
TUM School of Computation, Information and Technology
Technische Universität München

Safer AI via Exploiting the Structure of Learned Systems for

Monitoring, Verification, Abstraction, Representations, and

Explainability

Stefanie Mohr

Vollständiger Abdruck der von der TUM School of Computation, Information and Tech-

nology der Technischen Universität München zur Erlangung eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr.-Ing. Matthias Althoff

Prüfende der Dissertation:

1. Prof. Dr. Jan Křet́ınský

2. Assoc. Prof. Dr. Guillermo Pérez

3. Prof. Dr. Nils Jansen

Die Dissertation wurde am 15.07.2024 bei der Technischen Universität München ein-

gereicht und durch die TUM School of Computation, Information and Technology am

18.03.2025 angenommen.

Für Ben und Christoph

Abstract

With the rise of machine learning and artificial intelligence (AI), ensuring their safety

becomes paramount. One can do so by applying verification, monitoring, and explain-

ability, each contributing to increase the trust and safety in AI systems. This thesis

presents solution approaches addressing these aspects.

Safe Neural Networks (NNs). Verification of NNs is typically conducted offline

on a fixed set of inputs, providing a reliability certificate for these inputs. However, stan-

dard verification methods do not scale to real-world problems. To address this issue,

we demonstrate how the abstraction of NNs reduces the size of the verification problem.

Abstraction creates a more compact representation of the NN while maintaining the

verification problem. It does so by providing an error bound on the difference. Addi-

tionally, since verification is limited to specific inputs, we also focus on monitoring. This

monitoring observes the NN’s behavior during runtime and detects when it encounters

novel inputs. We introduce the Gaussian monitor as a lightweight and compact moni-

toring method. Additionally, we introduce our tool, Monitizer, which facilitates the

evaluation and optimization of monitors. Lastly, we showcase the need for NN verifi-

cation tools through a real-world use case of temperature prediction, introducing three

intuitive methods to enhance trust in NN behavior.

Strategy Representation. In AI, partially observable Markov decision processes

(POMDPs) serve as a standard model for representing real-world scenarios. They model

both decision-making and limited observability, e.g. a robot can only perceive its direct

environment through a camera, not what happens in the next room. A method for

making good decisions in such a system is called a strategy (controller, policy). Typ-

ically, they are given in the form of a table. We introduce a learning algorithm that

transforms such tables into concise automata, effectively representing the same strategy

more efficiently.

i

Übersicht

Die weitverbreitete Nutzung von Künstlicher Intelligenz (KI) und maschinellem Ler-

nen verlangt nach einer strukturellen Untersuchung und bestenfalls Garantie ihrer Si-

cherheit. Methoden wie Verifikation, Überwachung und Erklärbarkeit tragen stark dazu

bei, das Vertrauen in KI basierte Systeme zu stärken und ihre Sicherheit zu garantieren.

In dieser Arbeit werden mehrere Ansätze präsentiert, die sich mit diesen Aspekten be-

fassen.

Sicherheit Neuronaler Netzte (NN). Die Verifikation von NN ist normalerweise

ein Prozess, der vor dem Einsatz des Netzes stattfindet und auf einer begrenzten Anzahl

an Eingaben durchgeführt wird. Er liefert schließlich ein Zertifikat für die Zuverlässig-

keit der Aussagen des NN auf diesen spezifischen Eingaben. Allerdings skalieren diese

Verifikationsansätze schlecht und sind für reale Anwendungen bisher nicht zu verwenden.

Um dieses Problem anzugehen, wird in dieser Arbeit die Abstraktion von NN eingeführt,

die die Größe des Problems verkleinert, indem es eine kompaktere, aber äquivalente Re-

präsentation des NN erzeugt und damit erlaubt, eine Verifikation auf dem kleineren Netz

durchzuführen. Falls es nicht möglich ist, eine äquivalente Darstellung zu generieren, lie-

fert die Abstraktion eine Fehlerberechnung, die die Unterschiede des originalen und des

abstrakten NN begrenzt. Da die Verifikation nur auf spezifischen, definierten Eingaben

durchgeführt wird, wird in dieser Arbeit zusätzlich die Überwachung von NN eingeführt.

Diese überprüft während der Laufzeit des NN sämtliche Eingaben und die Reaktion des

Netzes und meldet ein Problem, sobald eine Eingabe erkannt wird, die nicht genug Ähn-

lichkeit mit den bisher bekannten Trainingsdaten aufweist. Ein Teil dieser Arbeit ist ein

solcher Ansatz, der auf Normalverteilungen basiert und daher ein sehr schlanker und

kompakter Überwachungsmechanismus ist. Für eine Erleichterung der Auswertung und

Optimierung dieser Methoden wird unser Tool Monitizer eingeführt. Außerdem wird

an der konkreten Anwendung der Vorhersage von Wassertemperatur von Flüssen die

Notwendigkeit von neuen, intuitiven Analyse-Methoden von NN demonstriert.

ii

Repräsentation von Strategien. Im Bereich der KI werden teilweise beobacht-

bare Markov-Entscheidungsprozesse (POMDPs) als realitätsnahes Modell verwendet,

da sie Entscheidungsfindung mit begrenzter Beobachtbarkeit der Realität kombinieren.

Man kann sich das anhand eines Roboters vorstellen, der zwar seine direkte Umgebung

mittels einer Kamera wahrnehmen kann, aber nicht weiß, was im nächsten Raum pas-

siert. Methoden, die die Entscheidungen in POMDPs beschreiben, werden Strategien

genannt, die normalerweise als Tabelle dargestellt werden. In dieser Arbeit wird ein

neuer Ansatz präsentiert, der aktives Automaten-Lernen verwendet, um solche Tabellen

in kompakte Automaten zu überführen, die dieselbe Strategie repräsentieren, allerdings

in einem deutlich kleineren und lesbarerem Format.

iii

Acknowledgements

First and foremost, I want to thank all my co-authors, without whom this thesis would

not exist in the way it is: Muqsit Azeem, Alexander Bork, Debraj Chakraborty, Calvin

Chau, Konstantina Drainas, Jürgen Geist, Marta Grobelna, Kush Grover, Vahid Hashemi,

Sudeep Kanav, Lisa Kaule, Jan Křet́ınský, Sabine Rieder, Emmanouil Seferis, Bhumika

Uniyal, and Romy Wild.

In particular, I would like to thank my advisor, Jan, for all his support and guidance.

I am grateful for your belief and trust in me and for the discussions about work and life.

Furthermore, I am thankful to all of my (former) colleagues. You made my time at

university so much more joyful. I am really happy to have been at our chair and to meet

so many great people. Our lunches and coffee breaks were a very welcome distraction.

And I loved being part of a great group. We had some really fun times together. Special

thanks to my colleagues

� Marta, for sharing a room with me, sharing funny and stressful times at work, and

for sharing chocolate.

� Max, for your positive attitude that just made me always enjoy your company.

� Maxi, for the great scientific and private discussion, the fun and the hard work,

and all the guidance and support for a beginning PhD student.

� Muqsit, for the fun discussions, coffee breaks, and the joint trips.

� Pranav, for the supervision in my Master’s thesis and for showing me the fun in

research.

� Sabine, for sharing great discussions about Neural Networks and the difficulties of

being an industrial PhD.

� Sudeep, who pushed me to (over?) my limits but helped me improve far more than

I expected.

On a more private note, I want to thank my family: my parents for making me the

v

person I am today and for believing in me; Tobias, Sebastian, and Torben for their

support whenever I needed help; and Maxi, the dog, for endless walks and cuddles

during the lockdowns.

Last but by far not the least, I want to thank my husband, Christoph. I am and will

forever be grateful for your support: you asked almost annoyingly smart questions that

improved my work, your LATEXwisdom and your template saved me a lot of time and

nerves in the preparation of this thesis, your cooking kept me alive when deadlines were

approaching, and finally, you always cheered me up and believed in me when I thought

this project would never end. You and Ben are everything to me.

vi

Contents

1. Introduction 1

1.1. Contributions of this Thesis . 4

1.2. Publication Summary . 5

1.3. Outline . 6

2. Preliminaries 7

2.1. Neural Networks . 7

2.2. Partially Observable Markov Decision Proccesses 12

3. Neural Network Abstraction 15

3.1. State of the Art . 16

3.2. Contribution . 17

3.2.1. Framework . 18

3.2.2. Error Bound . 21

3.2.3. Refinement . 21

3.2.4. Experimental Results . 22

3.3. Future Work . 23

4. Neural Network Monitoring 25

4.1. State of the Art . 25

4.2. Conribution: Gaussian Monitoring . 28

4.2.1. Approach . 29

4.2.2. Experimental Results . 31

4.3. Contribution: Monitizer . 33

4.3.1. Framework Description . 34

4.3.2. Evaluation . 36

vii

Contents

4.4. Future Work . 37

5. Use Case - River Temperature Prediction 39

5.1. State of the Art . 39

5.2. Contribution . 40

5.2.1. Water Temperature Prediction . 40

5.2.2. Model Analysis . 41

5.2.3. Statistical and Hydrological Evaluation 44

5.3. Future Work . 45

6. POMDP Strategy Representation via Automata Learning 47

6.1. State of the Art . 48

6.2. Contribution . 49

6.2.1. Automaton Learning . 49

6.2.2. Heuristics . 52

6.2.3. Experiments . 52

6.3. Future Work . 53

7. Conclusion 55

I. Publications 71

A. Syntactic vs Semantic Linear Abstraction and Refinement of Neural Net-

works . 72

B. Assessment of Neural Networks for Stream-Water-Temperature Prediction 94

C. Learning Explainable and Better Performing Representations of POMDP

Strategies . 101

D. Monitizer: Automating Design and Evaluation of Neural Network Mon-

itors . 123

E. Gaussian-Based Runtime Detection of Out-of-distribution Inputs for Neu-

ral Networks . 139

F. Predicting stream water temperature with artificial neural networks based

on open-access data . 151

viii

Definitions

Definitions

Neural Network (NN) . 9

Neural Network Semantics . 10

Activation Values . 11

Markov Decision Process (MDP) . 12

Partially Observable Markov Decision Process (PODMP) 13

Finite State Controller (FSC) . 14

Gaussian Monitor . 30

Examples

Neuron and Neural Network . 8

Feed Forward NN . 10

Markov Decision Process (MDP) . 12

Partially Observable Markov Decision Process (PODMP) 13

Finite State Controller (FSC) . 14

Replacement of a Neuron by a Linear Combination 19

Gaussian Monitor . 29

FSC Generation for POMDP strategies . 51

Figures

LiNNA Framwork . 18

Replacement of a Neuron by a Linear Combination 20

Threshold Selection for Monitors . 25

Exemplary Depiction of the Gaussian Monitor . 30

Histogram of Activation Values . 32

Framework of Monitizer . 34

Sample Output of Monitizer . 37

Overview of the FSC Learning Framework . 50

ix

Abreviations

AI Artificial Intelligence

AUROC Area Under the Receiver Operating Characteristic Curve

FSC Finite State Controller

ID In-Distribution

MAE Mean Absolute Error

MDP Markov Decision Process

ML Machine Learning

MSE Mean Squared Error

NN Neural Network

OOD Out-of-Distribution

POMDP Partially Observable Markov Decision Process

RL Reinforcement Learning

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

xi

1 Introduction

In recent years, we have seen a rapid development of Artificial Intelligence (AI) and Ma-

chine Learning (ML) based systems with increased efficiency and performance, leading

to them being more frequently used in various applications. Some examples of these

are autonomous driving [Che+17], financial forecasting [SMR22], chatbots [Ope24],

autonomous drones [Gu+20], medical imaging [Anw+18], and chess engines [Aut24;

Rom+24]. However, alongside these advancements, there are significant challenges, es-

pecially in the safety and reliability of AI systems. While these aspects are less critical in

areas like gaming or chatbots, they are crucial for autonomous driving, where failures can

lead to severe and even fatal consequences [Hen24]. Therefore, there is a growing interest

in improving trust and proving the safety of AI systems. This can be achieved through

verification, which involves proving or disproving properties of the system, monitoring

through surveillance during runtime, or finding more robust representations of these

systems. In this thesis, we address these three aspects in two different ways: improv-

ing the safety of Neural Networks (NNs) using verification and monitoring and finding

good representations for strategies of Partially Observable Markov Decision Processes

(POMDPs).

Safety of Neural Networks

Especially since the invention of ChatGPT [Ope24], a huge model that can parse and

interpret natural language, NNs have gained much attention. By nature, they are black-

box systems because they are obtained by using a set of data from which the systems

“learn” the task. However, it is not a priori fixed how this information is retained in the

system. Only the structure is fixed, but how it is filled with the relevant connections

and weights that finally define it is up to the learning. This flexibility allows a wide

range of applications with limited domain knowledge, where they excel especially in

1

1. Introduction

image processing, sometimes even outperforming humans [Bue+19; HKW11]. However,

their deployment in critical applications like autonomous driving [Che+17] or medical

imaging [Anw+18] necessitates certifying their safety or at least building trust in their

reliability. This certification issue became even more evident when research discovered

that NNs are susceptible to adversarial attacks [Sze+14; GSS15], specifically modified

inputs to trick the NN.

These insights gave rise to the verification of NNs, where most techniques focus on

the robustness property [Zha+18; Bri+23; Ehl17; CNR17; Kat+19; Kat+17]. This prop-

erty describes that an NN should be robust to perturbations, i.e. it predicts the same

output for a slightly perturbed input. While this property has received most of the

scientific interest because it is modeled simply in mathematical terms, other properties

have been found interesting, like reachability [Hua+19] or monotonicity [Liu+20b]. Var-

ious techniques for verifying NNs are evaluated yearly in a competition [Bri+23]. For an

in-depth overview of those techniques, refer to the handbook on NN verification [Alb21].

There has been much progress in the development of verification techniques. For

instance, in 2020, the best verification tool could only verify 180 instances in five

minutes [JL24], whereas in 2023, the best tool verified 2000 instances in the same

time [Bri+23]. Still, it took five days to answer 10,000 verification queries for the biggest

NN in the competition (with ∼140M parameters). Large models, like ChatGPT [Ope24],

have more than 1.7B parameters and a much more complex structure, which requires

many more verification queries and renders its verification entirely out of scope.

With the reliability of NNs, we face another issue: even if the NN is well trained and

works well on similar data, so-called In-Distribution (ID) data, its behavior on a signif-

icantly different input, so-called Out-of-Distribution (OOD), is unclear. Imagine a per-

ception system of an autonomous drone that was trained on images from sunny weather

suddenly facing images with heavy rain. It is impossible to know upfront whether the

NN would still deliver correct and reliable results. This issue was first raised by [HG17]

but is closely related to the existence of the adversarial examples since both are related

to an NN misclassifying the input.

To tackle this problem, we need a system that monitors an NN and raises an alarm

when it is about to process an unknown and unseen input. For this reason, such systems

are called (runtime) monitors. They oversee the network during runtime and prevent

it from predicting potentially unknown inputs. This research area has especially found

2

interest in industry [Has+23; CNY19; HS22] since it is a much more lightweight approach

than verification and builds an additional layer of control.

