
Section IV-F)

This is especially of interest for eventual changes in the
parameter set. Furthermore, different security level implemen-
tations use different parameters. For example, the initial pa-
rameter of the modulus q in [11] is 7681, but since round two
of the NIST standardization process [4], [5], Kyber uses the
modulus 3329 and adapted du and dv . Furthermore, different
sizes k of vectors (and adapted du and dv) define different
security levels. The parameter sets for different security levels
from the second (and third) round specification of Kyber [4],
[5] can be found in Table I.

The Isabelle formalization of the parameter set can be found
in Appendix X-A2. In our formalization, we instantiate the lo-
cale containing the Kyber algorithm and proof of δ-correctness
with the parameter set given in Table I for Kyber768.

III. FORMALIZING THE KYBER ALGORITHM

The PKE scheme Kyber consists of three algorithms: the
key generation, the encryption and the decryption. The key
generation produces a public and secret key pair given a
random input. The keys are then applied in the en- and
decryption. In order to discard some lower order bits to
make the ciphertext smaller, a compression and decompression
function is added. The compression function is also used to
extract the message in the decryption. In the first versions of
Kyber, the compression of the public key invalidates the IND-
CPA security proof. Therefore, since the submission to round



Table I: Parameter set of round two and three Kyber [4], [5]

n n′ q k du dv

Kyber512 (round 2) 256 8 3329 2 10 3
Kyber768 (round 2 & 3) 256 8 3329 3 10 4
Kyber1024 (round 2 & 3) 256 8 3329 4 11 5

two of the NIST standardization process, this compression of
the public key was left out. We focus on the newer versions
in this presentation.

For a clearer presentation, we omit explicit type casts when
they are unambiguous. For example, the embedding of integers
in the reals or vice versa has an explicit type cast. An important
type cast that we will state explicitly is the cast from an integer
to the module Rq which we denote as the function to module.
In the actual formalization, all type casts are stated.

A. Input to the Algorithm

The key generation requires the inputs A ∈ Rk×kq , s ∈ Rkq
and e ∈ Rkq which are chosen randomly. A is chosen
uniformly at random from the finite set Rk×kq . In the imple-
mentation, the matrix A is generated from a uniformly random
seed via an XOF. This expansion has not been formalized.
Instead, we require that A itself is uniformly random. A is
also part of the public key. For elements of the secret key s and
the error term e, we define the centred binomial distribution
βη .

Choose η values ci with P (ci = −1) = P (ci = 1) = 1/4
and P (ci = 0) = 1/2 and return the value x =

∑η
i=1 ci. For

generating a polynomial in Rq according to βη , every coeffi-
cient is chosen independently from βη . Similarly, a vector in
Rkq is generated according to βkη by independently choosing all
entries according to βη . Both s and e are generated according
to βkη .

For our formalization of Kyber, we use η = 2 [4], [5]. Note
that in the more recent submissions of Kyber, the value η
determining the variance of the centred binomial distribution
was changed as well. Again, the formalization in locales allows
us to easily change these values of η. However, for Kyber
512 in the third submission round [4], two separate values
η1 and η2 have been introduced. This distinction has not
been formalized. The reason is that the following definition
of the module-LWE problem only allows the distribution on
the elements of the error vector to be the same. Since the
security proofs reduces a module-LWE instance where e1 and
e2 appear in one vector, the formalization does not allow the
splitting of η1 and η2.

The sampled values A, s and e constitute an instance of
the module-LWE problem which is defined in the following.

Definition 1 (Module-LWE). Given a uniformly random
A ∈ Rk×kq and s, e ∈ Rkq chosen randomly according to the
distribution βkη . Let t = As + e, then the (decision) module-
LWE problem asks to distinguish (A, t) from uniformly
random (A′, t′) ∈ Rk×kq ×Rkq .

There is a probabilistic reduction proof for the average-case
NP-hardness of the module-LWE by Langlois and Stehlé [25].
Therefore, the key generation of Kyber returns a public key
and secret key pair where it is (in average) NP-hard to recover
the secret key from the public key alone. This property is also
called the module-LWE hardness assumption.

Note that the module-LWE problem without the error term
would be easy to solve using the Euclidean Algorithm. Thus,
the error term cannot be reused but has to be chosen according
to the distribution βkη again. The random choices and the
reduction to the module-LWE have been formalized in the
IND-CPA security proof for Kyber’s PKE scheme. The NP-
hardness proof of the module-LWE has not been formalized.

B. Compression and Decompression

The compression and decompression functions in Kyber
help to reduce ciphertext size and obscure the message. In the
decryption, the message is also extracted by a compression
to one bit. In order to define these functions, we introduce a
positive integer d with 2d < q. Thus, we have d < dlog2(q)e.
In this section, we write “mod 2d” to denote the modulo
operation with modulus 2d, yielding the unique representative
in {0, . . . , 2d − 1}.

When compressing a value x, we omit the least important
bits and reduce the representation of x to d bits. Decompres-
sion rescales to the modulus q. Compression and decompres-
sion functions are defined for integers in the following way.

compd x =

⌈
2d · x
q

⌋
mod 2d

decompd x =
⌈q · x

2d

⌋

Note that the round function is defined as dxc = bx + 1
2c.

The compression and decompression functions are extended to
functions over Zq by working with the unique representative
in {0, . . . , q− 1}. We denote compression and decompression
over polynomials as comp and decomp and over vectors
as comp and decomp. They are defined to perform the
compression or decompression coefficient- and index-wise,
respectively.

We call the value decompd (compd x)−x the compression
error cx. The rounding in the compression and decompression
may introduce such a compression error. For example, consider
the values d = 2 and q = 5. Then, the compression of 2 is
comp2 2 = d1.6c mod 4 = 2 and decomp2 2 = d2.5c = 3.
Here, the compression error is decomp2 (comp2 2) − 2 =
3 − 2 = 1. Another reason for a compression error is the
modulo operation in the compression function. For example



consider d = 2 and q = 11. Then the compression of 10 is
comp2 10 = d3.63c mod 4 = 0 and decomp2 0 = 0. Here,
the compression error for integers is decomp2 (comp2 10)−
10 = −10. Interpreting this as a number over Z11, we get a
compression error of 1.

In the following, for a value x, we will denote the compres-
sion of x by x∗ and the decompression of the compression as
x′ to avoid overly lengthy expressions.

C. Key Generation, Encryption and Decryption

We now want to state the actual algorithms. For the con-
venience of the reader, we append the formal definitions of
key generation, encryption and decryption in Isabelle in the
Appendix X-A3. The calculation of the key generation is
defined in the following way:

key gen A s e = A · s + e

We denote by t = key gen A s e the output of the key
generation. Together, the matrix A and the vector t constitute
the public key, whereas the vector s is the secret key. When
we say that the public and secret key pair (A, t) and s
are generated by the key generation algorithm, we mean the
probabilistic program where A, s and e are chosen according
to their distributions, t is calculated by key gen and (A, t)
and s are the output.

Note that in the original version of Kyber [11], the key
generation included a compression of t. However, this resulted
in a major flaw of the IND-CPA proof. Thus, since the second
round of NIST’s standardization [5], the compression in the
key generation was omitted.

The pair (A, t) also forms an instance of the module-LWE
problem. The module-LWE hardness assumption states that in
average cases it is hard to recuperate the secret key s from the
pair (A, t).

To encrypt a bit-string m̄ with at most n bits, we con-
sider the message polynomial m ∈ Rq obtained by m =∑n−1
i=0 m̄(i)xi. Thus, the message polynomial m only has

coefficients in {0, 1}. For the encryption, we also need to
generate another secret r ∈ Rkq together with errors e1 ∈ Rkq
and e2 ∈ Rq according to the distribution βkη and βη . We then
calculate the encryption:

encrypt t A r e1 e2 du dv m =

(compdu (AT · r + e1),

compdv (tT r + e2+

+ to module(dq/2c) ·m))

Let u = AT ·r+e1 and v = tT r+e2+to module(dq/2c)·
m. Then, the encryption outputs the compressed values u∗ and
v∗ in a pair (u∗, v∗). When referring to the encryption without
the input of r, e1 and e2, we mean the probabilistic program
that first generates r, e1 and e2 according to their distributions
and then calculates the encryption function as stated above.

Using the secret key s, we can recover the message m from
u∗ and v∗ in the decryption function. We extract the message

as the highest bit in v′− sTu′ using the compression function
with depth 1.

decrypt u∗ v∗ s du dv =

comp1 ((decompdv v∗)−
sT (decompdu u∗))

During the algorithms, the compression and decompression
induce errors which should not affect the correctness of
the decryption result. This problem is investigated in the δ-
correctness proof of Kyber. The following section describes a
verification of this proof in Isabelle.

IV. VERIFYING THE δ-CORRECTNESS PROOF OF KYBER

To verify the δ-correctness of the specification of Kyber
in Isabelle, we look at the pen-and-paper proof from [11,
Theorem 1]. This proof shows the correctness of the original
version of Kyber, but can also be easily adapted to the
recent versions omitting the compression of the public key.
Formalizations can be found in [21] and [22].

A. ‖ · ‖∞ – a Wolf in Sheep’s Clothing

In order to estimate values, the authors of Kyber [11] use
a function ‖ · ‖∞. However, it is defined slightly differently
from what one would expect: Instead of using a regular modulo
operation, the re-centred operation mod± is defined as the rep-
resentative with smallest norm. That means ā := (a mod± q)
is the unique element with −q/2 < ā ≤ q/2 such that
ā ≡ a mod q. As q is an odd number in Kyber, we get that
a mod± q ∈ {−q+1

2 , . . . , q−12 }. Using this re-centred modulo
operation, we define the function ‖ · ‖∞ on polynomials as:

p =

deg p∑

i=1

pi · xi 7−→ ‖p‖∞ = max
i∈{0,...,deg p}

|pi mod± q|

Analogously, for vectors v ∈ Rkq we define:

‖v‖∞ = max
i∈{1,...,k}

‖vi‖∞

Unfortunately with the re-centring one loses the absolute
homogeneity, i.e., for a scalar s and vector v only ‖s ·v‖∞ ≤
|s| · ‖v‖∞ holds with an inequality instead of equality. For
example consider the case q = 3, s = 2 and v = (2). We then
have the strict inequality:

‖2 · (2)‖∞ = |2 · 2 mod± 3| = 1 <

< 2 = |2| · |2 mod± 3| = |2| · ‖(2)‖∞

Therefore, the ‖ · ‖∞ function is not a norm, but a pseudo-
norm. It is positive definite and fulfils the triangle inequality.
This is not explicitly mentioned in [11] and indeed poses a
problem in the proof of the following correctness theorem.



B. Correctness of the Kyber Algorithms

A crypto system is correct, if it always returns the original
message. However, since Kyber uses errors to mask the
ciphertext, there is a chance that the error may be too large
to decipher correctly. Thus, we need to consider a failure
probability and can only state the δ-correctness. This is defined
in the following:

Definition 2 (δ-correct PKE). Let key gen, encrypt and
decrypt constitute a public key encryption scheme A where
key gen outputs a public key pk and a secret key sk. Let M
be the space of all possible messages. Then the public key
encryption scheme is δ-correct, if and only if:

E[ max
m∈M

P[decrypt(sk, encrypt(pk,m)) 6= m]] ≤ δ

where the expectation is taken over (pk, sk) generated by
key gen.

The intuition is that the probability of a decryption failure
in the worst-case scenario over the message space and in a
mean over the secret and public key pair should be bounded
by a constant δ.

The δ-correctness of the PKE is a necessary requirement
for the Fujisaki-Okamoto transform (verified by Unruh [37]
in qrhl-tool). When connected with Unruh’s formalization, the
formalization presented in this paper results in a formal ver-
ification of Kyber’s KEM with a verified indistinguishability
under chosen ciphertext attack security property. A connection
to Unruh’s formalization was out of scope.

For the Kyber algorithms [11, Theorem 1], the δ-correctness
theorem is proved in two steps:

1) An assumption sufficient for the correct decryption can
be calculated deterministically. This is the main argu-
ment of the proof. The assumption is incorporated in
the definition of δ.

2) The distributions in the compression errors are claimed
to be uniformly random due to a reduction using the
module-LWE problem.

The first, deterministic part is stated in the following theorem.
Its formalization can be found in the Appendix X-A4.

Theorem IV.1. Let A ∈ Rk×kq , s, r, e, e1 ∈ Rkq , e2 ∈ Rq and
let the message m ∈ Rq with coefficients in {0, 1}. Define:

• t = key gen A s e, the output of the key generation
• (u∗, v∗) = encrypt t A r e1 e2 du dv m, the output of

the encryption
• cu and cv, the compression errors of u and v, respectively

If ‖eT r + e2 + cv − sTe1 − sT cu‖∞ < dq/4c, then the
decryption algorithm returns the original message m:

decrypt u∗ v∗ s du dv = m

We have that Kyber is correct when assuming the inequality:

‖eT r + e2 + cv − sTe1 − sT cu‖∞ < dq/4c (1)

C. Modifying the Error Bound

Using Theorem IV.1 and the definition of δ-correctness, we
deduce the following.

Corollary. Let:

δ′ = E




max
m∈M

P








e, r, e1 ← βkη ; e2 ← βη;

u = AT r + e1;

v = tT r + e2 + d q2cm;

‖eT r + e2 + cv − sTe1−
−sT cu‖∞ ≥ dq/4c







(2)

where the expectation is taken over ((A, t), s) generated by
key gen. Then Kyber is δ′-correct.

Note that in this proposition, the δ′ is not the same as in
[11, Theorem 1]. Using the second proving step, [11] claims
δ-correctness for:

δ = P








s, e, r, e1 ← βkη ; e2 ← βη;

cu ← Ψk
du, cv ← Ψdv

‖eT r + e2 + cv − sTe1+

−sT cu‖∞ ≥ dq/4c


 (3)

Here, Ψd is the distribution of the compression error of x to
d bits for a uniformly generated x← Rq .

The main difference between δ′ and δ is that in δ′ the values
of cu and cv are calculated as the correct compression errors,
whereas in δ they are the compression errors of uniformly
random values u and v. The intuitive idea given in [11,
Proof of Theorem 1] is that this change is negligible since
its value can be bounded by the advantage against module-
LWE problems. A detailed, formal proof is missing at this
point.

Despite this idea making sense intuitively, we were un-
able to formalize this reduction. Indeed, we claim that this
reduction is incorrect in our general framework. The rea-
son is that the change from a module-LWE instance to a
uniformly random instance loses all information about the
secret key. However, in the definition of δ-correctness, we
cannot omit the information about the secret key during
the encryption since we need it for the decryption. There-
fore, we cannot separate the module-LWE instance from
P[decrypt(sk, encrypt(pk,m)) 6= m] in order to bound this
value with the advantage against the module-LWE.

To substantiate the claim that this reduction to δ does
not respect the inequality of Definition 2, we perform a
comparative analysis of δ′ (eq. (2)), δ (eq. (3)) and the actual
correctness error:

E[ max
m∈M

P[decrypt(sk, encrypt(pk,m)) 6= m]] (4)

In the following, the value δ is calculated using a Python script
by Léo Ducas [12] that was also used for the evaluation in [11].

We showcase two comparisons: First, we calculate the
exact values of δ, δ′ and the correctness error for very small
parameters. We set n = 2, q = 17, k = η = dv = 1 and
du = 3. The expectation, maximum and probabilities can be



computed by considering all possible values. Using a simple
Python script [23], the outcomes are the following:

δ = 0.211

corr error = 0.223

δ′ = 0.267

The experiment shows, that for these small parameters, the
inequality between the correctness error and δ is violated. This
is a counterexample to the claimed proof in [11] since it should
hold for any parameters sufficing Kyber’s assumptions.

Second, we substantiate our claim also for (slightly) bigger
parameter sets. In this experiment, we approximate δ′ and the
correctness error using Monte-Carlo sampling. Python scripts
for the calculation of δ′ and the correctness error can be found
in [23]. For all the parameter sets that we tested, the inequality

E[ max
m∈M

P[decrypt(sk, encrypt(pk,m)) 6= m]] ≤ δ

is violated. Results are shown in Figure 1 (and Appendix X-B).
As parameters, we consider n between 5 and 16 and choose

Figure 1: Comparison of absolute values of δ, δ′ and the cor-
rectness error for small dimensional examples over variation
on n

q to be a prime with approximatively the same ratio to n as
the original parameters for Kyber (q/n = 3329/256 ≈ 13)
and q ≡ 1 mod 4. Furthermore, we set k = η = dv = 2 and
du = 5. In Figure 1, we see that the correctness error (green)
consistently lies below our proposed δ′ (blue), but violates the
relation to the calculated δ (red) from [11].

Private correspondence with an author of Kyber confirmed
that this problem with δ was known. Indeed, they explained
that the module-LWE reduction was more of a heuristic nature.
With this heuristic module-LWE reduction, the error terms
can be easily approximated using union bounds, as in [12].
However, since this proof was not formalized in detail, the
dependency relations with the secret key may have been
overlooked. The above calculations give a counter-example
disproving this reduction via module-LWE for our general

setting. It may be the case that additional assumptions for
the Kyber parameters make the module-LWE reduction valid.
An interesting future research question is to find suitable
hypotheses to allow the module-LWE reduction or find a
counter-example with the actual Kyber parameters.

Fortunately, our findings do not invalidate the correctness
of the scheme itself since we could prove correctness with the
bound δ′. Still, this issue may affect the level of security of
Kyber. This leads us to two more important research questions:

1) Can we estimate/approximate δ′ or the relation between
δ and δ′?

2) Can we find another more easily calculable bound on
the correctness error?

For this paper, our main focus was a foundational formaliza-
tion of Kyber: indeed, we succeeded to show δ′-correctness.

D. Auxiliary Lemma

Before we can start the proof of Theorem IV.1, we need to
show an auxiliary lemma on the estimation of the compression
error.

Lemma IV.2. Let x be an element of Zq and x′ =
decompd (compd x) its image under compression and de-
compression with 2d < q. Then we have:

|x′ − x mod± q| ≤ dq/2d+1c

The proof of the auxiliary lemma can be found in Ap-
pendix X-C.

A non-trivial step in the formalization of the proof was
to ensure that all calculations are conform with the residue
classes modulo the polynomial xn + 1. Indeed, in Isabelle
the type casting is explicit, so one always has to channel
through all type casts. Especially, one always has to show that
the implications hold independently from the representative
chosen from a residue class. In some cases, we also presume
natural embeddings and isomorphisms to hold in pen-and-
paper proofs which have to be stated explicitly in Isabelle (for
example the to module function mentioned in the previous
section). Thus, formalizations are much more verbose.

E. Proof of Correctness

The formalization of the proof of Theorem IV.1 can be
found in [22] (and the version with compression of the
public key in [21]). One problem encountered during the
formalization was that ‖ · ‖∞ is only a pseudo-norm (recall
Section IV-A). This is not explicitly mentioned in [11] and
indeed poses a problem in the proof which we will discuss in
greater detail in the next section. In short: We cannot conclude
a correct decryption in the last step of the correctness proof
unless q ≡ 1 mod 4.

The proof of Theorem IV.1 proceeds as follows. Given A,
s, r, e, e1, e2 and the message m, we calculate t, u∗ and
v∗ using the key generation and encryption algorithm. We
define u′ and v′ to be the decompressed values of u∗ and



v∗, respectively. With the compression errors cu and cv, we
get the equations:

u′ = AT r + e1 + cu

v′ = t′ T r + e2 + dq/2c ·m + cv

This leads to the calculation in the decryption:

v′ − sTu′ = eT r + e2 + cv − sTe1 − sT cu + dq/2c ·m
We accumulate all error terms in a new variable w:

w := eT r + e2 + cv − sTe1 − sT cu

and get ‖w‖∞ < dq/4c from the assumptions of Theo-
rem IV.1.

Now, we need to show that m′ := decrypt(u∗, v∗, s) is
indeed the original message m. We consider the value of
v′ − sTu′, its compression with d = 1, namely m′, and
the decompressed value decomp1 m′. Since the compression
depth is 1, we get m′ ∈ {0, 1}. Thus:

decomp1 m′ = dq/2 ·m′c = dq/2c ·m′

Using Lemma IV.2, it follows that:

‖w + dq/2c(m−m′)‖∞
=‖v′ − sTu′ − decomp1 (comp1 (v′ − sTu′))‖∞
≤dq/4c

Using the triangle inequality on ‖ · ‖∞, we calculate

‖dq/2c(m−m′)‖∞ = ‖w + dq/2c(m−m′)− w‖∞
≤‖w + dq/2c(m−m′)‖∞ + ‖w‖∞
<dq/4c+ dq/4c = 2dq/4c

It remains to show that we can indeed deduce m = m′ which
concludes the proof of Theorems IV.1. According to the last
step of [11, Proof Thm 1], this follows directly for any odd
q. However, therein lies a hidden problem. [11, Proof Thm 1]
makes use of the homogeneity of ‖·‖∞. Since ‖·‖∞ is only a
pseudo-norm and not a norm, we needed to find an alternative
proof in the formalization. Interestingly enough, in the case
of q ≡ 3 mod 4, we cannot conclude the proof. In the next
section, we discuss why we can only deduce this step under
the assumption that q ≡ 1 mod 4 and give a counterexample
for the case q ≡ 3 mod 4.

F. Additional Assumption q ≡ 1 mod 4

The following remains to be shown for the proof of Theo-
rem IV.1: Given the inequality

‖dq/2c · (m−m′)‖∞ < 2 · dq/4c
we need to deduce that indeed m = m′.

We prove this statement by contradiction. Assume that m
is not equal m′, i.e., there exists a coefficient of m−m′ that
is different from zero. Since m and m′ are polynomials with
coefficients in {0, 1}, a non-zero coefficient can either be 1 or
−1. Then we get

‖dq/2c · (m−m′)‖∞ = |dq/2c · (±1) mod± q| = . . .

Since we cannot use the homogeneity of ‖ · ‖∞ to pull out
the absolute value of ±1, we need to find a different proof.
We break down the formula to find the remaining problems.
All primes q greater than two are odd. Thus we have dq/2c =
(q + 1)/2. We continue our calculation:

· · · =
∣∣∣∣
q + 1

2
mod± q

∣∣∣∣ =

∣∣∣∣
−q + 1

2

∣∣∣∣ =
q − 1

2
= 2·q − 1

4
= . . .

since the mod± operation reduces q+1
2 to the representative

−q+1
2 . Now we need to relate q−1

4 to dq/4c. We have two
cases:

Case 1: For q ≡ 1 mod 4 we indeed get the equality
q−1
4 = dq/4c that we need. In this case we have

‖dq/2c · (m−m′)‖∞ = 2 · dq/4c

which is a contradiction to our assumption. In this case, the
proof of Theorems IV.1 is completed.

Case 2: For q ≡ 3 mod 4 we get the strict inequality
q−1
4 < q+1

4 = dq/4c resulting in

‖dq/2c · (m−m′)‖∞ < 2 · dq/4c

which is no contradiction to the assumption. Indeed in this
case we cannot deduce m = m′, since it is possible that a
coefficient of m−m′ is non-zero.

Example IV.1. Consider this short example: Let q = 7 (≡ 3
mod 4, thus we are in case 2), m = 0 and m′ = 1. In this
case, the inequality of the assumption holds

‖dq/2c · (m−m′)‖∞ = 3 < 4 = 2 · dq/4c

but m 6= m′. This is a counterexample for the correctness of
the proof of Theorem IV.1 in the case q ≡ 3 mod 4.

In conclusion, Theorem IV.1 only holds if the modulus q
fulfils the assumption q ≡ 1 mod 4.

In the specification of Kyber, concrete values for the param-
eters of the system are given (see Section II-B). For example
in the recent version of Kyber [4], [5], the modulus q is
chosen to be 3329, whereas in early versions [6], [11], the
modulus was chosen as 7681. Considering possible changes
to these variables (for different versions or security levels), it
is important to enable the verified proof to cover all possible
cases. Therefore, the implementation of the formalization was
chosen to be as adaptive and flexible as possible. This resulted
in the discovery of the additional assumption q ≡ 1 mod 4.

Indeed, the modulus q is chosen according to a much
more rigid scheme: In order to implement the multiplication
to compute faster, the Number Theoretic Transform (NTT)
is used. In the case of Kyber, the NTT is computed on
Rq = Zq[x]/(xn + 1). The requirement for NTT on the
modulus q is:

q ≡ 1 mod n

For n = 256 and q = 7681 we have 7681 = 30 · 256 + 1,
whereas for q = 3329 we get 3329 = 13 · 256 + 1. Since n is



a power of 22, we can automatically infer the property q ≡ 1
mod 4.

The NTT is analysed in more detail in Appendix X-D. A
formalization for the NTT in the case of Kyber was included
in this project. There is also a formalization of the NTT for
the third round Kyber by Hwang et al. [18] in the low-level
tool CryptoLine.

V. GAME-BASED CRYPTOGRAPHY

An important cryptographic property of public key encryp-
tion schemes is IND-CPA security. This attack describes a
game where an adversary tries to gain information about self-
chosen plaintexts.

More formally, the IND-CPA game for a PKE (given by
the key generation, encryption and decryption algorithms) is
defined as follows.

Definition 3 (IND-CPA game). Two parties, the challenger
and the adversary, play the following game.

1) The challenger generates a public and secret key pair
using the key generation algorithm and publishes the
public key.

2) The adversary sends the challenger two messages m0

and m1 with the same length.
3) The challenger chooses uniformly at random a bit b. He

encrypts the message mb with the encryption algorithm
and sends the ciphertext to the adversary.

4) The adversary returns a guess b′ which of the two given
messages m0 and m1 the challenger has encrypted. He
wins if b = b′.

The advantage AdvIND−CPA of the adversary A is defined
as AdvIND−CPA(A) = |P[b′ = b] − 1

2 |. A PKE scheme is
IND-CPA secure if and only if the advantage of the adversary
is negligible, that means sufficiently small.

Figure 2 depicts the IND-CPA game.

Challenger Adversary

(pk, sk)← key gen pk

choose m0, m1

with |m0| = |m1|
m0 and m1

b← coin flip

c = encrypt(mb,pk) c

Output b′

as a guess for b

ti
m
e

Figure 2: A diagram of the IND-CPA game.

The formalization of the IND-CPA game was taken from
the CryptHOL Tutorial [27]. The flexible formalization in an
Isabelle locale allows the user to instantiate this concept in
any context fulfilling the properties of the locale. In this way,
the IND-CPA game definition could easily be applied to the
case of Kyber by instantiating with the Kyber algorithms for
key generation, encryption and decryption.

We can also state the module-LWE from Definition 1 in
game form.

Definition 4 (module-LWE game). Two parties, called the
challenger and the (module-LWE) adversary, play the follow-
ing game.

1) The challenger chooses A0 ∈ Rm×kq uniformly at
random, s according to βkη and e according to βmη . He
then computes t0 = A0s + e. ((A0, t0) is an instance
of the module-LWE problem.)

2) The challenger chooses A1 ∈ Rm×kq and t1 ∈ Rmq
uniformly at random. ((A1, t1) is a random instance.)

3) The challenger chooses a random bit b and sends the
adversary the value of (Ab, tb).

4) The adversary returns a guess b′ whether the tuple
(Ab, tb) was generated as a module-LWE instance or
is uniformly random. He wins, if his guess is correct.

The advantage AdvmLWE
m of the module-LWE adversary A

is defined as

AdvmLWE
m (A) = |P[b′ = 0 ∧ b = 0]− P[b′ = 0 ∧ b = 1]|

The module-LWE hardness assumption states that the advan-
tage of an adversary in the module-LWE game is negligible.

Figure 3 depicts the module-LWE problem in game form.

Challenger Adversary

A0 ← uniform(Rm×kq )

s← βkη , e← βmη
t0 = A0s+ e

mLWE

A1 ← uniform(Rm×kq )

t1 ← uniform(Rmq ) random

b← coin flip (Ab, tb)

Output b′

as a guess for b

ti
m
e

Figure 3: A diagram of the module-LWE game.

In the proof of the IND-CPA security property for Kyber, the
advantage of a module-LWE adversary is used twice, but with
different dimensions m. The key generation corresponds to a
module-LWE with m = k such that A is a quadratic matrix.
However, in the encryption, the matrix A is extended by the
vector t, resulting in a (k + 1) × k matrix. This corresponds
to the module-LWE with m = k + 1.

The module-LWE was again formalized in an Isabelle locale
in order to allow for two separate instantiations (once with
m = k and once with m = k+1). However, the instantiations
needed an additional twist. Since the vector type in Isabelle
has a fixed dimension implemented as a finite type (in our
case type ′k of cardinality k), it is more difficult to work over
vectors whose dimension is a function over k. In our case,
this could be solved using the option type. The option type
′k option embeds elements a of type ′k as Some a and adds
the element None. Thus ′k option has exactly k+1 elements.
This solves our problem.



VI. USING CRYPTHOL IN ISABELLE

CryptHOL [26] is a library for game-based security proofs
in cryptography. It is based on the extensive libraries for
probability theory in Isabelle. Its main contributions are sub-
probability mass function as the type class spmf and generative
probabilistic values as the type class gpv. We give a short
intuitive understanding of these type classes.

A. Sub-probability Mass Functions

The spmf type class is a superclass of probability mass
functions. We consider a finite set S. A probability mass
function f : S 7−→ [0, 1] is the probability distribution of
a discrete random variable X , i.e., f(x) = P[X = x] such
that the weight equals one:

∑

x∈S
f(x) = 1

For sub-probability mass functions, we allow the weight to be
less than one: ∑

x∈S
f(x) ≤ 1

A sub-probability mass function is called lossless, if it has
weight equal to one. Indeed, in our setting we need to model
the probability that a security game is compromised by inten-
tional malicious input and may not terminate. For example in
the IND-CPA game, the adversary can intentionally input two
messages of different length and thus gain information about
the ciphertext or simply not answer at all.

B. Generative Probabilistic Values

To model cryptographic primitives such as hash functions,
we need a method to generate and store random values.
This idea is developed in the gpv type class which describes
probabilistic algorithms. The type class gpv depends on three
input types: the type of the algorithm, the input state type and
the output state type.

When running a gpv, we connect it with a random oracle
(that models for example a hash function) and hand through
the current state. Whenever we query the oracle, we generate
a new state. It needs to be included in the input for the next
call to the oracle using a gpv.

The Kyber public key encryption does not use hash func-
tions. Thus we could model the security proof with sub-
probability mass functions only. However, to stay consistent
with the CryptHOL library, we generalized the formalization
of the security proof to use generative probabilistic values
whenever we query the adversary or the encryption algorithm.
The proofs do not get significantly harder and the automation
can handle this generalization step most of the time.

C. Using Monads for Describing Probabilistic Algorithms

Functional programming hands us tools to easily define
probabilistic algorithms and distributions. The concept of
choice is the Giry-monad. Monads are a concept from category
theory applied to functional programming. We give a short
introduction to monads in general and the Giry-monad in

particular. More about monads can be found in [34] and the
introduction of monads into functional programming in [30]. A
good introduction to the Giry-monad in the context of Isabelle
is given in [13].