With this research area just emerging, there is still much potential for improvements

and new developments of monitoring ideas. More importantly, the current evaluation

of monitors lacks a structural approach. Most published results define their own OOD

datasets without (much) justification [Liu+20a; SL22]. Those datasets might contain

inputs that should be considered ID. For example, the NN is trained to detect cars, and

some of the OOD images contain cars in the background. Is it expected that the monitor

raises an alarm? Until today, it is unclear which datasets to use as OOD, and there is

not much discussion on whether the ones in use make sense. Apart from that, setting up

a monitor is tricky for a user since this involves setting one or several hyper-parameters.

Depending on the application, this can be a challenging problem and needs a structural

approach to solving it without requiring domain experts.

Strategy Representation

In AI, POMDPs are a standard model for representing real-world scenarios. They com-

bine non-determinism, probability, and partial observability, making them more reflec-

tive of real-world conditions where agents do not have complete information about the

state of the environment. While originating from the AI area [KLC98], they have also

gained attention in the formal methods community [MHC03a; BKQ22; CCT16; KLC98].

While the AI community uses methods to get an approximate solution without guar-

antees [Hau00], the formal methods community focuses on more precise solutions with

guarantees [Lov91].

Still, the analysis of POMDPs is challenging. Solving for typical objectives like quan-

titative reachability or total reward is undecidable [MHC03a]. Therefore, finding a

strategy (aka policy, controller) for resolving the non-determinism is impossible to do

optimally. This is why many works focus on finding and representing strategies

that perform well in practice without them being provably optimal [Win+21; Bor+20;

BKQ22; And+22; And+23].

In general, optimal strategies require infinite memory [MHC03b], which can be over-

come by using NNs, typically Recurrent Neural Network (RNN), to represent the strat-

egy [CJT21; DKT08] or alternatively, using randomized controllers found via gradient

descent [Hec+22] or convex optimization [ABZ10]. However, we face the demand for un-

3

1. Introduction

derstandable and explainable controllers [Wei+23], where both NNs and randomized con-

trollers struggle. Therefore, it is reasonable to look at Finite State Controllers (FSCs),

which provide a balance between performance and explainability [KLC98; Meu+99b;

Meu+99a; Bon02; SSJ23].

1.1 Contributions of this Thesis

This thesis contains four contributions to the areas mentioned above and problems:

Abstraction Since verification of NNs does not scale to real-world systems, we introduce

a framework for abstraction using linear combinations. In Chapter 3, we introduce

our novel abstraction method for NNs, using semantic information and linear com-

binations of neurons. We reduce the size of the NN while giving error bounds on

the difference and show its empirical improvement on related approaches.

Monitoring Our contribution to this topic is twofold: On one hand, we introduce

a lightweight monitoring method using Gaussian models in Section 4.2. This

straightforward method scales well to NNs of various sizes and outperforms re-

lated work in their predictive accuracy. Secondly, since the community still needs

to tackle the evaluation and optimization of runtime monitors, we present Moni-

tizer, a modular tool for developing monitors, their optimization, and evaluation,

making it applicable to both industry and science.

Applied Verification In Chapter 5, we introduce the use case of river temperature pre-

diction. We show that NNs achieve better performance in this task than standard

methods. Since they are to be applied by users with less expertise in ML, we

introduce three methods for checking their reliability, specifically designed for this

application.

Strategy Representation Since FSCs are considered more explainable, we introduce a

method for learning an FSC to represent a POMDP strategy in Chapter 6. Our

approach uses our adaptation of active automata learning to create FSCs. This

approach is built modularly as a postprocessing method, making it universally

helpful for converting controllers into a more concise FSC.

4

1.2. Publication Summary

1.2 Publication Summary

This is a publication-based dissertation containing four core papers and two additional

papers. The original publications can be found in the Appendix.

Core Publications:

(A) Calvin Chau, Jan Křet́ınský, and Stefanie Mohr: Syntactic vs Semantic

Linear Abstraction and Refinement of Neural Networks. ATVA 2023: 401-

421. (see Appendix A)

(B) Stefanie Mohr, Konstantina Drainas, and Jürgen Geist: Assessment of Neu-

ral Networks for Stream-Water-Temperature Prediction. ICMLA 2021: 891-

896. (see Appendix B)

(C) Alexander Bork, Debraj Chakraborty, Kush Grover, Jan Křet́ınský, and Ste-

fanie Mohr: Learning Explainable and Better Performing Representations

of POMDP Strategies. TACAS 2024: 299-319. (see Appendix C)

(D) Muqsit Azeem, Marta Grobelna, Sudeep Kanav, Jan Křet́ınský, Stefanie

Mohr, and Sabine Rieder: Monitizer: Automating Design and Evaluation of

Neural Network Monitors. CAV 2024: 265-279. (see Appendix D)

Other Publications:

(E) Vahid Hashemi, Jan Křet́ınský, Stefanie Mohr, and Emmanouil Seferis:

Gaussian-Based Runtime Detection of Out-of-distribution Inputs for Neural

Networks. RV 2021: 254-264. (see Appendix E)

(F) Konstantina Drainas, Lisa Kaule, Stefanie Mohr, Bhumika Uniyal, Romy

Wild, and Jürgen Geist: Predicting stream water temperature with artificial

neural networks based on open-access data. Hydrological Processes 2023:

Volume 37, Issue 10. (see Appendix F)

All papers have been published in peer-reviewed conference proceedings or scientific

journals and are self-contained. Each paper is prefaced with a brief summary and a list

of the thesis author’s contributions.

5

1. Introduction

Further, the thesis author has co-authored three peer-reviewed publications not in-

cluded in this thesis.

Other Co-Authored Publications of the Author:

(G) Pranav Ashok, Vahid Hashemi, Jan Křet́ınský, and Stefanie Mohr: Deep-

Abstract: Neural Network Abstraction for Accelerating Verification. ATVA

2020.

(H) Krishnendu Chatterjee, Joost-Pieter Katoen, Stefanie Mohr, Maximilian

Weininger, and Tobias Winkler: Stochastic games with lexicographic ob-

jectives. Formal Methods in System Design 2023.

(I) Thomas Brihaye, Krishnendu Chatterjee, Stefanie Mohr, Maximilian

Weininger: Risk-aware Markov Decision Processes Using Cumulative

Prospect Theory. LICS 2025.

1.3 Outline

This thesis contains six chapters and an appendix with all included publications. Chap-

ter 2 presents the mathematical background required to understand the remainder of the

thesis. Chapter 3 contains our approach to the abstraction of NNs from Publication (A).

We continue in Chapter 4 with the monitoring of NNs, introducing the Gaussian mon-

itor from Publication (E) and our tool Monitizer from Publication (D). Chapter 5

introduces the use case of river temperature prediction, including Publications (B) and

(F). Chapter 6 introduces our work on strategy representation for POMDPs from Pub-

lication (C). Finally, we conclude the thesis in Chapter 7.

6

2 Preliminaries

This thesis explores two relevant models in AI: Neural Networks (NNs) and Partially

Observable Markov Decision Processes (POMDPs), which we will introduce in the up-

coming chapter.

NNs are frequently, though inaccurately, used as synonym for the terms AI or ML.

In reality, ML includes numerous more models, including decision trees, support vector

machines, logistic regression, kernels, and more. However, NNs stand out as the most

prominent ML model due to their ability to outperform other approaches. This is

attributed to their intricate structure and capacity to learn complex patterns. Section 2.1

provides a comprehensive introduction to their basic architecture and semantics, laying

a solid foundation for understanding Chapters 3 to 5.

On the other hand, POMDPs weave non-determinism and probabilities with partial

observability, offering a robust framework for modeling real-world scenarios. This prac-

tical application has solidified their position as one of the most longstanding models

in AI. While NNs showcase the power of AI by learning and approximating complex

functions, POMDPs are used because of their ability to mimic reality, for example, to

train NNs. As a foundation for Chapter 6, this thesis introduces POMDPs in Section 2.2

with their formal definition and presents Finite State Controllers (FSCs) as an efficient

method for how to represent their strategies.

As usual, N refers to the natural numbers, Z describes the integers, and R refers to

the real numbers. We write Zd and Rd to refer to the d-dimensional vector space over

the integers and real numbers.

2.1 Neural Networks

At their core, NNs are mathematical functions mapping inputs to outputs. Their dis-

tinctive feature lies in how they are structured and their ability to “learn” from data.

7

2. Preliminaries

Traditional programming involves an explicit definition of the program or function by

the user, whereas, for a learned system, we only need its general structure. The learning

process then fills it with concrete values derived from given data.

We can distinguish supervised and unsupervised learning: Supervised learning requires

an output for any given input, whereas unsupervised learning derives an output auto-

matically and does not require a given output. NNs are more common in the supervised

setting, where they are presented with input-output pairs, which they try to mimic

by adjusting their parameters. This process is called the learning process. It is typ-

ically done by using optimization procedures like gradient descent, where the model’s

parameters are iteratively changed towards optimal values. For a detailed explanation

of learning, and methods like gradient descent, refer to [RN20, Chapter 19]. In other

words, learning describes a process of optimization based on empirical data.

The name “Neural Network” originates from efforts to model the human brain via cre-

ating artificial “neurons” to model biological neurons [MP43; MMR55]. Mathematically

speaking, neurons are the smallest computation units in an NN. They are interconnected

to form a network that then globally computes an output. An NN is built up from lay-

ers that sequentially compute a value for their input. Each of these layers is made from

several neurons. Example 2.1 illustrates a neuron and a feed-forward NN.

Formally, an NN is a function f : X → Y from the input set X ⊆ Rd to the output

set Y . Examples of input spaces include X = R2, describing the x- and y-location on a

map, or X = [0, 255]128×128×3 for RGB-colored images. The output set can be continu-

ous, Y ⊆ Rm, or discrete, Y ⊆ Zn. Examples for the output include Y = [−360, 360],

describing the steering angles of a car, or Y = {“cat”, “dog”} for the distinct classes

cats and dogs.

Example 2.1: Neuron and Neural Network.

On the left, we see an illustration of a neuron: It receives n input values, x1, . . . , xn.

After computing the weighted sum and adding a bias, it applies a non-linear

function ϕ on the result and passes this value on.

The illustration on the right contains a picture of a feed-forward NN. Intuitively,

a feed-forward NN receives input within the input layer. Each neuron in the first

8

2.1. Neural Networks

hidden layer receives a weighted sum of all neurons in the input layer as input. The

second hidden layer receives a weighted sum of all outputs from the first hidden

layer. In this way, the information is processed layer by layer. The computed

values of the NN are given by the output of the output layer.

x1

x2

x3

. . .

xn

ϕ




n∑

i=1

wixi + b




w1

w2

w3

wn

a) Illustration of a neuron

input layer
hidden layers

output layer

b) Illustration of an NN

From Example 2.1, we know that an NN processes the information by computing the

weighted sum of the inputs from the previous layer. However, one more crucial part is

necessary for NNs to be so powerful: the activation functions. They serve as a non-linear

break between the layers. Otherwise, a single matrix multiplication could represent the

computation of an NN. In this work, we use the ReLU activation function, defined as

ReLU(x) = max{0, x}. However, there are many more with different strengths and

purposes [TES24].

Definition 2.1: Neural Network (NN).

A feed-forward Neural Network is a tuple N = (W ,B,Φ, L), where L is the number

of layers, W = (W (1), . . . ,W (L)) are the weight matrices, B = (b(1), . . . ,b(L)) the

biases, and Φ = (ϕ(1), . . . , ϕ(L)) the activation functions. For some n ∈ [1, . . . , L],

we have W (n) ∈ Rdn×dn−1 , b(n) ∈ Rdn , and ϕ(n) : Rdn → Rdn a non-linear function.

Here, dn describes the size of layer n.

In a feed-forward NN, information flows strictly in one direction: from layer m to

layer n, where m < n. At each step, the output is computed as a weighted sum of the

previous layer’s output plus an additional bias vector and the application of an activation

function.

9

2. Preliminaries

Definition 2.2: Neural Network Semantics.

The function computed by the NN, fN : X → Y , is defined by the following

semantics. For an input x ∈ X , the output fN(x) = y is iteratively computed as:

h(0)(x) = z(0)(x) = x

h(n+1)(x) = W (n)z(n)(x) + b(n+1)

z(n+1)(x) = ϕ(n+1)(h(n+1)(x))

y = z(L)(x)

The NN semantics are an iterative computation layer by layer. We present a concrete

example of a feed-forward NN for a better and more intuitive understanding. Intuitively,

there is a single matrix multiplication and the application of the non-linear activation

function in each step. This process is repeated for each layer in the network.

Example 2.2: Feed Forward NN.

We look again at Example 2.1 with a concrete instantiation. The values of the

first layer, h(1)(x) = W (0)z(0)(x)+b(0) ∈ R4. The same holds for the second layer.

We have y ∈ R2, i.e. two output neurons.

Assume

W (0) =




1 −1 3

−1 2 1

−1 −1 −1

1 2 3




W (1) =




−1 1 1 −1

1 2 −1 −2

−2 1 1 −1

1 2 3 1




W (2) = I W (3) =

(
1 1 −1 1

2 −6 2 1

)

b(1) = b(2) = b(3) = b(4) = 0, ϕ(1) = ϕ(2) = ϕ(3) = ReLU , and ϕ(4) = Id

For an input x = [1, 1, 1]T , we get

10

2.1. Neural Networks

1. h(1)(x) = [3, 2,−3, 6]T

2. z(1)(x) = [3, 2, 0, 6]T

3. h(2)(x) = [−7, 1,−10, 13]T

4. z(2)(x) = [0, 1, 0, 13]T

5. h(3)(x) = z(2)(x)

6. z(3)(x) = h(3)(x)

7. h(4)(x) = [14, 7]T

8. z(4)(x) = h(4)(x)

9. y(x) = z(4)(x)

10. x

This means, the NN computes fN(x) = [14, 7]T .

Example 2.2 demonstrates that the weight matrices W and the biases B are significant

in the computation. Therefore, during learning, we optimize for good values of W and

B. Usually, we are given a finite set of example values to learn from: the training set

Xtrain ⊆ X with a matching set of outputs Ytrain ⊆ Y . The learning process defines a loss

function that describes the performance of the NN in a singular value. For example, we

are given an input pair (x, y) ∈ Xtrain × Ytrain, where y is the true value the NN should

predict for x. The loss function could be the absolute difference between the true value

y and the prediction of the NN, i.e. |y − fN(x)|, but there are many more [BB24], and

their use depends on the task to be learned and the concrete application.

For abstraction and monitoring, we also need to define the behavior of the NN. For

this, we use activation values [Ash+20; CNY19] as a description of the behavior of

the NN for some input. The idea is to collect the inner values of the NN by passing

values to the NN and tracking the output of each neuron. They are also called the

“semantic” [Publication (A)] information of an NN since they are based on input values.

Definition 2.3: Activation Values.

For some finite set X ⊆ X , we define the activation values of a layer n of the NN

as a matrix Z(n)(X) = [z(n)(x)]x∈X ∈ R|X|×dn . Then, the activation values of one

neuron i of layer n are z
(n)
i (X) := Z(n)(X)∗,i the ith column of Z(n)(X).