Monads give a pattern to design type classes. They consist
of a type constructor M and two operations:
• return: receives a value A and hands back a monadic

value M a
• bind: receives a monadic value Ma and a function
f : a −→ M b and returns the application of f to the
unwrapped value A, yielding an element M b

Monads need to fulfil three laws: the left and right identities
and associativity. Let us look at a short example.

Example VI.1. The option type class is a monad. As de-
scribed at the end of Section V, a type ′a option takes the
values Some a or None. In this case, the option monad is
defined over the type ′a. The return function takes an element
a of type ′a and returns an element Some a of type ′a option.
The bind function on a function f is defined by:

bind None f = None

bind (Some a) f = f(a)

Another notation for the bind function is:

bind a f ≡ a >>= f

Another example is the Giry-monad. It assigns to each
measurable space the space of probability measures over it
(see [35]).

Example VI.2. The type class of probability mass functions
pmf for discrete distributions is a monad, called the Giry-
monad. The return function for an element A is defined as
the Dirac measure on a. The bind function on an probability
mass function pX using a function f is defined as:

(bind pX f)(y) =
∑

x

pX(f(x)(y))

Thus, the Giry-monad can model successive execution of
random experiments and probabilistic algorithms using the
bind and return functions.

Both the type class spmf and gpv are monads with respective
return and bind functions. This gives us a tool to model
probabilistic algorithms in Isabelle.

VII. IND-CPA SECURITY PROOF FOR KYBER

Since round two of the NIST standardization process [5], the
compression of the public key in Kyber has been omitted. The
reason was that otherwise the IND-CPA security proof [11,
Theorem 2] does not hold. The problem lies in the second
reduction step where the decompression of the compression
of the public key is not distributed uniformly at random any
more. This entails that we cannot apply the reduction from
the module-LWE. The security of Kyber without compression
under IND-CPA is stated in the following theorem. Its formal-
ization can be found in [22]



Theorem VII.1. Given any adversary A to the IND-CPA
game of Kyber and assuming that A is lossless, the advantage
of A in the IND-CPA game can be bounded by twice the
advantage in the module-LWE game.

Loosely speaking: the public key encryption scheme Kyber
without compression of the public key is IND-CPA secure
against the module-LWE hardness assumption. The formal-
ization in Isabelle can be found in Appendix X-A5.

Proof. Let AdvKyber be the advantage in the IND-CPA game
instantiated with the Kyber algorithms key gen, encrypt and
decrypt. Let f1 be the reduction function from A to the first
module-LWE instance and f2 the reduction function from A
to the second module-LWE instance. Then the exact formula
of the theorem above reads:

AdvKyber(A) ≤ AdvmLWE
k (f1(A)) +AdvmLWE

k+1 (f2(A))
(5)

Note that in the formalization we state the reduction func-
tions for the adversary precisely. They need to have a polyno-
mial running time. Since a formal framework for analysing the
running time is out of scope for this project, we assume the
running time hypothesis to be correct. The reason is that the
reduction functions use only one call to the given adversary
and (for f1) one to the Kyber encryption algorithm. Otherwise,
the functions are non-recursive, polynomial time probabilistic
algorithms.

The proof of equation (5) proceeds in three steps (also called
game-hops).

1) Reduction of key generation from the first module-LWE
instance with m = k

2) Reduction of encryption from the second module-LWE
instance with m = k + 1

3) Interpretation of the rest as a coin flip
In every game-hop, we define an intermediate game and

analyse the difference in the advantage. The initial game
game0 is exactly the IND-CPA game. That implies:

P[b = b′] = P[game0 = true]

The first intermediate game game1 is defined by the following
steps:

1) The challenger generates a public key (A, t) uniformly
at random and publishes the public key.

2) The adversary sends the challenger two messages m0

and m1 with the same length.
3) The challenger chooses a bit b uniformly at random. He

encrypts the message mb with the encryption algorithm
and sends the ciphertext to the adversary.

4) The adversary returns a guess b′ for which of the two
given messages m0 and m1 the challenger has encrypted.
He wins if b = b′.

Figure 4 illustrates game1. The change to the initial game
game0 (marked in green) is in the first step where the public
and secret key pair is now generated uniformly at random
instead of being created by the key generation algorithm.

Challenger Adversary

(pk, sk)← uniform pk

choose m0, m1

with |m0| = |m1|
m0 and m1

b← coin flip

c = encrypt(mb,pk) c

Output b′

as a guess for b

ti
m
e

Figure 4: A diagram of game1.

The key generation algorithm creates a module-LWE in-
stance. Distinguishing a module-LWE instance from a uni-
formly random instance is exactly the module-LWE game.
Hence, for a suitable reduction function f1 have:

|P[game0 = true]−P[game1 = true]| = AdvmLWE
k (f1(A))

The second intermediate game game2 is defined by the
following steps:

1) The challenger generates a public key (A, t) uniformly
at random and publishes the public key.

2) The adversary sends the challenger two messages m0

and m1 with the same length.
3) The challenger chooses a bit b uniformly at random. He

chooses a ciphertext uniformly at random from Rkq ×Rq
and sends the ciphertext to the adversary.

4) The adversary returns a guess b′ for b. He wins if b = b′.
Figure 5 illustrates game2. The change to game1 (marked

in green) is that the ciphertext is not generated by the encryp-
tion but chosen uniformly at random.

Challenger Adversary

(pk, sk)← uniform pk

choose m0, m1

with |m0| = |m1|
m0 and m1

b← coin flip

c← uniform c

Output b′

as a guess for b

ti
m
e

Figure 5: A diagram of game2.

In the encryption, the reduction to the module-LWE is not
as straightforward as for the key generation. This is caused by
the addition of the message m to the module-LWE instance.
Indeed, in the formalization, we need to make two separate
steps.

First, we show that the probability of distinguishing an
instance of the form (

A
t

)
r +

(
e1
e2

)

and a uniformly random instance (u v′)T is exactly the
module-LWE advantage for m = k + 1. Note that it is



important to look at (k + 1)-dimensional vectors instead of
splitting the instance in k- and 1-dimensional parts because r
is chosen to be the same for the multiplication with both A and
t. This is also the reason, why we cannot split the variance for
the centred binomial distribution into η1 and η2, since e1 and
e2 together form the error vector of the module-LWE instance,
thus needing the same distribution.

Second, we need to show that v′ + dq/2c · m is also
distributed uniformly. That is, we cannot distinguish between
the probabilities of the value v′ + dq/2c ·m for a uniformly
random v′ and a uniformly random v. Since we are working
over a finite field and v′ and m are independent, we can show
this property using the law of total probability.

For a suitable reduction function f2, we deduce:
∣∣∣∣P[game1 = true]−P[game2 = true]

∣∣∣∣ = AdvmLWE
k+1 (f2(A))

In the last step, we have a closer look at game2. Since the
ciphertext sent to the adversary is now independent from the
chosen message, the guess of the adversary is a coin flip. Thus
the probability of guessing correctly is exactly 1/2. We get

P[game2 = true] = 1/2

Finally, we can put together all the previous steps.

AdvKyber(A) =

∣∣∣∣P[b = b′]− 1

2

∣∣∣∣ =

∣∣∣∣P[game0 = true]− 1

2

∣∣∣∣

This equality is inferred from the definition of the adversary
for the IND-CPA game for Kyber. The game0 is the initial
IND-CPA game. We continue by applying the triangle inequal-
ity.

∣∣∣∣P[game0 = true]− 1

2

∣∣∣∣

≤
∣∣∣∣P[game0 = true]− P[game1 = true]

∣∣∣∣

+

∣∣∣∣P[game1 = true]− 1

2

∣∣∣∣

= AdvmLWE
k (f1(A)) +

∣∣∣∣P[game1 = true]− 1

2

∣∣∣∣

The last equality is deduced from the reduction of game0 to
game1 as a module-LWE instance. We proceed by applying
the triangle inequality again on the second part.

∣∣∣∣P[game1 = true]− 1

2

∣∣∣∣

≤
∣∣∣∣P[game1 = true]− P[game2 = true]

∣∣∣∣

+

∣∣∣∣P[game2 = true]− 1

2

∣∣∣∣

= AdvmLWE
k+1 (f2(A)) +

∣∣∣∣P[game2 = true]− 1

2

∣∣∣∣

Here, the last equality is deduced from the reduction of game1
to game2 as a module-LWE instance with m = k+1. Finally,
we have

∣∣P[game2 = true]− 1
2

∣∣ = 0 as game2 behaves like

a coin flip. In total, the claim is proven as we have shown the
formula:

AdvKyber(A) ≤ AdvmLWE
k (f1(A)) +AdvmLWE

k+1 (f2(A))

During the formalization process, it became clear that
this proof does not work for the first version of Kyber as
remarked by the authors of Kyber [11, Sec. Security of
the real scheme]. The proof for the current scheme could
be formalized analogously to the pen-and-paper proof. The
most time-consuming parts were getting familiar with the
CryptHOL library environment and working out the details
of the pen-and-paper proof which was extremely short.

CryptHOL works with sub-probability mass functions and
generative probabilistic values and supplies a huge library of
fundamental lemmas. Since the example game-based proof of
the CryptHOL Tutorial [27] is based mainly on the automation,
understanding the formal proof and rewriting steps is not
straightforward. However, once the necessary lemmas are
located and added to the automation, the automatic proof
finder can solve most rewriting steps.

Some steps where the automation fails are for example when
commutativity laws need to be applied in both directions. Then
the simplifier runs in loops and cannot terminate. Making
smaller proof steps or explicitly initializing the commutativity
laws solves these issues.

VIII. IMPLEMENTATION DETAILS

Figure 6: Distribution of lines
of code on different topics

The implementation in
Isabelle comprises about
6.7k lines of code. The pro-
portions on the topics is
depicted in Figure 6. Since
many concepts from al-
gebra, analysis, probability
theory and cryptographic
primitives could be reused,
the authors could focus
solely on the formalization
of Kyber. Furthermore, the automation greatly helped short-
ening the proofs.

Due to the various dependencies and invocations of the
library, loading the formalization theories might take some
time, especially when the required theories on analysis and
probability need to be built for the first time.

IX. CONCLUSION

In this presentation, we described the formalization of
key-generation, encryption and decryption algorithms of
CRYSTAL-KYBER’s public key encryption scheme.

During the formalization of the δ-correctness proof two
problems were uncovered: One could be solved by modi-
fying the value of δ, the other by adding the assumption
q ≡ 1 mod 4. Under these conditions, the δ′-correctness
could be verified. Differences between the original proof



and the formalization were discussed and counterexamples
for failing proof-steps were given. The additional assumption
q ≡ 1 mod 4 is already fulfilled by necessary properties for
the number theoretic transform. Therefore, the correctness of
Kyber itself is not compromised but minimal changes to the
error bound δ are needed. However, the authors of Kyber
acknowledged the need for an alternative bound in private
communication. Moreover, a verification of the IND-CPA
security proof for Kyber was presented.

Building on these results, the Fujisaki-Okamoto transform
can be applied to the current algorithm formalization to obtain
a verified key encapsulation mechanism that is secure against
the indistinguishability under chosen ciphertext attack (IND-
CCA). However, our proposed δ′ cannot be approximated as
easily as the original δ. Finding a calculable bound or an
approximation on δ′ remains an important question. Another
very interesting aspect is to formalize the hardness results of
the module-LWE that Kyber is building on.
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X. APPENDIX

A. Isabelle Formalizations

1) Isabelle Code for the Quotient Ring Rq: The quotient
ring Rq in Isabelle is defined in three steps:

1) Define a type class containing the modulus q and the
polynomial xn + 1 as qr_poly’ and ascertain their
compatibility.

2) Define the equivalence relation for polynomials in Zq[x]
modulo qr_poly’

3) Define the final type class qr of the quotient ring Rq
using the constructor quotient_type by modding
out the equivalence relation

class qr_spec = prime_card +
fixes qr_poly’ :: ’a itself ⇒ int poly
assumes ¬ int CARD(’a) dvd

lead_coeff (qr_poly’ TYPE(’a))
and degree (qr_poly’ TYPE(’a)) > 0

definition qr_rel where
qr_rel P Q ↔ [P = Q] (mod qr_poly)

quotient_type (overloaded)
’a qr = ’a :: qr_spec mod_ring poly / qr_rel

2) Isabelle Code for Parameter Sets: The parameter set of
Kyber with the required properties is encoded as a locale.

locale kyber_spec =
fixes type_a :: (’a :: qr_spec) itself
and type_k :: (’k ::finite) itself
and n q::int and k n’::nat

assumes n = 2 ˆ n’
and n’ > 0
and q > 2
and prime q
and int (CARD(’a :: qr_spec)) = q
and int (CARD(’k :: finite)) = k
and qr_poly’ TYPE(’a) =

Polynomial.monom 1 (nat n) + 1
and q mod 4 = 1

3) Isabelle Code for Kyber Algorithms: The key generation
in Isabelle is defined in two steps: First we sample the inputs
A, s, e according to their distributions, and second we calculate
the formula As + e. The second part is implemented in
the function key_gen, whereas the sampling in the first
step is implemented in the function pmf_key_gen. Here
pmf_of_set return a uniform distribution on an input set

and beta_vec samples a vector of polynomials according
to the distribution βη . The latter returns a probability mass
function on the output, corresponding to the probability mass
function on the key generation.

definition key_gen where
key_gen A s e = A * s + e

definition pmf_key_gen where
"pmf_key_gen = do {
A ← pmf_of_set (UNIV::

((’a qr,’k) vec,’k) vec set);
s ← beta_vec;
e ← beta_vec;
let t = key_gen A s e;
return_pmf ((A, t),s)

}"

As with the key generation, the encryption is also split
into the calculation and the sampling part. The calculation
is implemented in the function encrypt and the sampling in
the function pmf_encrypt. Again, pmf_encrypt returns
a probability mass function on the ciphertext. One important
fact on the formalization is that the types cast always have to
be included, for example to_module casts the integer bq/2e
to the type of the module Rq and bitstring_to_module
casts the bit-string of the message to an element in Rq .

definition encrypt where
encrypt t A r e1 e2 du dv m =
(compress_vec du (AT * r + e1),
compress_poly dv (tT * r + e2 +

to_module (round(q/2)) *
bitstring_to_module m))

definition pmf_encrypt where
"pmf_encrypt pk m = do{
r ← beta_vec;
e1 ← beta_vec;
e2 ← beta;
let c = encrypt (snd pk) (fst pk)

r e1 e2 dt du dv m;
return_pmf c

}"

Note that the compression and decompression on Rkq are
defined as an index- and coefficient-wise application. However,
we need to separate these definitions in Isabelle using the
suffix _vec and _poly.

Since the decryption is purely deterministic, we only im-
plement its calculation in decrypt.

definition decrypt where
decrypt u v s du dv =
compress_poly 1 ((decompress_poly dv v)
- sT * (decompress_vec du u))



lemma kyber_correct:
fixes A s r e e1 e2 du dv cu cv t u v
assumes t = key_gen A s e
and (u,v) = encrypt t A r e1 e2 du dv m
and cu = compress_error_vec du

((transpose A) *v r + e1)
and cv = compress_error_poly dv

(scalar_product t r + e2 +
to_module (round(q/2)) * m)"

and abs_infty_poly (scalar_product e r
+ e2 + cv - scalar_product s e1
- scalar_product s cu)
< round (q / 4)

and set ((coeffs ◦ of_qr) m) ⊆ {0,1}
shows decrypt u v s du dv = m

Then the corollary that Kyber is delta_kyber-correct is
formalized as follows:

lemma
shows
expectation pmf_key_gen (λ(pk, sk).
MAX m ∈ Msgs. pmf (do {
(u,v) ← pmf_encrypt pk m;
return_pmf (decrypt u v sk du dv 6= m)

})) True)
≤ delta_kyber

5) Isabelle Code for IND-CPA property: The Isabelle for-
malization of Theorem VII.1 is the following:

theorem concrete_security_kyber:
assumes lossless: ind_cpa.lossless A
shows
ind_cpa.advantage (ro.oracle, ro.initial) A ≤
mlwe.advantage (kyber_reduction1 A) +
mlwe.advantage (kyber_reduction2 A)
Here ro initialized the random oracle that needs to be

specified for the existing definition of the IND-CPA security
game in CryptHOL. The lossless property states that the
adversary A terminates.

B. Comparative results on δ, δ′ and the correctness error

Figure 7 shows the relations between δ, δ′ and the actual
correctness error for small parameter sets. Two values are
portrayed on the x- and y-axis. If the experimental results
of a parameter set lies above the diagonal, then the value
on the y axis is bigger. If the results lie below the diagonal,
then the value on the x-axis is bigger. These plots show that
the inequality between δ and the correctness error is violated,
whereas with δ′, the inequality is preserved.

C. Proof of the Auxiliary Lemma IV.2

Proof. Let x be the representative in {0, . . . , q − 1}. Then
consider two cases, namely x < dq− q

2d+1 e and x ≥ dq− q
2d+1 e.

These cases arise from the distinction whether the modulo
reduction in the definition of the compression function is

triggered or not. Indeed, we have compd x = d 2dq xc mod 2d

where 2d

q x < 2d, but d 2dq xc = 2d if and only if x ≥ dq− q
2d+1 e.

In the latter case, the modulo operation in the compression
function is activated and returns compd x = 0. In the
following, we will abbreviate compd x by x∗.

Case 1: Let x < dq − q
2d+1 e. Then the modulo reduction

in the compression function x∗ = d 2dq xc mod 2d = d 2dq xc is
not triggered. Thus we get:

|x′ − x| = |decompd (x∗)− x|

=

∣∣∣∣decompd (x∗)− q

2d
· x∗ +

q

2d
· x∗ − q

2d
· 2d

q
· x
∣∣∣∣

≤
∣∣∣decompd (x∗)− q

2d
· x∗
∣∣∣+

q

2d
·
∣∣∣∣x∗ −

2d

q
· x
∣∣∣∣

=
∣∣∣
⌈ q

2d
· x∗
⌋
− q

2d
· x∗
∣∣∣+

q

2d
·
∣∣∣∣
⌈

2d

q
· x
⌋
− 2d

q
· x
∣∣∣∣

≤1

2
+

q

2d
· 1

2
=

q

2d+1
+

1

2

Since x′ − x is an integer, we also get:

|x′ − x| ≤
⌊

q

2d+1
+

1

2

⌋
=
⌈ q

2d+1

⌋

Therefore also |x′−x| ≤ bq/2c such that the mod± operation
does not change the outcome. Finally for this case, we get

|x′ − x mod± q| ≤
⌈ q

2d+1

⌋

Case 2: Let x ≥ dq − q
2d+1 e. Then the modulo operation

in the compression results in the compression to zero, i.e.,
compd x = 0. Using the assumption on x, we get:

|x′ − x mod± q| = |decompd 0− x mod± q|
= | − x mod± q| = | − x+ q|
≤
∣∣∣
⌈
q − q

2d+1

⌉
− q
∣∣∣ =

⌊ q

2d+1

⌋
≤
⌈ q

2d+1

⌋

D. NTT and the Convolution Theorem

The NTT is used to speed up the multiplication on Rq =
Zq[x]/(xn + 1) and is based on the concepts of the Discrete
Fourier Transform. An introduction to the use of the NTT
for lattice-based cryptography can be found in [28] or for the
special case of the CRYSTALS suite in [36]. The NTT as a
nega-cyclic convolution is described in [20]. To shorten this
presentation, we omit all proofs which can be found in the
aforementioned references.

The standard multiplication for f =
∑n−1
k=0 fkx

k and g =∑n−1
k=0 gkx

k in Rq is given by:

f · g =

n−1∑

k=0



n−1∑

j=0

(−1)k−j div nfjgk−j mod n


xk

Thus, multiplication in Rq is done using O(n2) multiplications
on coefficients. Unlike multiplication, addition is calculated in



Figure 7: Relational comparisons between δ, δ′ and the correctness error for small parameters

O(n) since addition is done entry-wise. Therefore, the most
expensive part of the calculations in Kyber crypto algorithms
is multiplication. Using a smarter way to multiply will make
the calculations in Kyber faster.

The usual NTT requires the field Zq to have a n-th root
of unity, that is an element ω with ωn = 1. This can be
achieved by setting q ≡ 1 mod n. However, since we work
over the quotient ring Zq[x]/(xn + 1), we have to consider
the nega-cyclic property that xn ≡ −1 mod xn + 1 instead
of the cyclic properties required by the NTT. Moreover, the
original Kyber uses a “twisted” alternative which is easier to
implement but requires the existence of a 2n-th root of unity.

Considering all the constraints mentioned above, let ψ be
a 2n-th root of unity in Rq . Then we define the nega-cyclic
twisted NTT on Rq for Kyber [11] as follows:

Definition 5 (NTT). Let f =
∑n−1
k=0 fkx

k ∈ Rq , then the NTT
of f is defined as:

NTT (f) =
n−1∑

k=0



n−1∑

j=0

fjψ
j(2k+1)


xk

The inverse transform is scaled by the factor of n−1 and is
given by the following.

Definition 6 (inverse NTT). Let g =
∑n−1
k=0 gkx

k ∈ Rq be in
the image of the NTT, then the inverse NTT of g is defined
as:

invNTT (g) =

n−1∑

k=0

n−1



n−1∑

j=0

gjψ
−k(2j+1)


xk

We formalized a proof of correctness of the NTT and its
inverse [21].

Theorem X.1. Let f be a polynomial in Rq and g a polyno-
mial in NTT domain. Then NTT and invNTT are inverses:

invNTT (NTT (f)) = f and NTT (invNTT (g)) = g

Using this transformation, we can reduce multiplications
to compute within O(n log(n)) using a fast version of the
NTT. To apply the NTT to the Kyber algorithms, we need

the convolution theorem. It states that multiplication of two
polynomials in Rq can be done index-wise over the NTT
domain.

Theorem X.2. Let f and g be two polynomials in Rq . Let (·)
denote the multiplication of polynomials in Rq and (�) the
coefficient-wise multiplication of two polynomials in the NTT
domain. Then the convolution theorem states:

NTT (f · g) = NTT (f)�NTT (g)

Together with Theorem X.1 this yields the fast multiplica-
tion formula.

Theorem X.3. Let f and g be two polynomials in Rq . Let
(·) denote the multiplication of polynomials in Rq and � the
coefficient-wise multiplication of two polynomials in the NTT
domain. Then multiplication in Rq can be computed by:

f · g = invNTT (NTT (f)�NTT (g))

The formalization of the NTT for the original Kyber [11]
was relatively straight-forward since it is based on the for-
malization of the standard NTT by Ammer in [3]. The only
minor hindrances were the conversion between the types and
working with representatives over Rq as well as the rewriting
of huge sums.

Since the NTT for the recent version of Kyber [4] was also
formalized in [18], we verified only the NTT for the original
Kyber specifications. Note that the NTT for the latest versions
of Kyber [4], [5] is a bit different, since the finite field Z3329

does not contain a 2n-th root of unity, but only an n-th root
of unity.
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Abstract
As the standardization process for post-quantum cryptog-
raphy progresses, the need for computer-verified security
proofs against classical and quantum attackers increases.
Even though some tools are already tackling this issue, none
are foundational. We take a first step in this direction and
present a complete formalization of the One-way to Hid-
ing (O2H) Theorem, a central theorem for security proofs
against quantum attackers. With this new formalization, we
build more secure foundations for proof-checking tools in
the quantum setting. Using the theorem prover Isabelle, we
verify the semi-classical O2H Theorem by Ambainis, Ham-
burg and Unruh (Crypto 2019) in different variations. We
also give a novel (and for the formalization simpler) proof to
the O2H Theorem for mixed states and extend the theorem
to non-terminating adversaries. This work provides a theo-
retical and foundational background for several verification
tools and for security proofs in the quantum setting.
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1 Introduction
With the standardization process for post-quantum cryp-
tography led by the National Institute for Standards and
Technology (NIST) of the US [19], the community makes
a joint effort to find new crypto systems that are resistant
against potential attacks from quantum computers. With
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these new systems, there is a big hurdle to overcome: show-
ing security proofs not only against classical but also against
quantum attackers.

Reasoning against quantum attackers is different than in
the classical case. Let us consider the following example: In
classical security proofs, we often use a “reprogramming”
argument. Assume the adversary has access to some random
function 𝐻 (a “random oracle”). Classically, the adversary
only notices reprogramming of the oracle 𝐻 on some (small)
input set 𝑆 if they query values inside 𝑆 . Therefore, we can
reprogram 𝐻 on the set 𝑆 without the adversary noticing
except with negligible probability. In the quantum setting,
we cannot argue this way. A quantum attacker may query all
input values in superposition in a single query, so we cannot
reprogram the oracle as easily as in the classical case.

The above example shows that with quantum adversaries,
we also have to rethink the mathematical toolset used in
security proofs. For the reprogramming of the oracle, we
can only formulate a much more elaborate statement in the
quantum world: the One-way to Hiding (O2H) Theorem.
This theorem bounds the distinguishing probability between
a security game and its reprogramming by the probability
that the adversary measures the reprogramming set.
The proof of the O2H Theorem goes deep into quantum

computing theory. As quantum mechanics is no easy subject,
following the proof argumentation can be quite challenging
even for experts. Therefore, many people simply trust the
pen-and-paper proof and assume it to be correct.
However, every pen-and-paper proof is prone to errors.

For example, in the first submission of Kyber [3, 14], D’Anvers
found an error in the security proof, leading to an essential
change in the Kyber algorithms [2]. There have been various
efforts to formalize security proofs in automated theorem
provers to prevent such errors and guarantee the correctness
of security proofs.

For classical adversaries, there are a lot of tools out in the
world: Isabelle CryptHOL [7, 26], EasyCrypt [6, 20], Cryp-
toVerif [10, 11] and many others. Most of these tools now
strive to reason about quantum attackers as well. First and
foremost, the qrhl-tool [34, 38] (based on Isabelle) uses quan-
tum relational Hoare logic to reason with quantum attackers.
Also, EasyPQC [5] (a development of EasyCrypt) tries to
bridge the gap to quantum security. Recently, CryptoVerif
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has developed strategies to handle quantum adversaries as
well [12].

The main problem of most of these tools is that they often
make complex mathematical assumptions and do not have
foundational tool-checked proofs thereof. This implies that
the security proofs are only verified up to the mathematical
assumptions these tools require. If there was a bug in the
implementation of one of these assumptions, it may lead to
the verification of wrong results.

Our goal with this project is to start a foundational formal-
ization for theorems needed in reasoning against quantum
adversaries. Our first step in this direction is the result of
this paper: a first formalization of the O2H Theorem in the
theorem prover Isabelle. In the future, we aim to extend our
work to more concrete bounds and a connection to other
tools like qrhl-tool.

1.1 Contributions
With this work, we present a foundational formalization of
the semi-classical One-way to Hiding (O2H) Theorem [1]
in the theorem prover Isabelle. To our knowledge, this is
the first formalization of the O2H in any theorem prover so
far. Our main focus in this paper lies on the formalization
process, describing the proof outline, problems we faced and
how we solved them.

First, we introduce all relevant mathematical notions (Sec-
tion 2). This includes the terminology of pure and mixed
states and the model of quantum registers. We then state
the O2H Theorem (Section 3) and give a short overview of
the proof structure (Section 4). Our main design choices are
discussed in Section 5.

The quantum adversary model, its execution and our for-
malization thereof (Section 6) include the formalism for or-
acle queries, the adversaries and the final states. The main
difference to Ambainis, Hamburg and Unruh’s work [1] is
that we only allow sequential queries. The formalization of
parallel queries was omitted since Isabelle does not have
dependent types. Since the number of parallel queries is un-
known, the type of the query would depend on a variable,
needing dependent types.

Then, we can state the O2H Theorem [1] in six alternative
versions. For the rest of the paper, we discuss the formaliza-
tion of the proof (Section 7). For pure state adversaries, we
follow the pen-and-paper proof [1] closely. However, we give
an alternative proof for mixed states, foregoing the notion
of Bures distances and fidelity of quantum states and us-
ing limit arguments. We follow a set of generalization steps
for the proof outline, leading to a new version of the O2H
including non-terminating adversaries and an extension to
infinite-dimensional Hilbert spaces. We also discuss chal-
lenges during the formalization efforts and their solutions
and include some technical details at the end.

1.2 Related Work
The O2H was first described by Unruh [32] when exploring
revocable quantum time-release encryption. It was used to
deal with the problem of rewriting the oracle in the quan-
tum setting. As the first O2H was quite restricted, Ambainis,
Hamburg and Unruh [1] generalized the results to a so-called
semi-classical O2H. The semi-classical refers to the adver-
sary measuring only whether the reprogramming set was
queried and nothing else. This leads to tighter bounds in
many cases. Ambainis et al. [1] then generalized the semi-
classical O2H even more giving more flexibility and tighter
bounds. Bindel et al. [9] give a different, tighter bound but
for a specific use-case with limited applicability elsewhere.
Kuchta et al. [25] used the measure-rewind-measure method
to get even tighter bounds on the O2H. Other variants of
the O2H were developed by Unruh [31, 33], Jiang et al. [23],
Eaton [17], Czajkowski et al. [16] and many more. For our
work, we chose the original semi-classical O2H [1]. This
formulation gives a wide range of applicability due to its
generality, but still has quite strong bounds and easier proofs
for formalization.
As mentioned in the introduction, most tools for reason-

ing about quantum security proofs are not foundational. To
our knowledge, none of these tools have fully formalized
any variant of the O2H so far. The main tools for tackling
quantum security proofs, we know about, are the qrhl-tool
[34, 38], EasyPQC [5] and CryptoVerif [12]. However, all of
these tools are still under construction as this field is still very
new and evolving with new research coming out. We chose
qrhl-tool as our aim for application of our formalization, as
it is the most developed tool of the above.
As Isabelle underlies the qrhl-tool for the formalization

of intermediate steps, our formalizations have been carried
out in Isabelle. Isabelle [27, 29, 30] provides a vast library on
relevant topics such as operator theory [15], quantum regis-
ters [35], Hilbert spaces, analysis and probability theory in
the Archive of Formal Proofs (AFP) [18] and the distribution.
Isabelle’s versatile locale context [4, 24] allows instantiations
in different settings.

2 Mathematical Background
We will briefly sketch the mathematical and quantum me-
chanical background needed for this paper. For more back-
ground on quantum computation theory (at least in the
finite-dimensional case), the reader is referred to introduc-
tory books on this topic [28, 39]. When considering infinite-
dimensional vector spaces, a number of extra subtleties need
to be considered. We write those details in brackets ([]);
those can be ignored at first reading. Readers familiar with
quantum computing should still read subsection 2.4.
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2.1 Miscellaneous Notation
I denotes the identity. ∥𝑥 ∥ the Euclidean norm of 𝑥 . Given a
matrix [a bounded operator] or vector 𝐴, we write 𝐴∗ for its
conjugate transpose [its adjoint].