We use the activation values for monitoring in Section 4.2 and for creating an abstrac-

tion of NNs in Chapter 3.

11

2. Preliminaries

2.2 Partially Observable Markov Decision Proccesses

This section establishes all required concepts necessary to understand Chapter 6. Ini-

tially, we formally define Markov Decision Processs (MDPs) and Partially Observable

Markov Decision Processes (POMDPs), accompanied by illustrative examples. Then,

we introduce FSCs as a means to represent POMDP strategies.

A (discrete) probability distribution on a countable set S is a function d : S → [0, 1]

such that
∑

s∈S d(S) = 1. We denote the set of all probability distributions on the set

S as Dist(S).

Definition 2.4: Markov Decision Process (MDP).

An MDP is a tuple M = (S,A, P, s0) where S is a countable set of states, A is

a finite set of actions, P : S × A ⇀ Dist(S) is a partial transition function, and

s0 ∈ S is the initial state.

An MDP is a model that involves non-determinism and probabilities. Starting in

an initial state, an agent moves on the set of states. Whenever it chooses an action,

the probability distribution of the current state and the chosen action determine where

it will move next. In such a model, we can discuss the probability of reaching a set

of target states (reachability), or, assuming that states have an assigned reward, we

can compute the collected reward until reaching a target state (total reward). [BK08,

Chapter 10.6] provides a more detailed introduction to MDPs and their properties. For

a more intuitive understanding of MDPs, we introduce an example below.

Example 2.3: Markov Decision Process (MDP).

1

4

7

2

5

8

3

6

9

1

4

7

2

5

8

3

6

9

1

4

7

2

5

8

3

6

9

A robot is randomly placed on a 3x3 grid. Its goal is to move to the lower-

12

2.2. Partially Observable Markov Decision Proccesses

right corner, marked by a smiling face. The states of this MDP are defined

by the cells in the grid, i.e., S = {1, 2, 3, 4, 5, 6, 7, 8, 9}. The actions are

A = {left, right, up, down} and define which action the robot wants to perform.

For each action, there is a 25% chance that the robot fails to move and stays in

place.

A POMDP is an MDP where the agent does not have the complete information about

its current state, which is called partial observability. Partial observations could mean

that it only perceives a subset of the state variables (e.g., only the temperature in one

room instead of for every room in a house) or a complete transformation of the state

(e.g., the color “blue” for state 1).

Definition 2.5: Partially Observable Markov Decision Process (PODMP).

A POMDP is a tuple P = (M, Z,O) where M = (S,A, P, s0) is the underlying

MDP with a finite number of states, Z is a finite set of observations, andO : S → Z

is an observation function that maps each state to an observation.

We extend Example 2.3 to the partial observable setting in Example 2.4.

Example 2.4: Partially Observable Markov Decision Process (PODMP).

In Example 2.3, the robot knows exactly which state it is in. In the partially

observable setting, it can only distinguish whether it has already reached the goal

(g) or not (b). One can imagine this as a robot in a house with rooms that all

look identical, except for the room with the charger, which is highlighted in green.

The underlying MDP is the one from before, where we have two observations

Z = {b, g}. All states, except the goal state 3, have observation b, therefore O =

{(1 → b), (2 → b), (3 → g), (4 → b), (→ b), (6 → b), (7 → b), (8 → b), (9 → b)}.

13

2. Preliminaries

To describe the principle of a strategy, we introduce the notation of a finite path. For

an MDP M, a finite path ρ = s0a0s1 . . . si is a sequence of states and actions such that

for all t ∈ [0, i− 1], at is an available action in st and st+1 is a possible successor of st. A

strategy for an MDP is then a mapping of paths to states. A memoryless strategy only

has access to the last state in the path. In other words, a memoryless strategy decides

which action to play based on the state the agent is in.

For MDPs, strategies have access to the full state information, which is unsuitable

for POMDPs. Therefore, we need another notion of strategies only based on partial

observations. For a POMDP, we call a strategy observation-based if for any two paths

ρ1, ρ2 with states si(ρ1), si(ρ2), and if all the observations are the same, i.e., O(si(ρ1)) =

O(si(ρ2)), then the suggested action by the strategy for both paths is the same. In other

words, the strategy must output the same action whenever we have the same sequence of

observations. Therefore, a strategy for a POMDP can be viewed as mapping observation

sequences to available actions.

Finding a good representation for such strategies is one of the critical tasks, which

we will discuss in Chapter 6. For our representation, we use an automaton, precisely an

FSC, which can be seen as a finite Mealy machine that maps observation sequences to

actions.

Definition 2.6: Finite State Controller (FSC).

An FSC is a tuple F = (N, γ, δ, n0) where N is a finite set of nodes, γ : N ×Z →
Dist(A) is an action mapping, δ : N ×Z → N is the transition function, and n0 is

the initial node.

Example 2.5: Finite State Controller (FSC).

Consider an FSC for Example 2.4, shown below. The simplest (and optimal)

strategy is to move down and right in turns. We see the two states and the

transitions in between. When having the observation b, the FSC outputs “right”

and changes state. When we see the same observation again, the output is “down”

and we change to the left state.

b: right

b: down

14

3 Neural Network Abstraction

As highlighted in the introduction, the increasing use of NNs in safety-critical appli-

cations has sparked a significant interest in their verification. Formal verification, a

process of proving or disproving the correctness of a system concerning a specific formal

specification or property, is a crucial step in ensuring the safety and reliability of NNs.

However, formal verification still needs to achieve the necessary scalability to be applied

to real-world scenarios. Abstraction, a powerful tool from standard model-checking, is

used to reduce the size of a verification problem [CGL92; Cla+00]. In general, abstrac-

tion is a method that strives to remove unnecessary, redundant, or irrelevant information

and gain a smaller but equivalent version of the problem. Similarly, we can look at an NN

and wonder whether it contains redundant or irrelevant information and, if so, whether

we can remove the redundancy and gain a smaller, but equivalent NN. In the following,

we define the problem statement.

Problem 3.1: Abstraction Problem.

Given a neural network N , a set X and an allowed error margin ε, find an ab-

straction Ñ , such that |fN(x)− fÑ(x)| < ε for all x ∈ X.

Remark 3.1:

Our experiments indicate that exact abstractions (i.e., ε = 0) are almost im-

possible. Breaking it down to the level of neurons, we found that not even one

neuron that contributes to the computation of the NN function can be removed

while keeping the NN function the same. Thus, we focus on approximations that

minimize the distance between the original and the abstract network.

In the following, we will present the current state of NN abstraction and then introduce

our abstraction method from Publication (A).

15

3. Neural Network Abstraction

3.1 State of the Art

The closely related area of research, called compression aims to reduce the NN’s size.

This includes methods like pruning [LDS89; Han+15; SB15; ZYZ18] and knowledge dis-

tillation [BCN06; HVD15]. However, these methods do not strive for equivalence and,

most importantly, do not provide error bounds or guarantees, making them impractical

for verification. On the other hand, abstraction provides guarantees and estimates of

the closeness of the smaller (abstract) NN to the original.

The use of abstractions started with an abstraction on the weights by introducing

intervals [PT10], however, this approach was limited to a one-layer NN. Building upon

this approach, Prabhakar and Afzal [PA19] use abstractions after representing an NN

as an interval NN, which was further improved by using more complex abstract do-

mains [ST20]. Although these works are theoretically intriguing, their practicality has

not been investigated.

Several works utilize abstract domains to verify NNs [Geh+18; Sin+19a; Sin+19b],

representing inputs as elements of said abstract domains. However, they do not generate

a specific abstract network that could be reused or inspected for further insights.

There are three works that we consider closest to our work and which we will introduce

in more detail. Elboher, Gottschlich, and Katz [EGK20] propose a classification of

neurons reflecting how they change the NN’s output and a merging of neurons of the

same class. Thereby, they can guarantee that the abstraction over-approximates the

original network. However, the property to be verified needs to be integrated directly

into the network, making the approach significantly less flexible. Additionally, this tight

entanglement of specification and NN makes it impossible to retrieve and reuse the

abstraction for anything other than verifying that specific property.

The tool DeepAbstract [Ash+20] by the same author as this thesis is a predecessor

of the work that we will present later in the chapter. It uses the activation values of the

neurons as semantic information to retrieve “similar” neurons that can be merged. This

way, the approach generates a smaller NN that is still close to the original.

One of the works closest to ours is the bisimulation of NNs [Pra22]. Their idea is

similar to the other abstraction methods [EGK20; Ash+20] in that it clusters similar

16

3.2. Contribution

neurons and merges them. In contrast to DeepAbstract, however, it uses the syntac-

tic information of the weights and biases rather than the semantic information of the

activation values. In more detail, the syntax of a neuron is determined by its incoming

weights and bias. If this information is the same or close enough for two neurons, they

are merged to create a bisimilar network. This process is repeated for all identical or a

certain amount of similar neurons.

3.2 Contribution

This section summarizes our results from Publication (A), where all results are taken

from the paper without any additional citation. We improve on the state of the art in

several ways:

Summary of the contributions:

� We propose a flexible, novel abstraction framework that allows a re-

placement of neurons by a linear combination of other neurons. This im-

provement on neuron replacements enables a reduction of the size of the NN

of up to 60% without a significant decrease in test accuracy.

� We provide a theoretical error bound for the abstraction.

� We develop an abstraction-refinement procedure to balance between

abstraction precision and size, showing that strategic refinement can yield

better results than direct moderate abstraction.

� We introduce a classification of abstraction techniques into syntactic and

semantic abstractions, showing that semantic abstractions can reduce the

network size twice as much as syntactic abstraction.

Central Idea

In Publication (A), we present an improved and richer abstraction scheme than previous

work. In contrast toDeepAbstract [Ash+20] and the bisimulation [Pra22], we replace

a group of similar neurons not by a single representative but by a linear combination.

As an intuition, take the vectors [1, 0], [0, 1], and [2, 1]. While they are not close in

Euclidean distance, we can produce the last one by a linear combination of the first two:

[2, 1] = 2 · [1, 0] + [0, 1]. With our tool LiNNA (Linear Neural Network Abstraction)

from Publication (A), we can find such combinations and replace such neurons.

17

3. Neural Network Abstraction

3.2.1 Framework

Our abstraction process, detailed in Figure 3.1, using linear combinations of neurons in-

volves three steps: finding a set of neurons to replace (basis finding), finding coefficients

for the linear combinations (coefficient finding), and replacing the neurons (replacement).

While these steps can be performed one after the other, they are interdependent and

are thus performed in a loop. This loop is crucial as it allows for multiple iterations,

ensuring that the best possible basis and coefficients are found.

Figure 3.1: LiNNA Framwork.

We show the process of LiNNA in three steps: basis finding, coefficient finding

and replacement. We start with an NN and try to find a good basis B(n) for some

layer n. Using this, we find good coefficients for replacing a neuron i, α
(n)
i,j of said

layer. Then, we replace neuron i with a linear combination using the coefficients.

We evaluate the performance of the abstraction and, if it is not good enough, start

the loop again to search for a better basis.

Neural

Network

N

Basis

Finding

Coefficient

Finding
ReplacementB(n) α

(n)
i,j

Ñ

Abstraction

Ñ

LiNNA

Basis Finding In this step, we find neurons that should be replaced, or dually, which

neurons should remain in a basis for some layer. In other words, which neurons

carry so much information that they are best apt to model the behavior of other

neurons? We demonstrate two techniques for finding them: The greedy method

uses a ook-ahead and evaluates the induced error after replacement for each neuron

in a layer. The heuristic method uses the variance of the activation vectors as

an indicator, where we assume that a higher variance correlates with a higher

computational power of the neuron and, thus, its importance.

18

3.2. Contribution

Coefficient Finding Assuming we have a basis for some layer, we find the coefficients

necessary to replace the remaining neurons not part of the basis. We propose two

methods for solving this problem: linear programming (minimizing the Euclidean

distance) and orthogonal projection (minimizing the absolute distance). Our em-

pirical results demonstrate that orthogonal projection is much more scalable. Note

that this typically yields one optimal solution, so this step is only repeated if the

basis changes.

Replacement In this step, we replace a neuron with a linear combination of basis neu-

rons from the same layer. The replacement is done by summing up the respective

outgoing weights scaled by the coefficients, as demonstrated in Example 3.1. As-

suming that the linear combination is an exact representation of the behavior of the

replaced neuron, this would yield a smaller NN that computes the same function.

Example 3.1: Replacement of a Neuron by a Linear Combination.

Consider the NN in Figure 3.2. It has two input neurons n
(0)
1 , n

(0)
2 and two output

neurons n
(2)
1 , n

(2)
2 . In between, there is one hidden layer, layer 1, with three neurons

n
(1)
1 , n

(1)
2 , n

(1)
3 , i.e. d1 = 3.

We are given the basis B(1) = {n(1)
2 , n

(1)
3 }. This means, we want to replace neuron

n
(1)
1 , and we have the the linear combination α

(1)
1,1 · n(1)

2 + α
(1)
1,2 · n(1)

3 .

We remove neuron n
(1)
1 , and add additional weight to the outgoing weights of the

basis neurons. In particular, we add to W
(1)
1,2 = −1 the portion of W

(1)
1,1 that n

(1)
2

has to take over, i.e. W̃
(1)
1,2 = W

(1)
1,2 + W

(1)
1,1 · α(1)

1,1 = −1 + α
(1)
1,1. Analogously, we

change the other outgoing weights of the basis neurons:

W̃
(1)
1,3 = W

(1)
1,3 +W

(1)
1,1 · α(1)

1,2 = −2 + α
(1)
1,2

W̃
(1)
2,2 = W

(1)
2,2 +W

(1)
2,1 · α(1)

1,1 = 3 + 2 · α(1)
1,1

W̃
(1)
2,3 = W

(1)
2,3 +W

(1)
2,1 · α(1)

1,2 = 1 + 2 · α(1)
1,2

The resulting NN has one neuron less. Under the assumption that for all inputs

x, z
(1)
1 (x) = α

(1)
1,2z

(1)
2 (x) + α

(1)
1,3z

(1)
3 (x), the abstraction and the original produce the

same output.

19

3. Neural Network Abstraction

Figure 3.2: Replacement of a Neuron by a Linear Combination.

The upper illustration shows the original network with the basis B(1) in blue. The

bottom illustration contains the abstraction where we replace neuron n
(1)
1 with the

linear combination α
(1)
1,1 · n(1)

2 + α
(1)
1,2 · n(1)

3 .

n
(0)
2

n
(0)
1

n
(1)
1

n
(1)
2

n
(1)
3

n
(2)
1

n
(2)
2

1 + α
(1)

1,2
· 2

1
2

-1

3

-2
1

W (1) =

(
1 −1 −2

2 3 1

)
Original

B(1)

n
(0)
2

n
(0)
1

n
(1)
1

n
(1)
2

n
(1)
3

n
(2)
1

n
(2)
2

1
2

−1 + α
(1)

1,1

3 + 2α (1)
1,1

−2
+
α
(1
)

1,2

1 + 2α
(1)

1,2

W̃ (1) =

(
0 −1 + α

(1)
1,1 · 1 −2 + α

(1)
1,2 · 1

0 3 + α
(1)
1,1 · 2 1 + α

(1)
1,2 · 2

)
Abstraction

20

3.2. Contribution

3.2.2 Error Bound

We set our goal at reducing the difference between the activation values of the original

neuron z
(n)
i (x) and the activation values of the replacement

∑
j∈B(n) α

(n)
i,j z

(n)
j (x). We can

quantify the error of the abstraction, i.e., the difference of the output of the original

network and the reduced one, where we refer to [Gra95] for an easier read.