2.2 Quantum Mechanics – Pure States
In its simplest form, a “pure” quantum state is a vector 𝜓
of norm 1 in a complex Hilbert space C𝑛 [in an arbitrary
Hilbert space]. It can be seen as a linear combination of basis
vectors, each of them corresponding to a classical state. So
the quantum state represents a “superposition” of classical
states. Those basis vectors / “classical states” themselves are
written |𝑥⟩. E.g., an 𝑛-qubit quantum system has space C2𝑛

with (orthonormal) basis {|𝑥⟩}𝑥∈{0,1}𝑛 .
An operation on a quantum state is represented by a ma-

trix [linear operator] applied to the state. This matrix is re-
quired to be an isometry, that is, be norm-preserving. (Many
presentations require the stronger notion of unitary. To avoid
too unfamiliar language, we will usually talk about unitaries
instead of isometries in the following.)
In addition to applying a matrix, we can perform mea-

surements. For simplicity, we consider only binary measure-
ments (measurements with outcomes “yes” and “no”). Such
a measurement is modeled by an (orthogonal) projector 𝑃 .
Given a state𝜓 , ∥𝑃𝜓 ∥2 is the probability of getting outcome
“yes”, and ∥(I − 𝑃)𝜓 ∥2 of outcome “no”. Measurements also
affect the observed state; after measuring “yes”, the state is
𝑃𝜓/∥𝑃𝜓 ∥, after measuring “no”, (I − 𝑃)𝜓/∥(I − 𝑃)𝜓 ∥.
The projector onto |𝑥⟩ is written |𝑥⟩⟨𝑥 |. So, e.g., a mea-

surement whether a quantum system is in the classical state
0 is represented by the projector |0⟩⟨0|.

Often, we consider a quantum system composed of several
systems, e.g., of C𝑛 and C𝑚 . The resulting space consists of
vectors in the space C𝑛 ⊗ C𝑚 := C𝑛𝑚 [the tensor product
H1 ⊗H2 of Hilbert spacesH1,H2]. A composed system that
has state𝜓 in the first subsystem, and 𝜙 in the second subsys-
tem, has state𝜓⊗𝜙 . The vector𝜓⊗𝜙 has all the values𝜓𝑖𝜙 𝑗 as
coefficients [defined more abstractly in infinite-dimensions].
Similarly, we can take tensor products of operators. For ex-
ample, applying 𝑈 to the first subsystem and the identity to
the second is described by the tensor product of matrices
𝑈 ⊗ I, which is an 𝑛𝑚×𝑛𝑚-matrix [an operator onH1 ⊗H2].

2.3 Quantum Mechanics – Mixed States
While many things can be described with the formalization
of quantum mechanics using pure states, this formalism
turns out to be limited when we want to talk, e.g., about
probabilistic distributions and quantum states together (as
often needed in cryptography). Because of that, there is a
more general formalism that allows us to describe quantum
states that are effectively probability distributions of pure
states, so called “mixed states”. A mixed state is described
by a matrix [trace-class operator] 𝜌 ∈ C𝑛×𝑛 , called a density

operator. To represent a mixed state that is with probability
1 the pure state 𝜓 (a vector) in this formalism, we define
𝜌 := 𝜓𝜓 ∗. (Notice that 𝜓𝜓 ∗ is the product of a row and a
column vector, thus a matrix.) A distribution of states 𝜓𝑖

with corresponding probabilities 𝑝𝑖 is described by 𝜌 :=∑
𝑝𝑖𝜓𝑖𝜓

∗
𝑖 [with convergence in the trace-norm]. Applying

a unitary𝑈 to a mixed state 𝜌 results in 𝑈𝜌𝑈 ∗. Measuring
with projector 𝑃 gives “yes” with probability tr 𝑃𝜌 and “no”
with tr(I−𝑃)𝜌 ; the state after the measurement is 𝑃𝜌𝑃/tr 𝑃𝜌
or (I − 𝑃)𝜌 (I − 𝑃)/tr(I − 𝑃)𝜌 , respectively.

The reader may verify that when the state 𝜌 is “pure”, i.e.,
of the form𝜓𝜓 ∗, these definitions simplify to the ones from
the previous section.
The valid quantum states are exactly the positive oper-

ators of trace 1, corresponding to probability distributions
with total probability 1. Often, we may also consider density
operators with trace ≤ 1, called subdensity operators. These
correspond to subprobability distributions with total prob-
ability ≤ 1. (Useful for modeling programs that terminate
with probability ≤ 1.)

In addition to these operations, we can also define more
general operations. For example, applying𝑈 with probability
1/2 would map 𝜌 ↦→ 1

2𝜌 + 1
2𝑈𝜌𝑈 ∗. The general form for such

mixed probabilistic and quantum operations is 𝜌 ↦→ ∑
𝐸𝑖𝜌𝐸

∗
𝑖

for some 𝐸𝑖 with
∑
𝐸∗𝑖 𝐸𝑖 = I (or ≤ I if we allow subprobabil-

ity distributions; we call this the normalization condition)
[convergence of the first sum is with respect to the trace
norm, and for the second with respect to the weak opera-
tor topology]. We call such maps “Kraus maps” (and the 𝐸𝑖
Kraus operators). For example, applying a unitary 𝑈 can be
represented as the Kraus map with single Kraus operator
𝐸1 := 𝑈 . Given two Kraus maps E and F represented by
{𝐸𝑖 }𝑖∈𝐼 and {𝐹 𝑗 } 𝑗∈ 𝐽 , respectively, their functional composi-
tion E ◦ F is a Kraus map with operators {𝐸𝑖 · 𝐹 𝑗 } (𝑖, 𝑗 ) ∈𝐼× 𝐽 .
The normalization condition is also preserved. In the mixed
state formalism, we can also compose systems. If subsystems
𝐴, 𝐵 are in states 𝜌𝐴, 𝜌𝐵 , respectively, the joint state of the
composed system 𝐴𝐵 is in state 𝜌𝐴 ⊗ 𝜌𝐵 (tensor product of
matrices [of bounded operators]). Applying a Kraus map
{𝐸𝑖 }𝑖 to 𝐴 corresponds to applying the Kraus map {𝐸𝑖 ⊗ I}𝑖
to 𝐴𝐵.

2.4 Quantum Registers
As mentioned in the previous two sections, we can model
systems consisting of several parts by composing them. E.g.,
if a program performs a unitary𝑈 on the first part of some
system, we can describe the effect on the whole system as
𝑈 ⊗ I, and similar for measurements, Kraus maps, and many
more. However, doing this explicitly gets unwieldy quickly.
For example, applying an operation to the fifth out of 25
subsystems becomes I ⊗ · · · ⊗ I ⊗𝑈 ⊗ I ⊗ · · · ⊗ I. And when
formalizing, we cannot even conveniently write “· · · ”. Fur-
thermore, such a rigid structure of tensor factors makes it
hard to write formal statements in a general way (without
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imposing some arbitrary assumptions about, e.g., the num-
ber of subsystems). In informal practice, we therefore simply
talk about named “registers”. E.g., we call the fifth subsystem
the register 𝑋 , and say “we apply𝑈 to 𝑋 ”. It is then assumed
to be understood from context how a given operation is ap-
plied to a register and what it means for the overall system.
A formal definition of a register (that encompasses a tensor
factor as above but can also point to more general subsys-
tems such as, e.g., “the first and last tensor factors together”)
was presented by Unruh [36] under the name of quantum
references and formalized in Isabelle/HOL in [35]. We follow
their treatment and use their Isabelle formalization. A regis-
ter 𝐹 with content typeH𝑐 and memory typeH𝑚 is then a
mathematical object that points to a subsystem described by
a Hilbert spaceH𝑐 within a larger systemH𝑚 .1

It supports various lifting operations, e.g., given a unitary
𝑈 onH𝑐 , we get 𝐹 (𝑈 ) onH𝑚 that describes what happens
to the overall system when 𝑈 is applied to the subsystem.
We can also combine registers in various ways, e.g., if 𝐹,𝐺
represent two disjoint subsystems (formalized as registers),
we can construct the register 𝐹𝐺 consisting of the content
of both these registers. We will heavily make use of this
formalism to distinguish between the adversary registers,
registers of the random oracle, auxiliary registers, etc.

3 The O2H Theorem
In cryptography, security properties are often written as
games against an adversary. Classically, we understand quite
well how the adversary should be modelled and have a large
toolbox for game reductions against classical adversaries.
One particularly important model is the random oracle

model [8] which is an idealization of cryptographic hash
functions. In this model, all honest parties and the adversary
have access to a uniformly randomly chosen function (called
the random oracle) that they can query (i.e., evaluate in a
single time step) at their leisure. The random oracle model
is very powerful because we have many strong proof tech-
niques, for example the following reasoning: Classically, an
adversary can only query a finite number of values from
a random oracle (e.g. a hash function). This guarantees we
can change values that have yet to be queried without the
adversary noticing. Many cryptographic proofs rely on this
property.
Quantumly, however, this is not the case. In the quan-

tum random oracle model (first explicitly studied in [13]),
a quantum adversary may query all values of an oracle in
superposition. That raises the question: Can we still change
values in the oracle (for security proofs) without the adver-
sary noticing (or at least with a relatively small probability
that the adversary notices)?

1The formal definition of a register is a [weak*-continuous bounded] unital
*-homomorphism. But it is easiest not to think of that and to only use the
abstract properties of registers.

The One-way to Hiding (O2H) Theorem tries to solve this
question in the quantum case. Informally, it states: Assume
we have two oracles 𝐻 and 𝐺 that agree everywhere but on
a set 𝑆 . We define two games: in the first game the adversary
has access to 𝐻 , in the second the adversary has access to
𝐺 . In both, the adversary can query the oracle at most 𝑑
times. Then, the probability with which the adversary can
distinguish the two games can be bounded by 4

√︁(𝑑 + 1)𝑃find
where 𝑃find is the probability that the adversary queries val-
ues in 𝑆 .

The full statement of the theorem is as follows:

Theorem 3.1 (O2H Theorem [1, Theorem 1]2). Let 𝑆 ⊆ 𝑋 ,
𝐺,𝐻 : 𝑋 → 𝑌 with ∀𝑥 ∉ 𝑆. 𝐺 (𝑥) = 𝐻 (𝑥) and 𝑧 a bitstring.
𝑆,𝐺, 𝐻, 𝑧 are chosen randomly according to an arbitrary joint
distribution. Let A be a mixed, terminating adversary with
access to an oracle and query depth 𝑑 . Define the following:

𝑃left := 𝑃𝑟 [𝑏 = 1 : 𝑏 ← A𝐻 (𝑧)] (1)

𝑃 (1)right := 𝑃𝑟 [𝑏 = 1 : 𝑏 ← A𝐺 (𝑧)] (2)

𝑃find := 𝑃𝑟 [Find : A𝐻\𝑆 ] (3)

Then the following inequalities hold:��𝑃left − 𝑃 (1)right

�� ≤ 4
√︃
(𝑑 + 1) · 𝑃find (4)

���√︁𝑃left −√︃𝑃 (1)right

��� ≤ 2
√︃
(𝑑 + 1) · 𝑃find (5)

Let us first explain the notation:

𝑃left := Pr[𝑏 = 1 : 𝑏 ← A𝐻 (𝑧)]
denotes the probability that 𝑏 = 1 when 𝑏 is the return
value of running adversary A with oracle access (superpo-
sition queries) to 𝐻 and input 𝑧. Analogously for 𝑃 (1)right . So��𝑃left − 𝑃 (1)right

�� is the probability with which the adversary dis-
tinguishes 𝐻 and𝐺 , and (4) bounds that probability. (And so
does (5), in a somewhat less intuitive formulation that turns
out to give better bounds in many cryptographic proofs.)
A𝐻\𝑆 denotes the adversary running with a so-called semi-
classical oracle: Whenever the adversary queries the oracle,
the oracle evaluates 𝐻 like the normal quantum random ora-
cle, but additionally measures whether the input is in 𝑆 or
not. It does not measure anything beyond this, in particular
not the concrete input! (Recall that measurements influence
the quantum state. So measuring more information changes
the effect of the oracle, even if that additional information is
discarded afterwards.) Then Find denotes the event that in
one of the queries, it is measured that the input is in 𝑆 . Thus
𝑃find is the probability that the adversary queries a value in 𝑆 .
Hence Theorem 3.1 indeed matches the informal description
above.
2The theorem stated here is a slight weakening of [1, Theorem 1]: The
bounds are worse by a factor of 2 in the bounds (cf. Section 7.1).
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In the following, let 𝑆 always denote the change set of the
oracle, 𝑑 the adversary’s query depth, and 𝐻 and 𝐺 oracles
that the adversarymay have access to. If not stated otherwise,
we assume 𝐻 and 𝐺 to be the same up to the change set, i.e.
∀𝑥 ∉ 𝑆. 𝐻 (𝑥) = 𝐺 (𝑥). (As in Theorem 3.1 above.)

4 Proof Overview
The basic proof follows [1]. However, after showing the
theorem for pure states, we deviate strongly from the original
proof. This is because we wished to avoid formalizing the
Bures distance and fidelity (and their properties), and also
did not have the theorem available that any adversary can
w.l.o.g. be represented as a unitary adversary on a larger
space. Instead, our proof went through the following stages
of greater and greater generality:

1. Proof of the O2H Theorem for a pure adversary (not
using measurements etc.) and fixed 𝐻 , 𝑆 and 𝑧. This
allows us to use the simpler pure state formalism (Sec-
tion 2.2). (This proof follows closely [1, Lemma 1],
except for infinite dimensions).

2. Proof of the O2H theorem for pure adversaries, but
stated in the mixed state formalism. (That is, all states
are formalized as mixed states but happen to be of the
form𝜓𝜓 ∗.) This serves as glue between the previous
and the following steps.

3. Proof for O2H with pure adversaries and expectation
over random 𝐻 , 𝑆 and 𝑧. For this step, we already need
mixed states because the expectation over pure states
cannot be expressed as a pure state.

4. Proof of the O2H Theorem for mixed adversaries (that
can do measurements etc.), but only those that are
described by finite Kraus maps. (That is, a Kraus map
{𝐸𝑖 }𝑖 that consists of only finitelymany 𝐸𝑖 .) The crucial
point here is that an adversary represented as a finite
Kraus map can be seen as a linear combination of
finitely many pure adversaries, so we can lift the result
from the previous step by linearity.

5. Proof of the O2H theorem with mixed adversaries rep-
resented by arbitrary (possibly infinite) Kraus maps.

6. Proof of all the different variants of the O2H theorem
(as in [1]). These differ in the definition of 𝑃right and
are corollaries of the main variant.

5 Design Choices
Infinite-dimensional quantum mechanics. Many re-

sults (both pen-and-paper and formalized) prefer to only con-
sider finite-dimensional vector spaces. This is roughly analo-
gous to modeling all variables in a classical program to have
a finite type, and disallowing, e.g., arbitrary-length integers
and lists. While the mathematics behind finite-dimensional
spaces is considerably simpler, and more familiar to many
people, we chose to formalize the infinite-dimensional case
for the following reasons: (a) While real-world computers

are always finite (the number of bits in their memory is
fixed), when defining the semantics abstractly, we often al-
low unbounded datatypes. (E.g., integers in Python are un-
bounded. Lists and set datastructures are unbounded in most
languages.) Similarly, in cryptographic proofs, we usually
consider semantics for programs or adversaries that allow
unbounded types. (We avoid saying. e.g., that a counter is
a 64-bit integer and deal with special cases such as over-
flows.) And then we simply posthoc add the condition that
the adversary takes only a certain number of steps. (b) We
strive for eventual integration with qrhl-tool which also uses
infinite-dimensional spaces. (c) As it turns out, we need to
allow infinite-dimensional quantum registers anyway for
our proof: For technical reasons related to the lack of de-
pendent types in Isabelle/HOL, we introduce a “counting
register” in an intermediate adversary that is allowed to
contain unbounded lists of bits. To model this intermediate
adversary, we need infinite-dimensions anyway. (d) Hav-
ing the results for infinite-dimensions is more general; the
finite-dimensional results follow as an immediate special
case.

Kraus maps vs. CPTPMs. Often, operations performed
by adversaries or programs are, semantically, modeled as
completely positive trace-preserving maps (CPTPMs). Yet,
we choose to use another formalism, called Kraus map (or
operator-sum representations), see Section 2.3. Kraus maps
and CPTPMs are known to be equivalent in finite and count-
ably dimensional spaces (implicit in [22, Section 3.1]), but it is
unknown whether they represent the same class of functions
in higher dimensions. Why did we choose Kraus maps? (a) It
is not clear whether the proof of the O2H Theorem actually
works when adversaries are arbitrary CPTPMs. The original
proof [1] is in finite dimensions only (in which case CPTPMs
and Kraus maps coincide anyway) and uses the assumption
that any CPTPM can be represented as a unitary adversary in
a larger space. This fact is quite commonly used in quantum
cryptographic proofs but, to the best of our knowledge, not
known to hold in infinite dimensions for CPTPMs. Yet for
Kraus maps it holds. Therefore we consider Kraus maps to
be a more reasonable model for quantum adversaries and
programs when not restricted to finite or countable dimen-
sions. (b) A formalization of Kraus maps already exists in Is-
abelle/HOL (as part of qrhl-tool [38, Kraus_Maps.thy]), while
it is unclear how difficult the mathematics behind CPTPMs
would be.

Isabelle/HOL vs. other theorem provers. Why did we
chose Isabelle/HOL? (a) Again, the desired compatibility with
qrhl-tool mandates it. (b) An extensive formalization of the
required mathematical background exists [15, 35, 37].(c) The
only restriction is that Isabelle does not allow dependent
types. This is a limitation in some places but did not limit
the development too much.
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6 Modeling the Adversary and Execution
6.1 Oracle Queries

Normal queries. Before we can start formulating the ad-
versary, we need to formulate the oracle.

Let 𝐻 : 𝑋 → 𝑌 be the oracle function with input state
𝑋 and output space 𝑌 (as a classical function). First, we in-
troduce quantum registers 𝑋 and 𝑌 for storing the input
and output of 𝐻 when invoking it as a quantum oracle. The
register formalism from Section 2.4 allows us to just declare
two disjoint registers with content spaces C𝑋 and C𝑌 [ℓ2 (𝑋 ),
ℓ2 (𝑌 ) in infinite dimensions]. (We use Isabelle-locales [4, 24]
to collect all declarations and assumptions as a nice “pack-
age”.) Recall that we write |𝑥⟩ for a classical bitstring 𝑥 to
denote the stored value of 𝑥 in the quantum register 𝑋 .
Then an oracle query is usually defined as the unitary

mapping𝑈 : |𝑥,𝑦⟩ ↦→ |𝑥,𝑦 +𝐻 (𝑥)⟩ where + is a group oper-
ation (in typical settings: XOR on bitstrings). This operation,
however, cannot be directly applied to the overall state of
the system (it does not know that it should be applied to the
registers 𝑋,𝑌 ). The register formalism allows us to define
𝑈𝐻
query := 𝑋𝑌 (𝑈 ). This means that 𝑈𝐻

query operates on the
combined register 𝑋𝑌 .3
In our formalization [21], 𝑈 is written Uquery H, and

𝑈𝐻
query as (X;Y) (Uquery H).

Punctured oracle. Yet, for the proof we will need several
variants of the above oracle, corresponding to punctured
oracles. These do not just perform 𝑈𝐻

query , but additionally
measure whether the input (in register 𝑋 ) is in the set 𝑆 .
A measurement whether 𝑋 contains a value in 𝑆 is mod-
eled by the projector onto the span of all |𝑥⟩ with 𝑥 ∈ 𝑆 .
We write span|𝑆⟩ for that span (in slight abuse of notation)
and Proj𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 (𝑆) for the projector onto these |𝑥⟩. (Written
proj_classical_set S in our formalization [21].) And thus
the projector defining the measurement whether 𝑋 contains
a value in 𝑆 is represented as 𝑆embed := 𝑋 (Proj𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 (𝑆))
since the register 𝑋 lifts operators on the content space to
the overall memory space. 𝑆embed is realised as the operator
S_embed in our formalization [21]. In [1], the punctured ora-
cle is implemented in several different ways. The default one
is to simply perform the measurement described by 𝑆embed .
Another variant does not measure, but keeps a log (in

superposition) of queries in 𝑆 . That is, before each query to
𝑈𝐻
query , we apply the following counting operator:

Definition 6.1 (Counting Operator). Let 𝑆 ⊆ 𝑋 be the
change set. The counting operator for a counting function 𝑐

3The main drawback of our current formalisation is that we do not allow
parallel queries by the adversary as opposed to [1]. Again, the problem is
the dependent type problem: Assuming the adversary performs 𝑞 paral-
lel queries of 𝐻 , the type of the input/output registers would depend on
𝑞, which is impossible in Isabelle. Since implementing a solution to this
problem was too time-consuming, we leave this generalisation for future
work.

with operator𝑈𝑐 is then defined as:

𝑈count = 𝑆𝑒𝑚𝑏𝑒𝑑 ⊗ 𝑈𝑐 + (I − 𝑆𝑒𝑚𝑏𝑒𝑑 ) ⊗ I

Intuitively,𝑈count applies𝑈𝑐 to the second part of the mem-
ory whenever 𝑋 contains a value in 𝑆 . 𝑈count is unitary/an
isometry if𝑈𝑐 is.
We distinguish two kinds of counting oracles. One that

increases a counter mod 𝑞 (𝑈𝑐 maps |𝑖⟩ ↦→ |𝑖 + 1 mod 𝑞⟩),
and one that flips a bit in a list (𝑈𝑐 maps |𝑙⟩ to the bit list 𝑙
with the 𝑖-th bit flipped where 𝑖 is the number of the query).4

6.2 The Adversary
Pure states. For the simplest version of the O2H Theorem

(for pure states), we formalize what an adversary on pure
states is and how it is executed. Essentially, an adversary is
nothing but the repeated application of a unitary operation
(or more generally, any operator of norm ≤ 1 for supporting
non-terminating adversaries), interleaved with invocations
of the oracle.

Definition 6.2 (Pure Adversary). Let 𝜙𝑖𝑛𝑖𝑡 be the initial
(pure) state and 𝐻 the oracle with unitary𝑈𝐻

𝑞𝑢𝑒𝑟𝑦 . The pure
adversary A of query depth 𝑑 is given by 𝑑 + 1 unitaries/
operators {𝑈 A𝑖 }𝑖∈{0,...,𝑑 } such that the adversary run can be
represented by

A(𝜙𝑖𝑛𝑖𝑡 ) = 𝑈 A𝑑 ·𝑈𝐻
𝑞𝑢𝑒𝑟𝑦 ·𝑈 A𝑑−1 · · ·𝑈 A1 ·𝑈𝐻

𝑞𝑢𝑒𝑟𝑦 ·𝑈 A0 · 𝜙𝑖𝑛𝑖𝑡
In our formalisation [21], the pure adversary is formalised

as the function run_pure_adv. When including an additional
counting operator as input to run_pure_adv, this also for-
malises the execution of an adversary with a punctured ora-
cle (an execution ofA𝐻\𝑆 , i.e., where each𝑈𝐻

query is preceded
by 𝑈count for suitable counting functions 𝑈𝑐 ). For abbrevia-
tion, we introduce the Isabelle type pure_adv for pure ad-
versaries.

Mixed states. For the more general versions of the O2H
theorem, we need to express adversaries that work on mixed

4Here we encounter a technical challenge: In [1], the counter is mod 𝑞, and
the list has length 𝑞, so the corresponding quantum spaces would need to
have dimension 𝑞 and 2𝑞 , respectively. However, in Isabelle/HOL, we do not
have dependent types, so we cannot easily have vector spaces of dimension
depending on 𝑞. It is possible to simply make the theorem parametric in
a type ’c and to add the assumption that is has, e.g., size 2𝑞 . However,
that only pushes the difficulty in instantiating such a type to the user of
the theorem. Instead, we used a more flexible, but also a bit more complex
approach: We do parametrize our theorems over ’c, but we do not assume
that it is the type of length-𝑞 lists, but instead that length-𝑞 lists can be
embedded in it.We then add assumptions to our theorem about the existence
of constants representing the empty list, and bit flips, and accessors. This
allows to instantiate the theorem later both with a finite type of size 𝑞 (for
those preferring finite types and willing to fix 𝑞 as a constant), or as the
type of bit lists (for those wanting to keep 𝑞 as a parameter and accepting
infinite types). All these parameters and assumptions are encapsulated in a
locale, called o2h_setting.
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states. Recall (Section 2.3) that we can describe the computa-
tion performed by an arbitrary adversary (or any physical
process) by a Kraus map. To model oracle queries, we inter-
sperse the Kraus maps describing the adversary by oracle
queries. This leads to the following definition of a mixed
adversary:

Definition 6.3 (Mixed Adversary). Let 𝜌𝑖𝑛𝑖𝑡 be the initial
(mixed) state and𝐻 the oracle with unitary𝑈𝐻

𝑞𝑢𝑒𝑟𝑦 . Let E𝐻𝑞𝑢𝑒𝑟𝑦
be the oracle query applied as a Kraus map, i.e. E𝐻𝑞𝑢𝑒𝑟𝑦 (𝜌) =
𝑈𝐻
𝑞𝑢𝑒𝑟𝑦 · 𝜌 · (𝑈𝐻

𝑞𝑢𝑒𝑟𝑦)∗. The mixed adversaryA of query depth
𝑑 is given by 𝑑 + 1 Kraus maps {EA𝑖 }𝑖∈{0,...,𝑑 } such that the
adversary run can be represented by

A(𝜌𝑖𝑛𝑖𝑡 ) = (EA𝑑 ◦E𝐻𝑞𝑢𝑒𝑟𝑦◦EA𝑑−1◦· · ·◦EA1 ◦E𝐻𝑞𝑢𝑒𝑟𝑦◦EA0 ) (𝜌𝑖𝑛𝑖𝑡 )
where “◦” is the functional composition of the Kraus maps.

Mixed adversaries are formalised as the Isabelle function
run_mixed_adv. Again, with an additional input of a count-
ing operator, this formalises the execution of mixed adver-
saries for punctured oracles as well. For brevity, we also
introduce the type kraus_adv for mixed adversaries.

6.3 Final States and Probabilities
In the statement of the O2H, the adversary always outputs a
single bit in the end. For example, in the security property
for indistinguishability under a chosen plaintext attack, the
adversary must guess which one of two messages was en-
crypted under certain conditions and outputs a bit. Many
such security properties can be formulated such that the
adversary only outputs a boolean.
Knowing that the adversary will return a bit, the final

measurement 𝑀 can be represented by a projection 𝑃 and
its complement I − 𝑃 . That is 𝑀 = {𝑃, I − 𝑃}. Since we are
interested in the probability of success of the adversary A,
this can be calculated as 𝑃𝑟 (𝑏 = 1, 𝑏 ← A) = tr(𝑃𝜌) where
𝜌 is the final state after running the adversary. We denote
by 𝑃𝑀 the function 𝜌 ↦→ tr(𝑃𝜌).
For the statement of the O2H and its proof, there are

several states to consider:
• the run of the adversary A without any changes in
generalization steps:
– 𝜓left : the pure state for fixed oracle 𝐻 and change
set 𝑆

– 𝜌left : the mixed state with expectation over 𝐻 , 𝑆
– 𝑃left : the measurement of 𝜌left with 𝑃𝑀
• the run of the adversary A with counting the number
of queries on a change set 𝑆 in generalization steps:
– 𝜓count : the pure state for fixed oracle 𝐻 and change
set 𝑆

– 𝜌count : the mixed state with expectation over 𝐻 , 𝑆
• the run of the adversaryA with counting and remem-
bering the placements of the queries on a change set
𝑆 in generalisation steps:

– 𝜓right : the pure state for fixed oracle 𝐻 and change
set 𝑆

– 𝜌right : the mixed state with expectation over 𝐻 , 𝑆
– 𝑃right : the measurement of 𝜌right with some 𝑃𝑀 (ac-
cording to the different definitions of 𝑃right in [1,
Thm 1], the definition of the final measurement𝑀
on the counting register changes)

• 𝑃find is the probability that the adversary queried a
value in 𝑆 , i.e. measuring the state 𝜌right with the mea-
surement 𝑀 = {𝑄, I − 𝑄} for the projection 𝑄 =
I ⊗ (I − |0⟩⟨0|) (which measures if there is a non-zero
element in the counting register)
• 𝑃nonterm is the additional non-termination part defined
as 𝑃nonterm = ∥𝜌count ∥2−∥𝜌right ∥2. This term only comes
into play for non-terminating adversaries.

In the case above, 𝑃left corresponds to the probability 𝑃left
from the O2H [1, Thm 1] defined as 𝑃left = 𝑃𝑟 [𝑏 = 1 : 𝑏 ←
A𝐻 (𝑧)]. Similarly, 𝑃find also corresponds to the definition
𝑃find = 𝑃𝑟 [𝐹𝑖𝑛𝑑 : A𝐻\𝑆 ] from [1, Thm 1]. Here, 𝐹𝑖𝑛𝑑 is the
event that the adversary queries a value in 𝑆 . For 𝑃right , there
are various alternative definitions.
Ambainis, Hamburg and Unruh [1, Theorem 1] consider

six variations of the O2H by giving six definitions of 𝑃right .
We list them here:

Definition 6.4 (Definitions of 𝑃right ).

1. 𝑃 (1)right = 𝑃𝑟 [𝑏 = 1 : 𝑏 ← A𝐺 (𝑧)]
2. 𝑃 (2)right = 𝑃𝑟 [𝑏 = 1 : 𝑏 ← A𝐻\𝑆 (𝑧)]
3. 𝑃 (3)right = 𝑃𝑟 [𝑏 = 1 ∧ ¬𝐹𝑖𝑛𝑑 : 𝑏 ← A𝐻\𝑆 (𝑧)]
4. 𝑃 (4)right = 𝑃𝑟 [𝑏 = 1 ∧ ¬𝐹𝑖𝑛𝑑 : 𝑏 ← A𝐺\𝑆 (𝑧)]
5. 𝑃 (5)right = 𝑃𝑟 [𝑏 = 1 ∨ 𝐹𝑖𝑛𝑑 : 𝑏 ← A𝐻\𝑆 (𝑧)]
6. 𝑃 (6)right = 𝑃𝑟 [𝑏 = 1 ∨ 𝐹𝑖𝑛𝑑 : 𝑏 ← A𝐺\𝑆 (𝑧)]

We formalise these definitions using different measure-
ment projections. Let 𝑃 denote the final measurement of the
binary outcome of A𝐻 . Then, the binary outcome of A𝐺

can also be measured by 𝑃 . For the punctuations A𝐻\𝑆 and
A𝐺\𝑆 , we have an additional counting register.
Therefore, we need to extend the final projection. For

𝑃 (2)right , the measurement 𝑃 ⊗ I yields the full probability that
the punctured adversary A𝐻\𝑆 returns 1. For the rest of the
definitions of 𝑃right , things get more complicated.
In the case of 𝑃 (3)right , we consider the event that the punc-

tured adversary returns 1 and the event that the adversary
did not query a value in 𝑆 (i.e. the counting register only con-
tains zero). These two events operate on separate registers
by the projections 𝑃 ⊗ I and I ⊗ |0⟩⟨0|. As the two projec-
tive spaces are orthogonal, we may use the joint projection
(𝑃 ⊗ I) ◦ (I ⊗ |0⟩⟨0|) = 𝑃 ⊗ |0⟩⟨0|. Similarly for 𝑃 (4)right , we use
the same projection on the punctured adversary A𝐺\𝑆 .
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For 𝑃 (5)right , the probability describes the event that the punc-
tured adversary returns 1 or the adversary queried a value
in 𝑆 (so the counting register is non-empty). Again, these
two events operate on separate registers by the projections
𝑃 ⊗ I and I⊗ (I− |0⟩⟨0|). Therefore, we get the measurement
projector 𝑃 ⊗ I + I ⊗ (I − |0⟩⟨0|). However, in this case, if
we want to describe this as a single projection, this is the
projection on the join of the projective spaces generated by
𝑃 ⊗ I and I ⊗ (I − |0⟩⟨0|). Again, for 𝑃 (6)right , we use the same
projection on the punctured adversary A𝐺\𝑆 .