Theorem 3.1: Abstraction Error Bound.

Let N be an NN with L layers. For each layer n ∈ {1, . . . L}, we have a basis

of neurons B(n) and a set of replaced neurons R(n). Let Ñ be the network after

replacing neurons in R(n) with the process described above. If for all layers n ∈
{1, ..., L} and for all inputs x ∈ X ⊂ X , we have

� for i ∈ R(n) : ∥z(n)i (x)−∑j∈B(n) α
(n)
i,j z

(n)
j (x)∥ ≤ ε(n)

� |∑i∈R(n) W
(n)
∗,i
∑

t∈B(n) α
(n)
i,j | ≤ η(n)

then we have for x ∈ X:

||fÑ(x)− fN(x)|| ≤ b
1− aL−1

1− a

where a = λ(||W ||+ η) and b = λ||W ||ε with

� λ = maxn λ
(n) where λ(n) is the Lipschitz-constant of ϕ(n)

� ||W || = maxn ||W (n)||1
� η = maxn η

(n)

� ε = maxn ε
(n)

3.2.3 Refinement

The abstraction may fail to capture a few critical behavioral aspects of the original

network. This can happen either because it predicts inputs differently than the original

network or because some inputs cannot be verified, although they are safe. We can

refine the abstraction for these inputs, so-called counterexamples, rather than start the

abstraction again from the complete original network. Therefore, we propose three

different methods for finding suitable candidate neurons that shall be restored:

21

3. Neural Network Abstraction

Difference-guided The difference-guided refinement considers the difference between a

neuron z
(n)
i (x) in the original network and the linear combination

∑
j∈B(n) αjz

(n)
j (x)

with which it was replaced in the abstracted network. We evaluate this for all neu-

rons on the counter example x and restore the neuron with the largest difference.

Gradient-guided The gradient-guided refinement follows a similar approach as the difference-

guided, but additionally, we use the gradient of the loss-function, which was already

used during training. Using the gradient gives a better insight into which neurons

“need to be repaired” for a better performance.

Look-ahead We simulate the restoration of each replaced neuron and observe how it

changes the difference between the output ỹ of the abstraction and y of the original

network. We then choose to restore the neuron that minimizes this difference.

Again, we can quantify the difference with an appropriate loss function, as in the

gradient-guided refinement.

3.2.4 Experimental Results

We implemented our abstraction technique in the tool LiNNA (Linear Neural Network

Abstraction) (available at https://github.com/cxlvinchau/LiNNA). Since there are

few approaches available, our experimental comparison was limited. We compared our

implementation of LiNNA to the predecessor DeepAbstract [Ash+20] and our own

implementation of the Bisimulation [Pra22], for which no implementation was readily

available. We reduce the size of the NNs and evaluate their accuracy on the test set Xtest.

Our results show that LiNNA outperforms both other approaches: LiNNA, which is

based on semantic information, can reduce the number of neurons up to 60% without

a significant change in the accuracy, whereas the accuracy already decreases after a

reduction of 30% of the neurons when using the bisimulation, which relies on syntactic

information. DeepAbstract, also based on semantic information, manages to get to

a 40% reduction before having a performance loss.

22

https://github.com/cxlvinchau/LiNNA

3.3. Future Work

3.3 Future Work

Our work

We have significantly improved the abstraction of NNs: Our approach outperforms sim-

ilar works [Ash+20; Pra22] in the case of a reusable general abstraction. We show that

semantic information can significantly improve the precision of the abstraction. However,

a formal connection between the abstraction and the original network is still too broad,

especially compared to empirical evidence. Therefore, there is still a gap to be closed:

finding a formal description that captures what we already see in the experiments.

Additionally, we can improve the abstraction by employing similar methods to [EGK20]

and classifying the neurons. We can do so by marking them as increasing or decreasing

or looking at their influence on special output classes. Lastly, we want to explore how

far abstraction methods are also sensible compression methods. We already know that

they decrease the size of the NNs. However, we need to find out how this compares to

existing compression methods. Vice versa, it could be interesting to look at compres-

sion methods and if it is possible to give guarantees on the closeness of the compressed

network to the original.

Other work

The advances after Publication (A) are as follows: A survey on the abstraction of

NNs [Bou+23a], published soon after and contains an overview of most of the works that

we included in the State of the Art. An abstraction refinement process that refines the

over-approximation of the output of an NN [LA23] but focuses on reachability analysis

and not general NNs. There is some improvement in using Interval NNs [Bou+23b],

similar to [PA19], including some experimental results, yet, this approach is solely based

on syntactic information in the NN.

23

4 Neural Network Monitoring

As NNs continue infiltrating various areas of technology and industry, ensuring their

safety becomes imperative. While there is a large body of work on their verification

(refer to Chapter 3), there is also the need for runtime monitoring, which is the focus

of this chapter. Monitoring can support the robust performance of NN systems in real-

world applications. It involves continuously observing the NN’s behavior during runtime

to detect any potential erroneous inputs, so-called Out-of-Distribution (OOD) inputs.

In contrast, verification is done offline and requires concrete specifications for the NN

that can be proven.

4.1 State of the Art

Figure 4.1: Threshold Selection for Monitors.

OOD ID

threshold τ

A NN monitor should generally distinguish be-

tween In-Distribution (ID) data, e.g., data sim-

ilar to the training data, and OOD data. This

classification typically relies on a “threshold”, as

illustrated in Fig. 4.1. The monitor generates a

value for each input to the monitored NN and de-

termines whether the input is ID or OOD based

on that value. Selecting a threshold to distinguish between these classes depends

on the concrete application since there is rarely one optimal value for all settings.

Additionally, a monitor might contain several adjustable parameters that impact its

performance. The process of finding a good set of parameters is called hyperparameter

tuning. The research community has not investigated this aspect of monitors extensively,

25

4. Neural Network Monitoring

and the values are often selected manually or after a short testing phase. To facilitate the

practical application of runtime monitoring in industry, this process requires thorough

investigation and the development of methods to find a good set of parameters without

requiring expert user input.

Apart from the interest in finding good monitors, comparing them is also necessary.

Without a comparative analysis, determining the “best” monitor is impossible. Eval-

uating a monitor on a single dataset considered OOD does not necessarily have any

indication of its overall performance. Instead, the evaluation should be tailored to the

specific application to evaluate a monitor transparently.

Summary of the challenges:

Need for monitoring methods With many methods already available, there is

yet no optimal solution. Many existing methods fail to detect certain special

cases of OOD, highlighting the need for other and more involved monitoring

approaches.

Hyperparameter selection Monitors contain at least one, and often several, hy-

perparameters that need to be configured before the monitor is deployed.

This selection is currently done only heuristically without optimizing for the

concrete application.

Transparent Evaluation Monitors are usually evaluated on some set, not from

the ID data. However, there is often insufficient justification on whether this

set reasonably represents an OOD set. Additionally, monitors can perform

differently across various datasets. For a specific application, it is crucial to

carefully choose the set on which the monitor will be evaluated.

Support for development The lack of adequate tool support complicates the de-

velopment of new monitoring ideas and the development of a concrete mon-

itor for an application. It makes the process time-consuming and requires

significant domain knowledge, making it harder for the industry to use NN

monitors.

In this chapter, we focus on a twofold contribution: first, we introduce a novel moni-

toring technique, the Gaussian monitor [Publication (E)], tackling the first challenge;

26

4.1. State of the Art

secondly, we introduce our toolMonitizer [Publication (D)], which allows for optimiza-

tion and transparent evaluation of NN monitors tackling the latter three challenges.

Monitoring Methods

There is extensive research on monitoring methods for NN, with a comprehensive overview

in two surveys [Yan+21] and [Sal+22]. This section summarizes the most relevant mon-

itors that we also used in Publication (D).

Most OOD detection methods use the output of the last layer, the logits. Among

them, MaxLogit [ZX23] considers the highest valued logit from the NN output and

assumes that a higher value corresponds to a higher certainty of the NN’s decision.

Similarly, MDS [Lee+18] analyzes the confidence scores of the NN’s predictions, and

Softmax [HG17] uses the maximum softmax probability (MSP) from an NN’s output to

predict whether an input is OOD. Other works compute scores based on the logits, like

the Energy score [Liu+20a], a scaled Energy score [Guo+17], the entropy [Mac+21], or

the Kullback-Leibler divergence [Hen+22a].

Other than the last layer, some works consider additionally the gradients of the loss

function to have a better OOD detection [HGL21] or use the gradient of the inputs for

a distortion to create a sharper distinction between OOD and ID [LLS18].

Some works consider information from the intermediate layers for the prediction by

computing the relative Mahalanobis distance [Ren+21], the Simplified Hopfield En-

ergy [Zha+23b], using k-nearest-neighbor classification [Sun+22], or by creating virtual

logits [Wan+22]. Some add to that scaling of the activations [Dju+23], clipping of the

activations [SGL21], or altogether dropping some by sparsification [SL22].

The most similar work to our Gaussian monitor is [HLS20]. Similar to our approach,

the authors consider the activation values of the neurons. For each class in the dataset,

they collect the activation vectors of the class samples and cluster them. They construct

a box abstraction for each cluster, such that each class corresponds to a set of boxes.

Finally, during testing, they check whether the activation vector of a new sample is

contained in one of the boxes of its predicted class; if not, they raise an alarm.

Tooling for Monitor Generation

OpenOOD [Zha+23a] offers task-specific OOD detection benchmarks, each contain-

ing an ID set and multiple OOD datasets for a task (e.g., Open Set Recognition and

27

4. Neural Network Monitoring

Anomaly Detection). It contains several monitors from the literature, including training

methods for NNs for better OOD detection and data augmentation methods. However,

it lacks the functionality to tune the monitors for a given objective, which is essential

for industrial users. Additionally, there is no comprehensive and transparent evaluation

of the monitors and no justification for choosing the OOD sets.

Pytorch-OOD [KFO22] is a library for OOD detection, yet despite its name, it is

not part of the official PyTorch library. It includes several monitors and datasets and

supports the evaluation of the integrated monitors. However, it does not support the

optimization of the monitors for a given objective and lacks a transparent evaluation.

While a framework exists to optimize an NN monitor during runtime [Kat+22], it is

meant for active learning. That is, after generating a monitor, it can be updated during

runtime. Additionally, this framework is not built for extensibility and reusability, as it

already lacks an executable.

4.2 Conribution: Gaussian Monitoring

This section describes our approach from Publication (E) without further citations. It

introduces a novel method for detecting OOD inputs in NNs during runtime using

Gaussian models. The introduced method is simple and scalable while performing

better than existing methods1.

Gaussian models are typically used to describe the likeliness of a behavior. We ap-

ply this concept to model the “behavior” of a neuron by a Gaussian distribution. We

build upon prior work [CNY19], proposing to use “activation patterns” of neurons. The

authors monitor which subsets of neurons are activated for known inputs; whenever a

very different subset is activated, they raise an alarm. This idea was further refined in

[HLS20], where activation values of neurons are enveloped into hyper-boxes (multidi-

mensional intervals); whenever a very different value is observed (outside the boxes), an

alarm is raised.

Our method advances the box abstraction concept by replacing the discrete and exact

enveloping with a more continuous and fuzzy representation. We achieve this by learning

a Gaussian model of each monitored neuron, providing a more adaptable representation

of the neuron’s behavior and allowing for rare outliers.

1At the time. Note that most of the monitors mentioned in the section before were published after
our publication.

28

4.2. Conribution: Gaussian Monitoring

4.2.1 Approach

The Gaussian monitor is created by finding Gaussian models for each neuron. We first

extract activation values from the NN for a given set of input values and model each

neuron as a normal distribution. We demonstrate this principle in Example 4.1 and

Figure 4.2.

Example 4.1: Gaussian Monitor.

We describe the idea of the Gaussian monitor using the illustration in Figure 4.2.

While the monitor usually tracks the behavior of all neurons in an NN, in this

example, we assume that we are only tracking the behavior of three neurons for

demonstration purposes. We gather the activation values (Definition 2.3) for those

three neurons in z1(X), z2(X), z3(X) for some finite set X, shown in the first row

of the Figure.

Based on these values, we fit a Gaussian model to each neuron. In the example,

we find the best configurations (0, 0.5), (1, 1), (−1, 0.3)a, where a configuration is

(mean µ, standard deviation σ). We plot the normal distributions in blue in the

second row.

We create an interval that contains the 95th percentile of the Gaussian. For normal

distributions, these intervals can be computed by taking [µ−2σ, µ+2σ]. Afterward,

each neuron is assigned its interval and the initialization phase is completed. We

show these intervals in the third row as red boxes.

In the prediction phase, i.e. during runtime, we get two new inputs to the NN. We

call them A and B and compute z1(A), z2(A), z3(A) and z1(B), z2(B), z3(B) (as

plotted in green in the last row of plots). Then, we count how often these values

are within the intervals of the neurons. Input A is contained in the intervals of

neurons one and two, but B is in no interval. We can decide whether to consider

an input OOD based on these votes. In this example, we want the activation value

of a new input to be within the interval of at least two neurons. Therefore, A is

considered ID, and B is considered OOD.

aWe all know that the example was chosen in this way that the Gaussians look nice.

29

4. Neural Network Monitoring

Figure 4.2: Exemplary Depiction of the Gaussian Monitor.

xz1(X) = [−0.86,−0.21, . . .] z2(X) = [0.29,−0.44, . . .] z3(X) = [−1.39,−0.68, . . .]

−2 0 2

(0, 0.5)

−2 0 2

(1, 1)

−2 0 2

(−1, 0.3)

−2 0 2 −2 0 2 −2 0 2

−2 0 2

z1(A) z1(B)

−2 0 2

z2(A)z2(B)

−2 0 2

z3(A) z3(B)

A: out-of-bounds=1 ⇒ ID

B: out-of-bounds=3 ⇒ OOD

in
it
ia
li
za
ti
on

p
re
d
ic
ti
on

After collecting the activation values for the neurons, i.e., zi(X), we fit a normal distri-

bution to these vectors, which consists of finding the mean and the standard deviation.

Additionally, we fit a separate Gaussian distribution to each neuron for each possible

output class of the NN, which we have not demonstrated in Example 4.1. Since we

assume a normal distribution of activation values, we expect the majority of samples to

fall within the range [µ
(n)
i (c) − kσ

(n)
i (c), µ

(n)
i (c) + kσ

(n)
i (c)], where k is typically a value

close to 2. This interval then contains 95% of the samples, i.e., the 95th percentile.