7 Formalizing the Proof of the O2H
Recall Theorem 3.1 from Section 3. It corresponds to the
statement from [1, Thm. 1], except that the bound differs
by a factor of 2 (i.e., the version we prove here is slightly
weaker, but to a degree not practically relevant).

We will address this issue in the next Section 7.1.
Note that the O2H also holds for the other definitions of

𝑃right from Definition 6.4, but with tighter scalar factors. For
𝑖 ∈ {2, . . . , 6}, we have:

|𝑃left − 𝑃 (𝑖 )right | ≤ 2
√︃
(𝑑 + 1) · 𝑃find (6)

|√︁𝑃left −√︃𝑃 (𝑖 )right | ≤
√︃
(𝑑 + 1) · 𝑃find (7)

7.1 Changes from Pen-and-Paper to Formalization
During the formalisation effort, we encountered several prob-
lems requiring a different approach to the original pen-and-
paper proof. In this section, we give an overview of these
changes.
First, we present a more general formulation of the O2H

with possibly non-terminating adversaries. That is, the pure
adversary given by a set {𝑈𝑖 }𝑖∈𝐼 of updates must all satisfy
∥𝑈𝑖 ∥ ≤ 1 (before, the 𝑈𝑖 were unitaries). For mixed adver-
saries given by a set of Kraus maps {E𝑖 }𝑖∈𝐼 , every Kraus map
E𝑖 given by {𝑈 (𝑖 )𝑗 } 𝑗∈𝐼 𝑗 must suffice

∑
𝑗∈𝐼𝑖 (𝑈 (𝑖 )𝑗 )∗𝑈 (𝑖 )𝑗 ≤ I

instead of equality. This version allows adversaries to be
non-terminating. (By using ≤ I instead of = I.)

However, for non-terminating adversaries, the final bound
needs to be adapted to include a non-termination factor. The
inequality (4) changes to:

|𝑃left − 𝑃right | ≤ 4
√︃
(𝑑 + 1) · 𝑃find + 𝑑 · 𝑃nonterm (8)

And the inequality (5) changes to:

|√︁𝑃left − √︁𝑃right | ≤ 2
√︃
(𝑑 + 1) · 𝑃find + 𝑑 · 𝑃nonterm (9)

We also show the alternative versions with non-terminating
adversaries (all but the square-root version of 𝑃 (6)right , where
we cannot pull out the termination part from the projection).

Unfortunately, the Bures distance and the fidelity as used
in the original proof [1] are not yet formalised in Isabelle.
Since this would entail formalising a separate (and quite

extensive) library, we opted for an alternative proof without
the Bures distance and fidelity. However, this changes the
final factors in the O2H theorem. Using the Bures distance
and fidelity, it is possible to show the bound 2

√︁(𝑑 + 1) · 𝑃find
for both the version with square-roots (5) and the version
without (4). For our alternative proof, we can show (5) as it
is, but get the following bound:��𝑃left − 𝑃right �� = ���√︁𝑃left − √︁𝑃right ��� · ���√︁𝑃left + √︁𝑃right ���

≤ 2 ·
���√︁𝑃left − √︁𝑃right ���

This adds a factor of two in the final inequality (4).
To finish the proof without the Bures distance or fidelity,

we make use of the following lemma over real numbers:

Lemma 7.1. Let𝑀 be a finite set of indices. Let 𝑡 , 𝑢, 𝑣 and 𝑎
be functions indexed by𝑀 into the reals. Assume that 𝑡 (𝑥) ≥ 0,
𝑢 (𝑥) ≥ 0, 𝑣 (𝑥) ≥ 0, 𝑎(𝑥) ≥ 0 and that:

∀𝑥 ∈ 𝑀.
���√︁𝑡 (𝑥) − √︁𝑢 (𝑥)��� ≤ √︁

𝑣 (𝑥)
Then the following holds:������

√︄∑︁
𝑥∈𝑀

𝑎(𝑥)𝑡 (𝑥) −
√︄∑︁

𝑥∈𝑀
𝑎(𝑥)𝑢 (𝑥)

������ ≤
√︄∑︁

𝑥∈𝑀
𝑎(𝑥)𝑣 (𝑥)

The proof of Lemma 7.1 can be found in the appendix.

7.2 Proof
Recall the overall proof structure by successive generaliza-
tions (Section 4). We will go through each step in the follow-
ing and explain the proof steps in more detail.
Step 1: We first prove the O2H for a pure, punctured

adversary with fixed 𝐻 , 𝑆 and 𝑧.

Lemma 7.2 (Pure O2H with punctured oracles). Fix 𝐻 :
𝑋 → 𝑌 , 𝑆 ⊆ 𝑋 and a random input 𝑧. Let A𝐻 be a pure
adversary with access to 𝐻 that operates on a register𝑀 and
has query depth 𝑑 . Let B𝐻,𝑆 be an adversary that operates
like A𝐻 on𝑀 but has an additional counting register 𝐿. The
counting register 𝐿 has 𝑑 bit values and is initialised by the
empty state |0⟩. The counting operator𝑈𝑆 in the 𝑖-th query is
defined by:

𝑈𝑆
(
𝜓 ⊗ |𝑙⟩) =

{
𝜓 ⊗ |𝑙⟩ if 𝜓 orthogonal to span|𝑆⟩
𝜓 ⊗ |𝑓 𝑙𝑖𝑝𝑖 (𝑙)⟩ if 𝜓 ∈ span|𝑆⟩

Let𝜓left be the final state of A𝐻 and𝜓right the final state for
B𝐻,𝑆 . Let 𝑃find be the probability that an element in 𝑆 was
queried, i.e. 𝑃find = ∥(I ⊗ (I − |0⟩⟨0|))𝜓right ∥2.
Let 𝑃nonterm be the difference between the probabilities of

counting with and without remembering the query placements,
i.e. 𝑃nonterm = ∥𝜓count ∥2 − ∥𝜓right ∥2 where 𝜓count is the final
state of an adversary B𝐻,𝑆

count that simply counts the number of
queries to 𝑆 . Then, the pure O2H states:

∥𝜓left ⊗ |0⟩ −𝜓right ∥2 ≤ (𝑑 + 1)𝑃find + 𝑑𝑃nonterm (10)
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Note that the non-termination part 𝑃nonterm is zero if the
adversary is terminating. The formal proof closely follows
the pen-and-paper version [1, Lemma 5, p.18] but extends
the proof to add the non-termination part.

Proof. We give a short idea of the proof. The most impor-
tant trick is to insert an intermediate adversary B𝐻,𝑆

count that
counts only the number of queries to 𝑆 . We define B𝐻,𝑆

count to
be similar to B𝐻,𝑆 but with a different counting operator 𝑈 ′𝑆
on a counting register 𝐶 (where 𝐶 can be represented by the
space C{0,...,𝑑 } ). Then the counting operator𝑈 ′𝑆 is defined by:

𝑈 ′𝑆
(
𝜓 ⊗ |𝑐⟩) =

{
𝜓 ⊗ |𝑐⟩ if 𝜓 orthogonal to span|𝑆⟩
𝜓 ⊗ |𝑐 + 1 mod 𝑑 + 1⟩ if 𝜓 ∈ span|𝑆⟩

Let𝜓count be the final state of 𝐵𝐻,𝑆
count . Then we can split up:

𝜓count =
∑︁

𝑖∈{0,...,𝑑 }
𝜓 ′𝑖 ⊗ |𝑖⟩𝐶

Using the linear map 𝑁 ′ defined by 𝑁 ′ ( |𝑥⟩ ⊗ |𝑦⟩𝐶 ) = |𝑥⟩ ⊗
|0⟩𝐶 , we get:

𝜓left =
∑︁

𝑖∈{0,...,𝑑 }
𝜓 ′𝑖

Similarly, we split the right state:

𝜓right =
∑︁

𝑙∈{0,1}𝑑
𝜓𝑙 ⊗ |𝑙⟩𝐿

With the projection on 𝑆 , we get that𝜓0 = 𝜓 ′0. Then:

∥𝜓0∥2 = ∥𝜓𝑟𝑖𝑔ℎ𝑡 ∥2 − 𝑃find

∥𝜓 ′0∥2 = ∥𝜓count ∥2 − 𝑃find

We then have:
∑︁

𝑙∈{0,1}𝑑
𝑙≠0

|𝜓𝑙 ⊗ |𝑙⟩𝐿 ∥2 = 𝑃find (11)

We set 𝑃nonterm = ∥𝜓count ∥2 − ∥𝜓right ∥2 and get:

∑︁
𝑖∈{1,...,𝑑 }

∥𝜓 ′𝑖 ⊗ |𝑖⟩𝐶 ∥2 = 𝑃nonterm + 𝑃find (12)

In the final calculation, we get:

∥𝜓left ⊗ |0⟩𝐿 −𝜓right ∥2 =

=





(𝜓left −𝜓0) ⊗ |0⟩𝐿 −
∑︁

𝑙∈{0,1}𝑑
𝑙≠0

𝜓𝑙 ⊗ |𝑙⟩𝐿





2
=

=∥(𝜓left −𝜓0)∥2 +
∑︁

𝑙∈{0,1}𝑑
𝑙≠0

∥𝜓𝑙 ⊗ |𝑙⟩𝐿 ∥2 =

=





 ∑︁
𝑖∈{1,...,𝑑 }

𝜓 ′𝑖 ⊗ |𝑖⟩𝐶





2
+ 𝑃find

≤𝑑 ·
∑︁

𝑖∈{1,...,𝑑 }
∥𝜓 ′𝑖 ⊗ |𝑖⟩𝐶 ∥2 + 𝑃find

=𝑑 (𝑃nonterm + 𝑃find) + 𝑃find
In the first equation, we split the 𝜓right into 𝜓0 and the

rest and rearrange the terms. In the second equation, we
split up the norms into norms of orthogonal parts. Then,
we use𝜓0 = 𝜓 ′0 and (11) to rewrite. In the next step, we use
the arithmetic-quadratic-mean inequality and finish using
(12). □

Step 2: In the second step, we take the transition from
Hilbert space vectors to operators (from a pure state 𝜓 to
the operator 𝜓𝜓 ∗). Furthermore, the operators we use are
trace-class (i.e., the trace of the operators converges), so we
use the type trace_class in Isabelle.
The most important change in this step is the change

from norms to traces, introducing a square root in the final
inequality.

Example 7.3. Let 𝜓 be a pure state with corresponding
operator 𝜌 = 𝜓𝜓 ∗. Then we have tr 𝜌 = ∥𝜓 ∥2.
Lemma 7.4. In the setting of Lemma 7.2, let 𝜌left be the opera-
tor corresponding to𝜓left . Similarly, 𝜌right corresponds to𝜓right ,
𝑃find to 𝑃find and 𝑃nonterm to 𝑃nonterm. Let 𝑃𝑀 be the projective
measurement of the adversary outcome (i.e. 𝑃𝑀 (𝜌) = tr(𝑃𝜌)
for a projection 𝑃 ). Then we have:����

√︃
𝑃𝑀 (𝜌left ⊗ |0⟩⟨0|) −

√︃
𝑃𝑀 (𝜌right)

����
≤
√︃
(𝑑 + 1)𝑃find + 𝑑𝑃nonterm

Proof. We calculate:

|
√︃
𝑃𝑀 (𝜌left ⊗ |0⟩⟨0|) −

√︃
𝑃𝑀 (𝜌right) |

=| ∥𝑃 (𝜓left ⊗ |0⟩)∥ − ∥𝑃𝜓right ∥ |
≤∥𝑃 (𝜓left ⊗ |0⟩ −𝜓right)∥
≤∥𝑃 ∥ · ∥𝜓left ⊗ |0⟩ −𝜓right ∥

≤
√︃
(𝑑 + 1)𝑃find + 𝑑𝑃nonterm

=
√︃
(𝑑 + 1)𝑃find + 𝑑𝑃nonterm
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In the first equality, we take advantage of Example 7.3.
Then, we use the triangle inequality and homogeneity of
the norm. In the last inequality, we use ∥𝑃 ∥ ≤ 1 since 𝑃 is
a projection and Lemma 7.2. Lastly, 𝑃find and 𝑃find are the
same probability (respectively also 𝑃nonterm and 𝑃nonterm). □

Step 3: Since we worked with a fixed set 𝑆 and function
𝐻 so far, we extend the result to an expectation over 𝑆 and
𝐻 over some discrete distribution. The distribution must be
provided in the context of the O2H. This is formalised in the
locale mixed_o2h in Isabelle (see supplementary material).

Lemma 7.5. In the setting of Lemma 7.4, we fix a (discrete)
distribution 𝐷 over 𝐻 , 𝑆 and a randomised, additional input
𝑧. We denote by 𝑝 (𝐻,𝑆,𝑧 ) the probability, that 𝐻 , 𝑆 and 𝑧 are
drawn from the distribution 𝐷 . Furthermore, we denote by
𝜌𝐻,𝑆,𝑧
left , 𝜌𝐻,𝑆,𝑧

right , 𝑃
𝐻,𝑆,𝑧
find and 𝑃𝐻,𝑆,𝑧

nonterm the corresponding values for
fixed 𝐻 , 𝑆 and 𝑧. Let 𝜌left , 𝜌right , 𝑃find or 𝑃nonterm be defined
as the estimations of the corresponding fixed values over the
distribution 𝐷 . That is: 𝑋 =

∑
(𝐻,𝑆,𝑧 ) ∈carrier(𝐷 ) 𝑝 (𝐻,𝑆,𝑧 )𝑋𝐻,𝑆,𝑧

where 𝑋 stands for 𝜌left , 𝜌right , 𝑃find or 𝑃nonterm. Then the O2H
over the estimations also holds:����

√︃
𝑃𝑀 (𝜌left ⊗ |0⟩⟨0|) −

√︃
𝑃𝑀 (𝜌right)

����
≤
√︃
(𝑑 + 1)𝑃find + 𝑑𝑃nonterm

Using the Lemma 7.1, we can easily prove this generalisa-
tion step, taking the carrier set of 𝐷 as our finite index set.

Step 4: This generalisation from pure to mixed states is es-
sential, providing an alternative proof to Ambainis, Hamburg
and Unruh’s work [1]. This step generalizes the adversaries
from a set of unitaries {𝑈𝑖 }𝑖∈𝐼 to a set of Kraus maps {E𝑖 }𝑖∈𝐼
where each E𝑖 consists of finitely many operators.

Lemma 7.6 (Finite mixed O2H with punctuation). Fix a
distribution 𝐷 on 𝐻 , 𝑆 and 𝑧. Let A𝐻 be a mixed adversary
with access to oracles 𝐻 drawn from 𝐷 that operates on a
register𝑀 and has query depth 𝑑 . Let A𝐻 be represented by
the Kraus maps {E𝑖 }𝑖∈{0,...,𝑛} and assume that every Kraus
map E𝑖 consists of finitelymany𝑈 (𝑖 )𝑗 . LetB𝐻,𝑆 be an adversary
that operates like A𝐻 on 𝑀 but has an additional counting
register 𝐿. The counting register 𝐿 has 𝑑 bit values and is
initialised by the empty state |0⟩. The counting operator𝑈𝑆 is
defined as in Lemma 7.2. Let 𝜌left be the final state of A𝐻 and
𝜌right the final state for B𝐻,𝑆 (in mean over 𝐷). Let 𝑃find be the
probability that an element in 𝑆 was queried, i.e. 𝑃find = tr((I⊗
(I − |0⟩⟨0|))𝜌right). Let 𝑃nonterm be the probability that the
adversary A𝐻 does not terminate, i.e. 𝑃nonterm = ∥𝜌count ∥2 −
∥𝜌right ∥2 where 𝜌count is the final state of an adversary B𝐻,𝑆

count
that simply counts the number of queries to 𝑆 . Let 𝑃𝑀 be the
projective measurement of the adversary outcome. Then, the

mixed O2H for finite Kraus maps states:����
√︃
𝑃𝑀 (𝜌left ⊗ |0⟩⟨0|) −

√︃
𝑃𝑀 (𝜌right)

����
≤
√︃
(𝑑 + 1)𝑃find + 𝑑𝑃nonterm

Proof. The proof idea is to consider the adversary Kraus
maps as linear combinations of many pure adversaries and
then apply Lemma 7.1.
For this, we rewrite the adversarial run 𝜌left and 𝜌right as

the application of one single Kraus map. We can then show
that the calculations on the register𝑀 are the same and that
the Kraus maps for A𝐻 and B𝐻,𝑆 both have the index set
𝐼 ′ := 𝐼0 × · · · × 𝐼𝑛 . Since the 𝐼𝑖 are all finite, so is 𝐼 ′. The
operators of the rewritten A𝐻 are denoted by 𝐴𝑖 (similarly
𝐵𝑖 for the adversary B𝐻,𝑆 ) for 𝑖 ∈ 𝐼 ′. Therefore, we can apply
the Lemma 7.1 on the index set 𝐼 ′ to show:������

√︄∑︁
𝑖∈𝐼 ′

𝐴𝑖𝜌𝑖𝑛𝑖𝑡𝐴∗𝑖 −
√︄∑︁

𝑖∈𝐼 ′
𝐵𝑖𝜌𝑖𝑛𝑖𝑡𝐵∗𝑖

������
≤
√︄∑︁

𝑖∈𝐼 ′
(𝑑 + 1)𝑃 (𝑖 )find + 𝑑𝑃

(𝑖 )
nonterm

As an assumption to Lemma 7.1, we use the Lemma 7.5 on
every pure adversary defined by𝐴𝑖 and 𝐵𝑖 . As a last step, we
have to make sure that rewriting the definitions of 𝑃find and
𝑃nonterm also yields the index set 𝐼 ′ and that we can write it
in the above form. This finishes the proof. □

Step 5: In this step, we generalise to adversaries repre-
sented by arbitrary Kraus maps. In explicit, the adversarial
Kraus maps may now contain infinitely many operators.

Lemma 7.7. The Lemma 7.6 also holds for adversaries A𝐻

represented by arbitrary Kraus maps E := {E𝑖 }𝑖∈{0,...,𝑑 } .
Proof. We need to show that the final inequality still holds
when taking a limit. Indeed, we have to define a limit pro-
cess to show that the adversarial run with arbitrary Kraus
maps converges. As the adversary consists of 𝑑 + 1 Kraus
maps, we can consecutively build the limit on each Kraus
map using an induction. For one Kraus map, we consider
the filter generated by all finite subsets. As the number of
operators in a Kraus family must still be countable to suffice
our summability notion, the set of finite subsets is dense.
Therefore, we can calculate the limit on finite subsets. For a
Kraus map E with operators {𝑈𝑖 }𝑖∈𝐼 (where 𝐼 is countable),
we will write F ∈ subadv(E) to say that F is represented
by {𝑈𝑖 }𝑖∈ 𝐽 for a finite 𝐽 ⊆ 𝐼 (“subadv” indicates that F is a
sub-adversary of E). Then we consider the limit on property
𝑃 :

𝑃 (F ) F∈ subadv(E)−−−−−−−−−−−→ 𝑃 (E)
We extend the notion of sub-adversaries to adversaries

with finitely many Kraus maps inductively. Now, we can
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prove that the limit also applies to the adversarial runs with
the adversary E = {E𝑖 }𝑖∈{0,...,𝑑 } :

𝜌left (F )
F∈ subadv(E)−−−−−−−−−−−→ 𝜌left (E)

𝜌right (F )
F∈ subadv(E)−−−−−−−−−−−→ 𝜌right (E)

By first defining a more general adversarial run that takes
the adversary and its query depth as input, we then prove
the limit using induction on the query depth.
In the last step, we prove that taking the limit composes

with measuring and taking the trace. Finally, we have:

����
√︃
𝑃𝑀 (𝜌left (F )) −

√︃
𝑃𝑀 (𝜌right (F ))

����
F∈ subadv(E)−−−−−−−−−−−→����

√︃
𝑃𝑀 (𝜌left (E)) −

√︃
𝑃𝑀 (𝜌right (E))

����
Similarly, we also get the limit for the find and non-termination
probabilities:

√︃
(𝑑 + 1)𝑃find (F ) + 𝑑𝑃nonterm (F )

F∈ subadv(E)−−−−−−−−−−−→√︃
(𝑑 + 1)𝑃find (E) + 𝑑𝑃nonterm (E)

Finally, we can show the inequality

����
√︃
𝑃𝑀 (𝜌left (E)) −

√︃
𝑃𝑀 (𝜌right (E))

���� ≤√︃
(𝑑 + 1)𝑃find (E) + 𝑑𝑃nonterm (E)

using Lemma 7.6 on adversaries with finite Kraus maps. □

Step 6: Using the punctured O2H in Lemma 7.7, we can
finally prove all the different versions of the O2H given by
the definitions of 𝑃right in Definition 6.4.

The proof of Theorem 3.1 still requires an additional step.
Up to now, we have always estimated the difference between
an adversary and its punctuation. In Theorem 3.1, we con-
sider two adversaries with two oracle functions𝐻 and𝐺 that
differ only in the change set. The idea here is very simple:
First, we show that the probabilities for punctuations with
𝐻 and 𝐺 are the same.

𝑃𝑀 (𝜌right (A𝐻 )) = 𝑃𝑀 (𝜌right (A𝐺 )) (13)

Second, we can split the O2H inequality into two punctuation
inequalities. Formally, we have:����

√︃
𝑃𝑀 (𝜌left (A𝐻 )) −

√︃
𝑃𝑀 (𝜌left (A𝐺 ))

����
=
���√︃𝑃𝑀 (𝜌left (A𝐻 )) −

√︃
𝑃𝑀 (𝜌right (A𝐻 ))

+
√︃
𝑃𝑀 (𝜌right (A𝐺 )) −

√︃
𝑃𝑀 (𝜌left (A𝐺 ))

���
≤
����
√︃
𝑃𝑀 (𝜌left (A𝐻 )) −

√︃
𝑃𝑀 (𝜌right (A𝐻 ))

����
+
����
√︃
𝑃𝑀 (𝜌right (A𝐺 )) −

√︃
𝑃𝑀 (𝜌left (A𝐺 ))

����
≤
√︃
(𝑑 + 1)𝑃find (A𝐻 ) + 𝑑𝑃nonterm (A𝐻 )

+
√︃
(𝑑 + 1)𝑃find (A𝐺 ) + 𝑑𝑃nonterm (A𝐺 )

If the adversary is terminating, we can conclude that
𝑃nonterm = 0 and that 𝑃find (A𝐻 ) = 𝑃find (A𝐺 ), yielding the
additional factor of 2 in the final Theorem 3.1.
The alternative versions can be shown using different

projective measurements at the end. Let 𝑃 be the final mea-
surement of the adversary A𝐻 on the register𝑀 . Then, the
proof of the alternative version uses the following:
• For 𝑃 (2)right , we use the punctured O2H with projection
𝑄2 = 𝑃 ⊗ I.
• For 𝑃 (3)right , we use the punctured O2H with projection
𝑄3 = 𝑃 ⊗ |0⟩⟨0|.
• For 𝑃 (4)right , we use the punctured O2H with projection
𝑄3 and equation (13).
• For 𝑃 (5)right , we use the punctured O2H with projection
𝑄5 = 𝑃 ⊗ |0⟩⟨0| + I ⊗ (I − |0⟩⟨0|).
• For 𝑃 (6)right , we use the punctured O2H with projection
𝑄5 and equation (13).

This concludes the proof of Theorem 3.1 and its alternative
versions.

7.3 Challenges during Formalization
The main challenge during formalisation arises when the
pen-and-paper proof uses concepts or results that still need
to be formalised. For this project, the original proof [1] uses
Bures distances and the fidelity of quantum states, which
have yet to be formalised in Isabelle. As we would also need
several lemmas and theorems on these concepts, the formal-
isation would have taken us too long. Therefore, we chose a
different path: finding an alternative proof. Fortunately, we
could reuse the formalisation of quantum registers [35], of
complex bounded operators [15] and of tensor products on
Hilbert spaces [37].

Another essential dependency is the development of Kraus
maps in Isabelle. We build on previous work by Unruh from
the qrhl-tool [34, 38]. We extend the formalisation of Kraus
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maps to suffice the needs of our proofs. For example, we in-
troduce an extension of Kraus maps by tensoring the identity
to all operators. This implements the need for an additional
counting register where the Kraus map works as the identity.
Furthermore, we show basic properties of this new notion.

There have also been smaller formalisation-specific issues.
For example, having several layers of types, such as types for
a Hilbert space vector, operators, and trace-class operators,
we need to restate lemmas in different types and show that
the type-liftings are all fulfilled. Another issue with types is
the embedding of reals in the complex numbers. For example,
we know that the probability outcomes are all real, but the
measurement is taken by the trace function — which outputs
a complex number in Isabelle. Therefore, we always need
explicit type-casts, such as taking the real parts of complex
numbers and showing compatibility with all calculations.

Another interesting aspect of formalisation is that we need
to state definitions more clearly than pen-and-paper proofs.
An example here is when reducing adversaries using Kraus
maps to pure ones. On paper, we easily rearrange terms to
see that the composition of Kraus maps can be represented
by one single Kraus map. However, for the formalisation,
we need to state the composed index set and operators pre-
cisely. This takes a little effort to juggle all indices into place.
Another example is that we need to concretely define the
counting functions and show that they all behave well.

A more mathematical question during formalisation was
the summability properties for the adversary runs (and again
lifting these properties through all types). On pen-and-paper,
we simply write down the limits often without giving too
much thought to the exact convergence arguments. Formally,
we always have to ensure that Kraus maps over infinite index
sets converge. Another mathematical challenge is ensuring
that the outcome of pure adversaries stays pure, even if we
formulate the result over operators as mixed states. This
could be proven by induction on the adversary depth.

7.4 Technical Details
Our proof developments comprise several parts:

• additional foundational lemmas (0.6k loc)
• definitions of the O2H locale context (0.9k loc)
• the adversary runs with and without counting (1.6k
loc)
• the pure O2H formalization (0.4k loc)
• the mixed O2H formalization including the reduction
to pure adversaries , limit arguments and the Lemma 7.1
(2.3k loc)
• the final O2H Theorem 3.1 with its alternative versions
(1.1k loc)

In total, our formalisation amounts to around 6.9k lines of
code. Graphically, the proportions of the loc counts above
can be shown as follows in Figure 1.

Figure 1. Distribution of lines of code on different topics

8 Outlook
To summarise our contribution, we have formalized the One-
way to Hiding Theorem in Isabelle. We gave a new and alter-
native proof to Ambainis, Hamburg and Unruh’s work [1]
omitting the notions of Bures distance and fidelity and even
generalized the result to possibly non-terminating adver-
saries. Furthermore, we described challenges, their solutions
and various generalization steps during the formalization
process. Moreover, we explained our approach to formal-
izing quantum adversaries using Kraus maps. Finally, we
give the general proof ideas needed in the formalization
to conclude the One-way to Hiding Theorem with several
alternative formulations. We hope that this work provides
essential and foundational groundwork to formalize security
proofs against quantum adversaries.
In future work, we propose to continue formalizing dif-

ferent one-way to hiding versions, and results which es-
tablishes a concrete bound on the probability of finding a
reprogrammed value, e.g. [1, Theorem 2]. The next step is
to connect our formalizations with the qrhl-tool [34, 38] to
back the One-way to Hiding Theorem with a complete and
foundational formalization. The most challenging part here
could be to align different definitions of quantum adversaries.
Ultimately, the goal would be a fully verified tool to formalize
and check security proofs of cryptographic primitives and
protocols against quantum attackers.

A Appendix: Proof of Lemma 7.1
Here, we give the proof of Lemma 7.1.

Proof. Proof by induction on 𝑀 . The base case 𝑀 = ∅ is
trivial. For the induction step, let 𝑀 = 𝑁 ∪ {𝑦} such that���√︁∑𝑥∈𝑁 𝑎(𝑥)𝑡 (𝑥) −

√︁∑
𝑥∈𝑁 𝑎(𝑥)𝑢 (𝑥)

��� ≤ √︁∑
𝑥∈𝑁 𝑎(𝑥)𝑣 (𝑥)

holds. Let us abbreviate the sums as 𝑡𝑁 :=
∑

𝑥∈𝑁 𝑎(𝑥)𝑡 (𝑥),
𝑢𝑁 :=

∑
𝑥∈𝑁 𝑎(𝑥)𝑢 (𝑥) and 𝑣𝑁 :=

∑
𝑥∈𝑁 𝑎(𝑥)𝑣 (𝑥). Then, by

squaring the induction hypothesis, we have:
𝑡𝑁 + 𝑢𝑁 ≤ 𝑣𝑁 + 2

√
𝑡𝑁𝑢𝑁 (14)

By squaring the assumption for 𝑦 and scaling with 𝑎(𝑦),
we get:

𝑎(𝑦)𝑡 (𝑦) + 𝑎(𝑦)𝑢 (𝑦) ≤ 𝑎(𝑦)𝑣 (𝑦) + 2𝑎(𝑦)
√︁
𝑡 (𝑦)𝑢 (𝑦) (15)
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From ∀𝑎, 𝑏. 𝑎 + 𝑏 ≥ 2
√
𝑎𝑏 and squaring, we also have

√
𝑡𝑁𝑢𝑁 + 𝑎(𝑦)

√︁
𝑡 (𝑦)𝑢 (𝑦)

≤
√︁
(𝑡𝑁 + 𝑎(𝑦)𝑡 (𝑦)) (𝑢𝑁 + 𝑎(𝑦)𝑢 (𝑦))

(16)

Together, we calculate:���√︁𝑡𝑁 + 𝑎(𝑦)𝑡 (𝑦) − √︁𝑢𝑁 + 𝑎(𝑦)𝑢 (𝑦)���2
= 𝑡𝑁 + 𝑎(𝑦)𝑡 (𝑦) + 𝑢𝑁 + 𝑎(𝑦)𝑢 (𝑦)
− 2

√︁
(𝑡𝑁 + 𝑎(𝑦)𝑡 (𝑦)) (𝑢𝑁𝑎(𝑦)𝑢 (𝑦))

(14)(15)≤ 𝑣𝑁 + 𝑎(𝑦)𝑣 (𝑦) + 2
√
𝑡𝑁𝑢𝑁 + 2𝑎(𝑦)

√︁
𝑡 (𝑦)𝑢 (𝑦)

− 2
√︁
(𝑡𝑁 + 𝑎(𝑦)𝑡 (𝑦)) (𝑢𝑁 + 𝑎(𝑦)𝑢 (𝑦))

(16)≤ 𝑣𝑁 + 𝑎(𝑦)𝑣 (𝑦)
This proves the lemma. □
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