Definition 4.1: Gaussian Monitor.

Let N be a classification NN that distinguishes between k different classes. For

all layers n ∈ {1, . . . , L − 1}, we get the activation values Z(n)(X) for some set

30

4.2. Conribution: Gaussian Monitoring

X. For each class c ∈ {1, . . . , k}, each layer n, and each neuron i in this layer, we

define the mean µ
(n)
i (c) and standard-deviation σ

(n)
i (c) of z

(n)
i (Xc), where Xc =

{x ∈ X | f(x) = c}, i.e. all activation values of the neuron that are classified with

label c.

The Gaussian Monitor is then defined as the tuple (M,Σ,T), where M =

{µ(n)
i (c)}i,n,c, Σ = {σ(n)

i (c)}i,n,c for each neuron i, layer n, and class c, and

T = {τ1, . . . , τn} the thresholds for each layer n.

Given a Gaussian monitor, we can predict whether a new input x would be considered

OOD or ID. The input x is fed to the NN, and we record the predicted class c. We also

retrieve the activation values Z(n)(x). For each neuron i, we check if the activation value

for x lies within the interval [µ
(n)
i (c) − 2σ

(n)
i (c), µ

(n)
i (c) + 2σ

(n)
i (c)]. This information

is collected for all neurons in all monitored layers. For each layer n, we determine

whether the number of neurons with the activation value outside the interval exceeds

the threshold τn. The results from all layers are then combined using a boolean and,

i.e., the sample x is considered OOD if, in all layers, the number of neurons where the

activation value is outside the interval exceeds the respective threshold.

4.2.2 Experimental Results

In our experiments, we evaluate the Gaussian monitor on four NNs across four dif-

ferent datasets: MNIST[LCB10], FashionMNIST[XRV17], CIFAR-10[KH+09], and GT-

SRB[Sta+11]. The evaluation has two primary objectives: first, to verify our assumption

that the activation values of the neurons are normally distributed, and second, to com-

pare the performance of our monitor with an existing approach [HLS20].

Gaussian Assumption

Our findings indicate that our assumption that the activation values of the neurons

are normally distributed is generally valid. Figure 4.3 presents some of the results

of Publication (D) from different datasets. Although the distributions are not always

perfectly normal, they are typically close to a Gaussian distribution. We can also see

the influence of the ReLU in Fig. 4.3 (b), as there is a spike at value 0.

31

4. Neural Network Monitoring

Figure 4.3: Histogram of Activation Values.

We show the histogram of the activation values on the training set for one randomly

chosen neuron in a random layer of the NN for each of the four different datasets.

The values are shown in blue, and the fitted Gaussian in red.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.0

0.2

0.4

0.6

0.8

1.0

(a) MNIST

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) FashionMNIST

−20 −15 −10 −5 0 5 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(c) CIFAR-10

−10 0 10 20 30
0.00

0.02

0.04

0.06

0.08

(d) GTSRB

Comparison to the Box-monitor

In our evaluation, we compare the performance of the Box-monitor [HLS20] to our

approach on one NN per dataset. We defined a specific case of OOD by training the NN

only on a subset of the classes of the dataset. For instance, the MNIST dataset [LCB10]

contains images of digits from zero to nine; we train the network on the digits zero to

five and consider six to nine as OOD. We choose this set of OOD to ensure that the

OOD images are close to the original images, but the NN is not trained to recognize

them explicitly. Our findings indicate that the performance of our approach is generally

comparable to or better than the Box-monitor [HLS20]. Notably, on CIFAR-10, our

32

4.3. Contribution: Monitizer

approach significantly outperforms the Box-monitor in accurately detecting OOD inputs.

Overall, our approach is promising and achieves good results. However, we observe

challenges in balancing between the correct detection of OOD inputs while minimizing

the false alarms, i.e., wrongly predicting ID as OOD. This issue highlights the challenge

already mentioned in Figure 4.1, for which we propose a solution approach in the next

section.

4.3 Contribution: Monitizer

This section introduces the results from Publication (D) without further citations. Let

us summarize the three challenges we addressed in developing Monitizer: selection

of hyperparameters, transparent evaluation and tool support for monitor development.

Monitizer effectively addresses all these challenges since it is a new modular tool for

the optimization and evaluation of NN monitors.

Summary of Contributions:

� A library of 19 monitoring methods, 9 datasets, and 15 pretrained NNs.

� A one-click solution to develop a monitor for a specific application, making

it highly suitable for industrial applications.

� It contains a well-developed classification of OOD, some of which are

directly and automatically generated for any given ID dataset, allowing for

a transparent evaluation.

� It allows for an optimization of the hyperparameters of a monitor for

a specific objective.

Improvement on State of the Art. All existing tools for NN monitoring, in-

cluding OpenOOD, Pytorch-OOD, and Monitizer, contain several monitors and

datasets, but there are notable differences. Unlike OpenOOD and Pytorch-OOD,

Monitizer provides functionality to tune monitors for a given objective and supports a

transparent evaluation of monitors on a specific ID dataset by automatically providing

generated OOD inputs. Apart from that, Monitizer provides a one-click solution that

evaluates all monitors to return the best available option for a given objective, making

33

4. Neural Network Monitoring

it intuitive to use for non-experts. Built with extensibility in mind, Monitizer allows

to change the NNs, the ID dataset, the monitor, the objective, the OOD datasets, and

the optimization methods with very little effort, making it a versatile and user-friendly

tool.

4.3.1 Framework Description

The key components of Monitizer are the optimization and the evaluation of NN

monitors. Monitors contain parameters that must be specified before use, e.g., which

layers the Gaussian Monitor should monitor or the thresholds. These values are often

set manually. Some parameters can also be set by specifying a desired performance on

the ID set since they directly affect this performance. For specific applications, it is

preferable to optimize them for this particular setting. Monitizer allows the user to

define their objective and optimizes the parameters accordingly.

Figure 4.4 illustrates the framework of Monitizer, which is described in more detail

later on.

Figure 4.4: Framework of Monitizer.

t3 t4

Pretrained:
- MNIST
- . . .

- All monitors
- Box
- Energy
- . . .

O
P
T
IO

N
A
L

Input

- MNIST
- CIFAR-10
- . . .

- Random
- Grid-search
- Gradient-descent

Custom

Custom

Custom

Custom - Average
- Optimal for
one class

Custom

NN

Monitor Template

Dataset

Optimization Method Optimization Objective

Parse

Optimize (optional)

Evaluate (optional)

- Parse the inputs
- Sanity check
- Instantiation

Based on:
- Objective
- Method

- Evaluate on OOD
classes

- Generate table
and plot

Monitizer

Tuned Monitor

Evaluation data

- Configuration of
the monitor
template

- Table with accuracy
of OOD detection

- Parallel
coordinate plot

- AUROC
- Confidence intervals

Output

Optimization Configuration

34

4.3. Contribution: Monitizer

Input

Monitizer accommodates various use cases by allowing a customization of all inputs.

As input, it requires an NN that should be monitored, and the corresponding ID dataset,

as a monitor can only be created for a specific NN, and can only be evaluated on a

given ID dataset. If no additional configuration is provided, Monitizer automatically

executes the one-click method, which evaluates the Area Under the Receiver Operating

Characteristic Curve (AUROC)2 of all integrated monitors on a set of automatically

generated OOD inputs.

Alternatively, Monitizer allows users to select a monitor template, which is a mon-

itor without pre-configured parameters. This template can be one of 19 implemented

monitors from the literature (see also the related work above) or an implementation

provided by the user.

Additionally, the user can specify the optimization configuration, which is the crucial

difference between Monitizer and other available tools: the possibility to optimize a

monitor. First, the user must define the optimization objective, i.e., what to optimize

for. For this, Monitizer provides implementations for standard functions and allows

the user to define their own. The user can also define the optimization method, which

allows them to choose from random, grid-search or gradient-descent. This way, the user

can receive a monitor perfectly adapted to their use case.

Phases of the Tool

Monitizer operates in several phases: parsing, optimization, and evaluation, where the

latter two are optional.

Parsing Monitizer parses the inputs, loads the NN and dataset, and instantiates the

monitor(s) with default values if available.

Optimization During this phase, Monitizer optimizes the parameters of the monitor

template(s) to maximize a specified objective. This process can vary depending

on the optimization method and objective. The optimization method searches

through the search space of candidates for the parameters of the monitor. De-

pending on the chosen method, this happens randomly, by specifying a search grid,

2The Receiver Operating Characteristic (ROC) curve shows the performance of a binary classifier with
different decision thresholds. The AUROC computes the area under this curve. The best possible
value is 1, indicating perfect prediction.

35

4. Neural Network Monitoring

or using gradient descent on the optimization objective value. Once the method

chooses a candidate, it evaluates the optimization objective on it. Based on the

evaluation outcome, the search may stop or continue for another iteration. Moni-

tizer also supports multi-objective optimization. In this case, however, there is

no singular optimal solution. Instead, Monitizer provides the user with a Pareto

curve of optimized solutions.

Evaluation In this phase, Monitizer evaluates a (possibly optimized) monitor on the

OOD classes. In our work, we introduce a classification of OOD data. At the

highest level, it distinguishes between generated and collected OOD inputs. Where

the first is automatically produced by Monitizer (e.g., by adding noise or per-

turbation), the second must be manually selected. This classification ensures a

transparent evaluation, as the evaluated datasets are clearly defined.

The user can choose to opt out of optimization or evaluation, which is useful if they

already possess a well-tuned monitor and wish to utilize the evaluation framework of

Monitizer, or because they want to tune a monitor but not evaluate it (yet).

Output

The output of Monitizer includes a tuned monitor optimized for a given objective

(if selected) and the corresponding evaluation results. The latter consists of a table

detailing the prediction accuracy for OOD detection and the accuracy for predicting ID

inputs. Additionally, Monitizer presents this table as a parallel coordinate plot for a

better graphical understanding. If the monitor was not optimized, Monitizer computes

the AUROC, which does not require defining the threshold. On request, Monitizer

provides confidence intervals for all computed values.

4.3.2 Evaluation

Figure 4.5 shows an exemplary output of Monitizer. In this case, we evaluate four

different monitors (Energy [Liu+20a], ODIN [LLS18], Box-monitor [HLS20], and Gaus-

sian monitor [Publication (E)] on all available OOD datasets. We can see that three

monitors have a similar performance on the ID dataset but varying performances on

the OOD datasets. Mainly, Energy performs noticeably better on the collected OOD,

namely UnseenObject, UnseenEnvironment, and WrongPrediction. We can also see that

36

4.4. Future Work

the Gaussian monitor performs better on all OOD samples with a worse performance

on ID. This shows the practical appearance of the issue raised in Figure 4.1: Having a

better performance on ID leads to a worse performance on OOD and vice versa.

Figure 4.5: Sample Output of Monitizer.

This figure shows a parallel coordinate plot as it is output by Monitizer. There

are four monitors: Energy [Liu+20a], ODIN [LLS18], Box-monitor [HLS20], and

Gaussian monitor [Publication (E)]. We tuned them on an NN that was trained on

MNIST [LCB10] and optimized randomly for the detection of CIFAR-10 [KH+09]

as OOD while keeping a 70% accuracy on predicting ID.

For further examples of how Monitizer works, we refer to Publication (D) and the

repository of the tool (https://gitlab.com/live-lab/software/monitizer).

4.4 Future Work

Monitizer facilitates the comparison of monitoring methods, clearly highlighting their

strengths and weaknesses. We can leverage this information to build an ensemble of

monitors, balancing their weaknesses and strengths. Moreover, it allows us to conduct

a study on existing monitoring techniques using Monitizer’s transparent evaluation.

Such studies can provide valuable insights into patterns and methodologies that show

37

https://gitlab.com/live-lab/software/monitizer

4. Neural Network Monitoring

similar behaviors and spark new ideas for monitoring methods. The Gaussian monitor

was adapted for object detection [Has+23]; therefore, we also plan to extendMonitizer

for NNs that are not restricted to image classification, such as object detection.

38

5 Use Case - River Temperature Pre-

diction

In this chapter, we examine a use case of NNs and emphasize the need for deeper insights

and understandability beyond simple metrics such as accuracy. The efficacy and versa-

tility of NNs have enabled their application across a wide range of research areas: me-

chanical engineering [Ren+20], building construction [PM21; Con+21], physics [SBV21;

Cai+21], chemistry [Sch+21; MC21], human resources [WJ21], biology [CA21], and

many more. In our work, we use NNs to predict the temperature of streams.

Given the critical influence of temperature on abiotic and biotic processes [Ans+20],

expected changes in stream water temperatures from global warming and other human

activities are likely to significantly impact aquatic ecosystems [SMI81]. With the rapid

progression of global warming [Pör+22], there is an urgent need for detailed and reliable

prediction of water temperature in streams to allow timely and effective countermeasures.

In Publication (B), we focus on predicting stream water temperature using NNs and

analyzing their behavior for a more understandable evaluation. We extend this with

further data in Publication (F).

5.1 State of the Art

There are various methods to predict the water temperature of streams. The most

straightforward approach is linear regression, which assumes a direct correlation be-

tween air and water temperatures [Cai06; Kri+13; PFS98; RHŠ15]. However, physical

effects lead to a non-linear relationship between the two parameters [MS99], rendering

these approaches unrealistic. Stochastic modeling offers more complexity through tech-

niques like multiple regression analysis [Cai06; CES98; Ahm+07], second-order Markov

processes [CES98], Box and Jenkins time-series models [CES98; Ahm+07], and second-

39

5. Use Case - River Temperature Prediction

order autoregressive models [Ahm+07]. Additionally, ML methods, including Gaussian

process regression and decision trees, have been employed [Zhu+19], and, recently, NNs

have also been utilized for this purpose.

Rabi, Hadzima-Nyarko, and Šperac [RHŠ15] evaluate many different models for tem-

perature prediction, among which NNs perform best. However, their study is limited to

one specific river, and they evaluate the models solely based on correlation coefficients,

which is insufficient to assess the actual performance of a complicated model like an NN.

Similarly, in [Zha+18], NNs outperform other ML models but they are only evaluated

based on the Root Mean Squared Error (RMSE)1. While this gives a general indication

of the NN’s performance, it does not offer insight into the robustness or reliability of the

model.

Numerous verification methods exist for NNs [Kat+17; Kat+19; Geh+18; Sin+19a;

Sin+19b; Zha+18], but they naturally focus on proving a particular property of the NN.

Therefore, domain experts must define the desirable property to be verified. Addition-

ally, many of these methods are tailored to classification NNs, making their application

to regression tasks more challenging.

5.2 Contribution

The contributions of this chapter are threefold: First, we develop NNs for predicting

the water temperature and evaluate them on existing metrics, improving their precision

compared to related work. Second, we introduce novel analysis methods for regression

NNs, allowing for a more comprehensive investigation of the developed models. Lastly,

we employ our analysis methods for a hydrological study to evaluate more NNs,

focusing on different features provided from hydrology experts.

5.2.1 Water Temperature Prediction

In this section, we outline the development of the NNs employed for temperature pre-

diction from Publication (B) without any further citation. We begin with a description

of the data, followed by an analysis of the models and their performance.

We use three inputs for the training of the NNs, which are all publicly available:

1The root of the average Euclidean distance of the true and predicted values

40

5.2. Contribution

� Air temperature: Daily mean temperature at the closest available measurement

site that is between 3 and 50km of the stream [Deu]

� Runoff : The part of the precipitation that flows into the streams and rivers [Bay]

� Date: The date represented as a value in the interval of 0 to 366

In this work, we use a one- to three-day time window as input for the NNs, with

the output being the predicted river temperature for the following day. This allows for

randomly splitting of the dataset into training and test sets.

The NNs used in this work are relatively small compared to more advanced appli-

cations like image processing. Since previous approaches displayed good performance

using simpler models [Zha+18], we conclude that this size is adequate, and we opt for

smaller models with a modest number of layers and neurons. Specifically, we use fully

connected NNs with up to three hidden layers and a total of 90 neurons. Each of the six

rivers in the dataset is modeled with a separate NN, as our experiments indicate that

the current input features are insufficient to train one general model for all rivers, given

their significantly different performance.

Our models achieve a RMSE ranging from 0.47 to 1.57, which is better than most re-

lated works. Interestingly, the RMSE varies on the rivers, although all hyper-parameters

(architecture of the NN, training method, etc.) were the same. Additional input fea-

tures, such as the amount of sunlight the river receives and information about the entire

course of the stream up to the measurement site, may enhance the performance of the

NNs.

5.2.2 Model Analysis

ML models are typically evaluated using specific metrics. We use the accuracy or clas-

sification tasks, which denotes the percentage of correctly classified inputs. Regression

models are usually evaluated by metrics that compare measured values with predicted

values, such as RMSE, Mean Absolute Error (MAE), Mean Squared Error (MSE), or

R2 [Ark23, Chapter 2.5]. Simple models, such as linear regression, show straightforward

and well-defined behavior and do not require any additional analysis. However, the be-

havior of NNs is much more complex and poorly understood, underlined by extensive

research on explainability [Sam+21]. To enhance the reliability and trustworthiness of

NNs, we introduce three additional metrics to analyze their behavior.

41

5. Use Case - River Temperature Prediction

Idea. Functional analysis inspired the analysis methods since it typically involves

tasks such as computing maximal and minimal points, examining the gradients, and

determining zero points. We want to use them to inspect the black-box of NNs.

Analysis methods from Publication (B):

Robustness Analysis This method computes empirical robustness values of the

NN, which can be seen as finding the maximum value of the derivative.

Min-Max Analysis As the name suggests, we evaluate the NN empirically to find

its maximal and minimal values for a specified range of input values.

Impact Analysis In this method, we evaluate the importance of each of the input

features of the NN, similar to computing partial derivatives.

Robustness Analysis

In classification tasks, local robustness refers to the model remaining “robust” against

small perturbations in the input and still classifying it correctly [Kat+17]. However, for

regression models, which do not involve classes, we redefine local robustness to a conti-

nuity criterium: Given an input and its neighborhood, how much does NN’s prediction

change at most within this area?

Evaluating the robustness provides insight into how sensitive the NN is to its in-

put. Low robustness indicates that even slight perturbations in the input can lead

to significant differences in the output. To assess the robustness of our NNs, we use

DeepPoly [Sin+19a] originally designed to evaluate the local robustness of classifica-

tion models. With minor modifications, we can make it work for our setting. For a

given ε, we empirically compute the minimum, maximum, and mean absolute derivation

δ = |f(y)− f(x)| for inputs x, y to the NN and |x− y| < ε.

Results. The average value of δ typically increases with the number of neurons per

layer, indicating that larger NNs tend to be less robust. In particular, in some instances,

for ε < 1, δ exceeds one, which means that an input change of at most one degree

Celcius in air temperature could result in the NN predicting a river temperature change

of up to three degrees Celcius. This discrepancy is undesirable because, intuitively, the

temperature of a river should not vary by that much with minor air temperature change.

42

5.2. Contribution

This suggests that the NN lacks sufficient robustness or needs more input features to

account for such variations.

Min-Max Analysis

We can quickly determine the minimum or maximum output value for simple models,

such as linear regression or trigonometric functions. While this is not straightforward

for NNs, these values can provide insight into how realistic the computed function is. By

using gradient descent [RN20, Chapter 4.2], we optimize the inputs of the NN to max-

imize or minimize the output. Unlike NN training, this approach optimizes the input

values instead of the internal parameters. To ensure that the inputs remain realistic, we

constrain them within plausible ranges, such as -45°C to 60°C for temperature, and -1

to 40 m3/s for runoff, which slightly exaggerates typical real-world conditions. Due to

the complexity of NN, finding a global optimum is challenging [HBH02]. Therefore, we

start the optimization from several random starting points and choose the overall found

maximum and minimum, respectively.

Results. The output values of the NN vary between -19°C and 61°C. The lower

temperature of -19°C could be an almost plausible water temperature in a very shallow

river that completely freezes during an exceptionally harsh winter. However, 61°C is not

realistic under any circumstances. On the other hand, we achieve these extreme values

only with unrealistic input scenarios, such as -45°C on one day and 60°C on the next,

indicating that these extreme values are only outliers. For a more accurate and realistic

evaluation, it is necessary to define realistic inputs clearly, also in relation to each other,

and to determine the corresponding maximum and minimum values.

Impact Analysis

In introducing the impact analysis, we adopt the concept of sensitivity analysis [ZMC94].

This approach identifies the input features to which the NN is most sensitive. Specifi-

cally, it measures how much an input feature of the NN contributes to the final output

value. The simplest method for computing this involves computing the gradient of the

output with respect to each input feature. This value indicates how much a change in

the input feature affects the output.

By comparing these gradients across different input features, we can assess their rel-

43

5. Use Case - River Temperature Prediction

ative importance in the overall computation. This analysis also allows us to investigate

the difference between the streams.

Results. Our results indicate that this evaluation effectively identifies the most

crucial parameters for good-performing models. These findings align with our other

experiments, where we trained the NN using a subset of the input features. Less relevant

features can be excluded from the input set without diminishing the performance of

the NN. Additionally, we discover that the different streams have varying important

features, suggesting that we still need some distinguishing information between the rivers

to explain this behavior.

5.2.3 Statistical and Hydrological Evaluation

We extend our work by including a more hydrological perspective in Publication (F) in

this section without further citations. We explore a question left open after the previ-

ous approach: Why is there a difference in the performance of the NN for varying rivers?

Summary of Contributions:

Input Features We evaluate various combinations of input parameters, includ-

ing air temperature and discharge (as in Publication (B)), and additionally,

water level and sunshine duration. We confirm the results from the previ-

ous work that the different streams need a different set of input features for

optimal performance.

Influence of Environmental Factors We include a hydrological inspection, such

as land use in the riparian strip and the size of the data set. We discover

that forested land around the stream correlates with a better performance

of the NN, while grasslands have a negative impact. We also find that the

predictions are more accurate for streams closer to their source.

Model Performance Metrics Next to the RMSE and the known analysis meth-

ods from before, we also compute the Pearson’s correlation coefficient (R)

and the Percent Bias (PBIAS) [GSY99]. However, the RMSE is the most

critical indicator, validating its use in our earlier work.

44

5.3. Future Work

Applying the analysis method from Section 5.2.2 yields results consistent with our

previous findings.

We normalize all input features to a range between zero and one, with perturbations

set at 0.01 (approximately 0.8°C). The robustness analysis reveals an average change

in the output of 2°C, with the highest change observed in the stream Otterbach at 10°C.

The NNs in our second work incorporate more input features. We believe this higher

number of features accounts for the increased impact of the perturbations. Additionally,

we identified a significant statistical correlation between the R-value and the perturba-

tion. This indicates that the R-value can serve as a preliminary indicator, potentially

obviating the need for costly robustness analysis.

The Min-Max analysis reveals a significant divergence between the observed min-

imal and maximal values in the data (0°C to 23°C) and the output values computed

by the NN (-24°C to 101°C). Furthermore, we detect a significant statistical correlation

between the RMSE and the maximum values. This indicates that a poorer-performing

NN tends to produce unrealistically high temperature values.

The impact analysis supports our earlier findings that the NNs for different rivers

assign varying importance to input features. While some NNs primarily rely on air

temperature, others find water level the most computationally relevant feature. We

trained various NNs with different sets of input features and compared the results to

the impact analysis. They are primarily consistent: if a feature has a high impact, the

NN’s performance worsens when the feature is omitted. However, we observed that

the sunshine duration, which had the lowest measured impact (often near zero), still

contributed to better performance when included as an input feature. This indicates

a limitation in the insight of the impact computation and underscores the need for

alternative measures.

5.3 Future Work

Our work

A promising direction for future research involves exploring additional input parameters

to enhance the performance of the NNs. Our findings suggest that the NNs perform best

45

5. Use Case - River Temperature Prediction

on headwater streams close to their source. Therefore, incorporating data on vegetation

around the stream and the measurement site or accumulating such information along

the river course prior to the measurement site could be beneficial. To develop a general

model applicable to various rivers, it is essential to identify the distinguishing input

features for the rivers.

Additionally, we have yet to evaluate the performance of the NNs over time. In-

vestigating whether the performance degrades over time represents an intriguing and

relevant direction for future research and toward the goal of a robust prediction model.

Furthermore, examining the impact of the current influence of climate change on model

performance could provide valuable insights into how to make the model more robust

to future changes.

Other work

Since the publication of our works (B) and (F), there have been some advancements

in the prediction of water temperatures of rivers using NARX-based models (Nonlinear

AutoRegressive model with eXogenous inputs) [Zhu+24], which is a type of NN that

receives as input external values and retains information about its prior performance.

The use of ML models was extended to graph NN for the prediction of water flow fore-

casting [Rou+23]. Our recognition of the need for additional evaluation criteria for NNs

has led to new metrics for assessing Reinforcement Learning (RL) controllers [Cha+22].

Furthermore, in [Pan+24], the authors study how the stream temperature varies across

different locations and times of the day, building on our finding that riparian vegetation

significantly influences the river temperature.

46

6 POMDP Strategy Representation via

Automata Learning

In this chapter, we dive into POMDPs and how to represent their strategies. POMDPs

are typically used as a computational model of reality whenever we want to model

a situation where the agent does not have complete information about the state of

the world. This makes them very useful for applications that need a more accurate

representation of reality, like robotics or autonomous cars, where not everything can be

perceived or predicted.

In Publication (C), we focus on representing strategies that perform well in practice

without being provably optimal. In the following, we present our results without further

citations to the original publication. There are three core aspects of strategy synthesis

procedures:

1. quality of the synthesized strategies,

2. size and explainability of the representation of the synthesized strategies,

3. scalability of the computation method.

These objectives do not always align. For example, a bigger strategy could produce a

better value, or it might take longer to produce a better strategy. Therefore, we must

find a balance in optimizing for these aspects.

We use active automata learning as a core technique. It helps us to turn complex

strategies into simpler forms, i.e., FSCs. Their compact structure makes them easier

to understand and use without making them less precise. This balance between per-

formance and simplicity is essential, especially where trust and understandability are

crucial.

47

6. POMDP Strategy Representation via Automata Learning

6.1 State of the Art

There are numerous approaches to solving planning problems in POMDPs, as evidenced

by the literature [SS73; Hau00; SPK13]. Many state-of-the-art solvers employ point-

based methods such as PBVI [PGT03], Perseus [SV05], and SARSOP [KHL08], which

address both bounded and unbounded discounted properties. These methods typically

utilize α-vectors [KLC98] to represent the strategy, which is useful for analysis but

heavily lacks explainability and involves a significant computational overhead. Notably,

while SARSOP allows an export in automaton format, there is no explanation of how it

is generated or what it exactly means. In the AI area, strategies for POMDPs are also

represented as Recurrent Neural Networks (RNNs) [Car+19; Car+23; CJT21; DKT08;

HS15]. However, all of these approaches suffer from the lack of interpretability of NNs

(see also Chapters 3 and 4).

Further, some methods focus on exploring and resolving the belief MDP underlying

a POMDP, particularly for optimizing infinite-horizon objectives without discounting

[NPZ17; Bor+20; BKQ22]. However, the resulting strategies are typically large and

contain redundant information.

Additionally, there are direct approaches to strategy synthesis, where strategies are

created from a set of potential candidates [Han98; Meu+99a] and then applied to a

POMDP to form a Markov chain. Search methods for these strategies include induc-

tive synthesis [And+22], gradient descent [Hec+22; Meu+99b], and convex optimiza-

tion [ABZ10; Jun+18; Cub+21].

There is a long history of representing strategies for POMDPs as FSCs [Meu+99b;

Meu+99a; Han98; And+22]. The closest approach to our work is using inductive syn-

thesis of FSCs for POMDP strategies [And+22]. This approach relies on the tool

PAYNT [And+21], whose original purpose is automatically generating probabilistic

programs. It was later adapted to generate families of candidate FSCs that are evalu-

ated to find the optimal choice. This approach iteratively increases the size of the FSCs

once it finds that the current size is insufficient. While this promises tiny representations,

it also comes with a computational overhead of searching the whole design space.

In SAYNT [And+23], the idea of inductive synthesis is tightly coupled with Storm

[Hen+22b]. While Storm performs belief exploration to gather information, SAYNT

generates a candidate FSC that can improve the exploration. This tandem approach

improves on the previous results of only using PAYNT [And+22].

48

6.2. Contribution

6.2 Contribution

Publication (C) proposes a highly scalable postprocessing methodology for POMDP

strategies that significantly enhances both the quality and the size of the representation.

Our technique is universally compatible with existing frameworks that output a strat-

egy, only requiring the ability to query the strategy function (i.e., to determine which

action corresponds to a given sequence of observations). Notably, tools like Storm

benefit significantly from our improvements in strategy quality and representation.

Our approach employs active automata-learning techniques to derive a compact FSC

representation of a strategy. On one hand, we acquire a fully equivalent automaton

representation, thereby preserving the original strategy’s value. On the other hand, we

introduce heuristics that subtly modify the strategy and can improve the value and size.

Summary of Contributions:

� A novel application of automaton learning for POMDP strategies.

� Transforming any given POMDP strategy into a similar compact FSC im-

proving size and explainability, e.g., with at most ten nodes in more than

80% of the benchmarks.

� Enhancing strategy quality compared to the given input on 12 of 25 bench-

marks and better than PAYNT on 19 benchmarks.

� Demonstrating scalability in challenging benchmarks, outperforming

PAYNT on all but two benchmarks.

6.2.1 Automaton Learning

Since an FSC can be represented as a Mealy machine, our framework mimics an extension

of the L*-automaton-learning approach [Ang87] for learning Mealy machines [SG09].

The core difference between our approach and the standard algorithm lies in the nature

of our sparse learning space: not all observations in a POMDP are reachable from

all states. Consequently, numerous sequences of observations are inherently impossible

within the POMDP. To mark such situations, we introduce a new symbol (a “don’t-care”

49

6. POMDP Strategy Representation via Automata Learning

symbol, �) denoting that the FSC has complete freedom to decide what to do.

Figure 6.1 provides an overview of the learning process. The input is expected to be a

(partially defined) strategy in the form of a table mapping observation sequences in the

POMDP to a distribution over actions. We create an initial FSC from this input, which

serves as a first guess based on the following immediate observation. Depending on the

complexity of the given strategy, this initial guess requires updates. The equivalence

check then verifies whether the hypothesis FSC accurately represents the given strategy

or identifies inconsistencies, which it returns as a counterexample. In the latter case,

the FSC is updated. This process iterates until the strategy table and the hypothesis

FSC coincide. Note that the algorithm is guaranteed to converge if the given strategy

is finite and consistent.

The presence of “don’t-care” symbols leads to a bigger FSC than necessary since

the learning will try to distinguish outputs from actual actions. This leads to more

states than required, and we need to perform an additional minimization step, which

involves replacing “don’t-care” entries with actual observations to reduce the size of the

automaton.

Figure 6.1: Overview of the FSC Learning Framework.

Strategy

table S

Create initial

FSC

Equivalence

check

Update

FSC

Minimize FSC FSC F
initial FSC

F

false
+
counter-example

true

FSC F

We demonstrate the automaton learning and minimization in Example 6.1.

50

6.2. Contribution

Example 6.1: FSC Generation for POMDP strategies.

We consider a robot that is randomly dropped onto a 2×2 grid, where it can land

in any position (uniformly at random). The robot can move within the grid, not

crossing any wall. However, its actions may fail with a certain probability. Its

goal is to reach the goal state (marked in green with a smiley). The key problem

is that the robot can only see whether it is still hanging (init) or the indicated

colors: blue (b), yellow (y), goal (g).

On the left side, we can see an example of a strategy table that our approach

would receive as input. For some observation sequences, we have a given action

in the table. For example, after seeing init and b, the robot is supposed to move

up.

In this example, the initial hypothesis FSC is already equivalent to the table. On

the right, we show the resulting FSC, where the dashed state is the one that is

removed in the minimization. The solid states represent the final FSC. Note that

the minimization removes only one state and creates a self-loop in state s1 instead.

Strategy Table S:
Observation sequence action

[init] drop

[init, b] up

[init, y] down

[init, b, b] right

[init, y, y] down

[init, b, b, y] down

s0 s1
init:

drop

init: drop

s2

s3

b: up

y: down b: right

y: down

51

6. POMDP Strategy Representation via Automata Learning

6.2.2 Heuristics

In our application, using Storm, we encounter an additional situation beyond the “don-

t care” scenario: Storm performs belief-exploration [Bor+20] to find a strategy that

is inherently incomplete (in most cases). Therefore, in some states, we “don’t-know”

what an optimal action could be. To overcome this, we introduce another symbol, χ,

representing states with reachable observations, in contrast to “don’t-care” but in which

the best action remains unknown.

Such a situation with unknown optimal actions can also arise in other applications.

Depending on the computation of the strategy, it may be incomplete, necessitating the

use of the “don’t-know” symbol. While these symbols do not directly influence the

learning process, they cannot be entirely disregarded. We must replace them by actual

actions using some heuristics for the final FSC to yield a complete strategy (see Section

3.4 of Publication (C)).

We propose two heuristics for this case:

Minimization In this case, we replace every χ with a †. The minimization produces

the smallest possible automaton by ignoring all “don’t-know” and “don’t-care”

entries. Ideally, this results in a strategy that uses existing actions as candidates

for the “don’t-know” situations.

Distribution In this case, we replace every χ by a random distribution over all actions

that have appeared before for the given observation. This results in an FSC where

some output actions are randomized.

Our experiments show that none of the heuristics outperforms the other on all bench-

marks. Since our learning is typically very fast, we propose to use a portfolio approach

containing both heuristics.

6.2.3 Experiments

Let us repeat the three objectives for POMDP strategies: quality, size, and scalability. In

our experiments, we evaluate the performance of our approach in light of each objective.

Quality To verify the good quality of our FSCs, we compare the value of our strategy

to the value of the given strategy table and PAYNT [And+22]. Our FSCs always

52

6.3. Future Work

perform equal and often better than the given table from Storm [Hen+22b].

Compared to PAYNT, our FSCs provide a better or equal strategy in 19 of 29

benchmarks.

Size To verify that our FSCs are compact, we compare the size of the FSC to the size

of the given table and the size of the FSCs of PAYNT. Our FSCs are always

smaller than the given table, often by magnitudes. Compared to PAYNT, we

have smaller or equally-sized FSCs in 15 of 29 benchmarks, which is surprising

given that PAYNT inherently generates the smallest possible FSCs.

Scalability To check the scalability of our approach, we compare the runtime of Storm

plus learning with the runtime of PAYNT. We outperform PAYNT in 24 cases

and are equal in 3 cases, but never worse. Note that the learning alone usually takes

less than one second if there is no timeout; only in three cases does it take several

seconds, proving that this approach is easily scalable even for larger instances.

Overall, our approach is considerably faster than PAYNT, with often better perfor-

mance in terms of the resulting FSCs’ size and quality.

6.3 Future Work

We can continue our line of research by integrating our learning framework in a tandem

approach similar to [And+23], which promises even more improvement in the quality of

the strategies. Additionally, we can find other heuristics to improve the learned automa-

ton and get more information from Storm [Hen+22b] to increase their performance.

Lastly, there is research on learning automata with incomplete information [ST94;

GKS03], which could be interesting in our case to mitigate the minimization in the end.

It could allow our approach to be even more scalable since there are six benchmarks

where Storm [Hen+22b] still provides a result, but the learning times out.

53

7 Conclusion

This thesis presents significant advancements in improving the safety of AI-based sys-

tems. These cover the safety and reliability of NNs and efficient representations of

POMDP strategies.

For NNs, this thesis introduces a novel abstraction framework that creates a smaller

version of the network while providing guarantees on the difference. We achieve this by

replacing neurons with linear combinations based on semantic information, which yields

better results than relying on syntactic information. Although the current abstraction

techniques do not sufficiently reduce the problem to scale the verification of huge NNs

to a realistic setting yet, this work makes an essential step in this direction. Especially

the insight that semantic information is more valuable for abstraction offers a promising

avenue for future research and improvement.

Additionally, this thesis introduces a novel, light-weight monitoring method for NNs

using Gaussian models and shows its improved performance compared to existing ap-

proaches. To address the problem of developing and efficiently evaluating runtime mon-

itors, we introduce Monitizer, an extensible framework designed for both monitor

developers and industrial users. With this, we provide urgently necessary tooling for de-

veloping runtime monitors in industrial settings and provide an environment for trans-

parent and comparable evaluation of monitors. This tool significantly enhances the

application of runtime monitors in real applications and eases their development by the

scientific community.

Furthermore, we present a straightforward automaton learning technique for the strat-

egy representation of POMDPs, enabling the transformation of any strategy into an FSC.

This approach can be applied to less understandable representations, like RNNs or α-

vectors, provided they can be transformed into a table or directly integrated into the

L* learning framework. With this, we pave the way for converting less understandable

strategies into the more human-readable format of an FSC.

55

7. Conclusion

Overall, this thesis contains solution approaches for problems related to the safety

and reliability of AI systems. Towards a more scalable verification, we provide an ap-

proach for the abstraction of NNs, a monitoring method for NNs based on Gaussian

models, tooling for monitor generation for more reliable NN-based systems, and a scal-

able method for transforming POMDP strategies to FSCs for more explainability. All

of them contribute to a safer application of AI systems.

56

Bibliography

[ABZ10] Christopher Amato, Daniel S. Bernstein, and Shlomo Zilberstein. “Op-
timizing fixed-size stochastic controllers for POMDPs and decentralized
POMDPs”. In: Auton. Agents Multi Agent Syst. 21.3 (2010), pp. 293–320
(cit. on pp. 3, 48).

[Ahm+07] Behrouz Ahmadi-Nedushan, André St-Hilaire, Taha BMJ Ouarda, Lau-
rent Bilodeau, Elaine Robichaud, Nathalie Thiémonge, and Bernard Bobée.
“Predicting river water temperatures using stochastic models: case study
of the Moisie River (Québec, Canada)”. In: Hydrological Processes: An In-
ternational Journal 21.1 (2007), pp. 21–34 (cit. on pp. 39, 40).

[Alb21] Aws Albarghouthi. “Introduction to Neural Network Verification”. In: Found.
Trends Program. Lang. 7.1-2 (2021), pp. 1–157 (cit. on p. 2).

[And+21] Roman Andriushchenko, Milan Ceska, Sebastian Junges, Joost-Pieter Ka-
toen, and Simon Stupinský. “PAYNT: A Tool for Inductive Synthesis of
Probabilistic Programs”. In: CAV (1). Vol. 12759. Lecture Notes in Com-
puter Science. Springer, 2021, pp. 856–869 (cit. on p. 48).

[And+22] Roman Andriushchenko, Milan Ceska, Sebastian Junges, and Joost-Pieter
Katoen. “Inductive synthesis of finite-state controllers for POMDPs”. In:
UAI. Vol. 180. Proceedings of Machine Learning Research. PMLR, 2022,
pp. 85–95 (cit. on pp. 3, 48, 52, 101).

[And+23] Roman Andriushchenko, Alexander Bork, Milan Ceska, Sebastian Junges,
Joost-Pieter Katoen, and Filip Macák. “Search and Explore: Symbiotic
Policy Synthesis in POMDPs”. In: CAV (3). Vol. 13966. Lecture Notes in
Computer Science. Springer, 2023, pp. 113–135 (cit. on pp. 3, 48, 53).

[Ang87] Dana Angluin. “Learning Regular Sets from Queries and Counterexam-
ples”. In: Inf. Comput. 75.2 (1987), pp. 87–106 (cit. on p. 49).

[Ans+20] Sten Anslan, Mina Azizi Rad, Johannes Buckel, Paula Echeverria Galindo,
Jinlei Kai, Wengang Kang, Laura Keys, Philipp Maurischat, Felix Nieberd-
ing, Eike Reinosch, Handuo Tang, Tuong Vi Tran, YuyangWang, and Antje
Schwalb. “Reviews and syntheses: How do abiotic and biotic processes re-
spond to climatic variations in the Nam Co catchment (Tibetan Plateau)?”
In: Biogeosciences 17 (2020), pp. 1261–1279 (cit. on p. 39).

57

Bibliography

[Anw+18] Syed Muhammad Anwar, Muhammad Majid, Adnan Qayyum, Muhammad
Awais, Majdi R. Alnowami, and Muhammad Khurram Khan. “Medical
Image Analysis using Convolutional Neural Networks: A Review”. In: J.
Medical Syst. 42.11 (2018), p. 226 (cit. on pp. 1, 2).

[Ark23] Jeremy Arkes. Regression Analysis : A Practical Introduction. Taylor &
Francis Group, 2023 (cit. on p. 41).

[Ash+20] Pranav Ashok, Vahid Hashemi, Jan Kret́ınský, and Stefanie Mohr. “Deep-
Abstract: Neural Network Abstraction for Accelerating Verification”. In:
ATVA. Vol. 12302. Lecture Notes in Computer Science. Springer, 2020,
pp. 92–107 (cit. on pp. 11, 16, 17, 22, 23).

[Aut24] The LCZero Authors. LeelaChessZero. Version 0.30.0. May 24, 2024. url:
https://lczero.org/ (cit. on p. 1).

[Bay] Bayerisches Landesamt für Umwelt, www.lfu.bayern.de.GKD Bayern. url:
https://www.gkd.bayern.de/de/ (visited on 06/22/2021) (cit. on p. 41).

[BB24] Christopher M. Bishop and Hugh Bishop. Deep Learning - Foundations
and Concepts. Springer, 2024 (cit. on p. 11).

[BCN06] Cristian Buciluă, Rich Caruana, and Alexandru Niculescu-Mizil. “Model
compression”. In: Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. Association for
Computing Machinery, 2006, pp. 535–541 (cit. on p. 16).

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, 2008 (cit. on p. 12).

[BKQ22] Alexander Bork, Joost-Pieter Katoen, and Tim Quatmann. “Under-Approximating
Expected Total Rewards in POMDPs”. In: TACAS (2). Vol. 13244. Lec-
ture Notes in Computer Science. Springer, 2022, pp. 22–40 (cit. on pp. 3,
48).

[Bon02] Blai Bonet. “An epsilon-Optimal Grid-Based Algorithm for Partially Ob-
servable Markov Decision Processes”. In: ICML. Morgan Kaufmann, 2002,
pp. 51–58 (cit. on p. 4).

[Bor+20] Alexander Bork, Sebastian Junges, Joost-Pieter Katoen, and Tim Quat-
mann. “Verification of Indefinite-Horizon POMDPs”. In: ATVA. Vol. 12302.
Lecture Notes in Computer Science. Springer, 2020, pp. 288–304 (cit. on
pp. 3, 48, 52).

[Bou+23a] Fateh Boudardara, Abderraouf Boussif, Pierre-Jean Meyer, and Mohamed
Ghazel. “A review of abstraction methods towards verifying neural net-
works”. In: ACM Trans. Embed. Comput. Syst. (2023) (cit. on p. 23).

[Bou+23b] Fateh Boudardara, Abderraouf Boussif, Pierre-Jean Meyer, and Mohamed
Ghazel. “INNAbstract: An INN-Based Abstraction Method for Large-Scale
Neural Network Verification”. In: IEEE Transactions on Neural Networks
and Learning Systems (2023) (cit. on p. 23).

58

https://lczero.org/
https://www.gkd.bayern.de/de/

Bibliography

[Bri+23] Christopher Brix, Mark Niklas Müller, Stanley Bak, Taylor T. Johnson, and
Changliu Liu. “First three years of the international verification of neural
networks competition (VNN-COMP)”. In: Int. J. Softw. Tools Technol.
Transf. 25.3 (2023), pp. 329–339 (cit. on p. 2).

[Bue+19] Antoine Buetti-Dinh, Vanni Galli, Sören Bellenberg, Olga Ilie, Malte Herold,
Stephan Christel, Mariia Boretska, Igor V. Pivkin, Paul Wilmes, Wolf-
gang Sand, Mario Vera, and Mark Dopson. “Deep neural networks out-
perform human expert’s capacity in characterizing bioleaching bacterial
biofilm composition”. In: Biotechnology Reports 22 (2019) (cit. on p. 2).

[CA21] SueYeon Chung and L. F. Abbott. “Neural population geometry: An ap-
proach for understanding biological and artificial neural networks”. In:
CoRR abs/2104.07059 (2021) (cit. on p. 39).

[Cai+21] Shengze Cai, Zhicheng Wang, Sifan Wang, Paris Perdikaris, and George
Em Karniadakis. “Physics-Informed Neural Networks for Heat Transfer
Problems”. In: Journal of Heat Transfer 143.6 (2021), p. 060801 (cit. on
p. 39).

[Cai06] Daniel Caissie. “The thermal regime of rivers: a review”. In: Freshwater
biology 51.8 (2006), pp. 1389–1406 (cit. on p. 39).

[Car+19] Steven Carr, Nils Jansen, Ralf Wimmer, Alexandru Constantin Serban,
Bernd Becker, and Ufuk Topcu. “Counterexample-Guided Strategy Im-
provement for POMDPs Using Recurrent Neural Networks”. In: IJCAI.
ijcai.org, 2019, pp. 5532–5539 (cit. on p. 48).

[Car+23] Steven Carr, Nils Jansen, Sebastian Junges, and Ufuk Topcu. “Safe Rein-
forcement Learning via Shielding under Partial Observability”. In: AAAI.
AAAI Press, 2023, pp. 14748–14756 (cit. on p. 48).

[CCT16] Krishnendu Chatterjee, Martin Chmelik, and Mathieu Tracol. “What is
decidable about partially observable Markov decision processes with ω-
regular objectives”. In: J. Comput. Syst. Sci. 82.5 (2016), pp. 878–911 (cit.
on p. 3).

[CES98] Daniel Caissie, Nassir El-Jabi, and André St-Hilaire. “Stochastic modelling
of water temperatures in a small stream using air to water relations”. In:
Canadian Journal of Civil Engineering 25.2 (1998), pp. 250–260 (cit. on
p. 39).

[CGL92] Edmund M. Clarke, Orna Grumberg, and David E. Long. “Model Checking
and Abstraction”. In: POPL. ACM Press, 1992, pp. 342–354 (cit. on p. 15).

[Cha+22] Arnav Chakravarthy, Nina Narodytska, Asmitha Rathis, Marius Vilcu,
Mahmood Sharif, and G Singh. “Property-driven evaluation of rl-controllers
in self-driving datacenters”. In: Workshop on Challenges in Deploying and
Monitoring Machine Learning Systems (DMML). Available at https://

plus-tau.github.io/files/dmml22-rl-controllers.pdf. 2022 (cit. on
p. 46).

59

https://plus-tau.github.io/files/dmml22-rl-controllers.pdf
https://plus-tau.github.io/files/dmml22-rl-controllers.pdf

Bibliography

[Che+17] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. “Multi-view
3D Object Detection Network for Autonomous Driving”. In: CVPR. IEEE
Computer Society, 2017, pp. 6526–6534 (cit. on pp. 1, 2).

[CJT21] Steven Carr, Nils Jansen, and Ufuk Topcu. “Task-Aware Verifiable RNN-
Based Policies for Partially Observable Markov Decision Processes”. In: J.
Artif. Intell. Res. 72 (2021), pp. 819–847 (cit. on pp. 3, 48).

[Cla+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Hel-
mut Veith. “Counterexample-Guided Abstraction Refinement”. In: CAV.
Vol. 1855. Lecture Notes in Computer Science. Springer, 2000, pp. 154–169
(cit. on p. 15).

[CNR17] Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. “Maximum Re-
silience of Artificial Neural Networks”. In: ATVA. Vol. 10482. Lecture Notes
in Computer Science. Springer, 2017, pp. 251–268 (cit. on p. 2).

[CNY19] Chih-Hong Cheng, Georg Nührenberg, and Hirotoshi Yasuoka. “Runtime
Monitoring Neuron Activation Patterns”. In: DATE. IEEE, 2019, pp. 300–
303 (cit. on pp. 3, 11, 28).

[Con+21] Marcello Congro, Vitor Moreira de Alencar Monteiro, Amanda L.T. Brandão,
Brunno F. dos Santos, Deane Roehl, and Flávio de Andrade Silva. “Pre-
diction of the residual flexural strength of fiber reinforced concrete using
artificial neural networks”. In: Construction and Building Materials 303
(2021), p. 124502 (cit. on p. 39).

[Cub+21] Murat Cubuktepe, Nils Jansen, Sebastian Junges, Ahmadreza Marandi,
Marnix Suilen, and Ufuk Topcu. “Robust Finite-State Controllers for Un-
certain POMDPs”. In: AAAI. AAAI Press, 2021, pp. 11792–11800 (cit. on
p. 48).

[Deu] Deutscher Wetterdienst. DWD Climate Data Center (CDC): Historical
daily station observations (temperature, pressure, precipitation,sunshine du-
ration, etc.) for Germany, version v21.3, 2021. url: https://www.dwd.
de/DE/klimaumwelt/cdc/cdc%5C_node.html (visited on 06/21/2021)
(cit. on p. 41).

[Dju+23] Andrija Djurisic, Nebojsa Bozanic, Arjun Ashok, and Rosanne Liu. “Ex-
tremely Simple Activation Shaping for Out-of-Distribution Detection”. In:
ICLR. OpenReview.net, 2023 (cit. on p. 27).

[DKT08] Le Tien Dung, Takashi Komeda, and Motoki Takagi. “Reinforcement Learn-
ing for POMDP Using State Classification”. In: Appl. Artif. Intell. 22.7&8
(2008), pp. 761–779 (cit. on pp. 3, 48).

[EGK20] Yizhak Yisrael Elboher, Justin Gottschlich, and Guy Katz. “An Abstraction-
Based Framework for Neural Network Verification”. In: CAV (1). Vol. 12224.
Lecture Notes in Computer Science. Springer, 2020, pp. 43–65 (cit. on
pp. 16, 23).

60

https://www.dwd.de/DE/klimaumwelt/cdc/cdc%5C_node.html
https://www.dwd.de/DE/klimaumwelt/cdc/cdc%5C_node.html

Bibliography

[Ehl17] Rüdiger Ehlers. “Formal Verification of Piece-Wise Linear Feed-Forward
Neural Networks”. In: ATVA. Vol. 10482. Lecture Notes in Computer Sci-
ence. Springer, 2017, pp. 269–286 (cit. on p. 2).

[Geh+18] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov,
Swarat Chaudhuri, and Martin T. Vechev. “AI2: Safety and Robustness
Certification of Neural Networks with Abstract Interpretation”. In: IEEE
Symposium on Security and Privacy. IEEE Computer Society, 2018, pp. 3–
18 (cit. on pp. 16, 40).

[GKS03] Sally A. Goldman, Stephen Kwek, and Stephen D. Scott. “Learning from
examples with unspecified attribute values”. In: Inf. Comput. 180.2 (2003),
pp. 82–100 (cit. on p. 53).

[Gra95] My Grandma. Chocolate Cake. Ingredients: 250g butter, 300g sugar, 4
eggs, 375g flour, 200g sour cream, 50g unsweet cocoa, 15g baking powder
(or use self-rising flour). Instructions: Mix all ingredients together and
pour on a baking tray. Bake at 165°C 25-35min. Add chocolate glaze, if
you want. 1995 (cit. on p. 21).

[GSS15] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining
and Harnessing Adversarial Examples”. In: ICLR (Poster). 2015 (cit. on
p. 2).

[GSY99] Hoshin Vijai Gupta, Soroosh Sorooshian, and Patrice Ogou Yapo. “Status
of Automatic Calibration for Hydrologic Models: Comparison with Multi-
level Expert Calibration”. In: Journal of Hydrologic Engineering 4.2 (1999),
pp. 135–143 (cit. on p. 44).

[Gu+20] Weibin Gu, Kimon P. Valavanis, Matthew J. Rutherford, and Alessandro
Rizzo. “UAV Model-based Flight Control with Artificial Neural Networks:
A Survey”. In: J. Intell. Robotic Syst. 100.3 (2020), pp. 1469–1491 (cit. on
p. 1).

[Guo+17] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. “On Cali-
bration of Modern Neural Networks”. In: ICML. Vol. 70. Proceedings of
Machine Learning Research. PMLR, 2017, pp. 1321–1330 (cit. on p. 27).

[Han+15] Song Han, Jeff Pool, John Tran, and William J. Dally. “Learning both
Weights and Connections for Efficient Neural Network”. In: NIPS. 2015,
pp. 1135–1143 (cit. on p. 16).

[Han98] Eric A. Hansen. “Solving POMDPs by Searching in Policy Space”. In: UAI.
Morgan Kaufmann, 1998, pp. 211–219 (cit. on p. 48).

[Has+23] Vahid Hashemi, Jan Kret́ınský, Sabine Rieder, and Jessica Schmidt. “Run-
time Monitoring for Out-of-Distribution Detection in Object Detection
Neural Networks”. In: FM. Vol. 14000. Lecture Notes in Computer Sci-
ence. Springer, 2023, pp. 622–634 (cit. on pp. 3, 38).

61

Bibliography

[Hau00] Milos Hauskrecht. “Value-Function Approximations for Partially Observ-
able Markov Decision Processes”. In: J. Artif. Intell. Res. 13 (2000), pp. 33–
94 (cit. on pp. 3, 48).

[HBH02] Lonnie Hamm, B. Wade Brorsen, and Martin T. Hagan. “Global optimiza-
tion of neural network weights”. In: Proceedings of the 2002 International
Joint Conference on Neural Networks. IJCNN’02 (Cat. No.02CH37290).
Vol. 2. 2002, pp. 1228–1233 (cit. on p. 43).

[Hec+22] Linus Heck, Jip Spel, Sebastian Junges, Joshua Moerman, and Joost-Pieter
Katoen. “Gradient-Descent for Randomized Controllers Under Partial Ob-
servability”. In: VMCAI. Vol. 13182. Lecture Notes in Computer Science.
Springer, 2022, pp. 127–150 (cit. on pp. 3, 48).

[Hen+22a] Dan Hendrycks, Steven Basart, Mantas Mazeika, Andy Zou, Joseph Kwon,
Mohammadreza Mostajabi, Jacob Steinhardt, and Dawn Song. “Scaling
Out-of-Distribution Detection for Real-World Settings”. In: ICML. Vol. 162.
Proceedings of Machine Learning Research. PMLR, 2022, pp. 8759–8773
(cit. on p. 27).

[Hen+22b] Christian Hensel, Sebastian Junges, Joost-Pieter Katoen, Tim Quatmann,
and Matthias Volk. “The probabilistic model checker Storm”. In: Int. J.
Softw. Tools Technol. Transf. 24.4 (2022), pp. 589–610 (cit. on pp. 48, 53).

[Hen24] Jon Henley. “Tesla Autopilot feature was involved in 13 fatal crashes,
US regulator says”. In: The Guardian (Apr. 2024). url: https://www.
theguardian.com/technology/2024/apr/26/tesla-autopilot-fatal-

crash (visited on 06/04/2024) (cit. on p. 1).

[HG17] Dan Hendrycks and Kevin Gimpel. “A Baseline for Detecting Misclassified
and Out-of-Distribution Examples in Neural Networks”. In: ICLR (Poster).
OpenReview.net, 2017 (cit. on pp. 2, 27).

[HGL21] Rui Huang, Andrew Geng, and Yixuan Li. “On the Importance of Gradi-
ents for Detecting Distributional Shifts in the Wild”. In: NeurIPS. 2021,
pp. 677–689 (cit. on p. 27).

[HKW11] Geoffrey E. Hinton, Alex Krizhevsky, and Sida D. Wang. “Transforming
Auto-Encoders”. In: ICANN (1). Vol. 6791. Lecture Notes in Computer
Science. Springer, 2011, pp. 44–51 (cit. on p. 2).

[HLS20] Thomas A. Henzinger, Anna Lukina, and Christian Schilling. “Outside
the Box: Abstraction-Based Monitoring of Neural Networks”. In: ECAI.
Vol. 325. Frontiers in Artificial Intelligence and Applications. IOS Press,
2020, pp. 2433–2440 (cit. on pp. 27, 28, 31, 32, 36, 37, 139).

[HS15] Matthew J. Hausknecht and Peter Stone. “Deep Recurrent Q-Learning for
Partially Observable MDPs”. In: AAAI Fall Symposia. AAAI Press, 2015,
pp. 29–37 (cit. on p. 48).

62

https://www.theguardian.com/technology/2024/apr/26/tesla-autopilot-fatal-crash
https://www.theguardian.com/technology/2024/apr/26/tesla-autopilot-fatal-crash
https://www.theguardian.com/technology/2024/apr/26/tesla-autopilot-fatal-crash

Bibliography

[HS22] Yuning He and Johann Schumann. Runtime Monitoring for Unmanned
Aerospace Systems with Neural Network Components. Presentation at the
Meeting of Engineering Computational Technology 2022, https://ntrs.
nasa.gov/citations/20220012988. 2022 (cit. on p. 3).

[Hua+19] Chao Huang, Jiameng Fan, Wenchao Li, Xin Chen, and Qi Zhu. “ReachNN:
Reachability Analysis of Neural-Network Controlled Systems”. In: ACM
Trans. Embed. Comput. Syst. 18.5s (2019), 106:1–106:22 (cit. on p. 2).

[HVD15] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. “Distilling the Knowl-
edge in a Neural Network”. In: CoRR abs/1503.02531 (2015) (cit. on p. 16).

[JL24] Taylor T. Johnson and Changliu Liu. VNN-cOMP2020 Report. May 24,
2024. url: https://www.overleaf.com/project/5f0c85e8d15dc10001749fa9
(cit. on p. 2).

[Jun+18] Sebastian Junges, Nils Jansen, Ralf Wimmer, Tim Quatmann, Leonore
Winterer, Joost-Pieter Katoen, and Bernd Becker. “Finite-State Controllers
of POMDPs using Parameter Synthesis”. In: UAI. AUAI Press, 2018,
pp. 519–529 (cit. on p. 48).

[Kat+17] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J.
Kochenderfer. “Reluplex: An Efficient SMT Solver for Verifying Deep Neu-
ral Networks”. In: CAV (1). Vol. 10426. Lecture Notes in Computer Science.
Springer, 2017, pp. 97–117 (cit. on pp. 2, 40, 42).

[Kat+19] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher
Lazarus, Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Alek-
sandar Zeljic, David L. Dill, Mykel J. Kochenderfer, and Clark W. Barrett.
“The Marabou Framework for Verification and Analysis of Deep Neural
Networks”. In: CAV (1). Vol. 11561. Lecture Notes in Computer Science.
Springer, 2019, pp. 443–452 (cit. on pp. 2, 40).

[Kat+22] Julian Katz-Samuels, Julia B. Nakhleh, Robert D. Nowak, and Yixuan Li.
“Training OOD Detectors in their Natural Habitats”. In: ICML. Vol. 162.
Proceedings of Machine Learning Research. PMLR, 2022, pp. 10848–10865
(cit. on p. 28).

[KFO22] Konstantin Kirchheim, Marco Filax, and Frank Ortmeier. “PyTorch-OOD:
A Library for Out-of-Distribution Detection based on PyTorch”. In: CVPR
Workshops. IEEE, 2022, pp. 4350–4359 (cit. on p. 28).

[KH+09] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features
from tiny images. https://www.cs.toronto.edu/~kriz/learning-
features-2009-TR.pdf. Accessed: 28.05.24. 2009 (cit. on pp. 31, 37).

[KHL08] Hanna Kurniawati, David Hsu, and Wee Sun Lee. “SARSOP: Efficient
Point-Based POMDP Planning by Approximating Optimally Reachable
Belief Spaces”. In: Robotics: Science and Systems. The MIT Press, 2008
(cit. on p. 48).

63

https://ntrs.nasa.gov/citations/20220012988
https://ntrs.nasa.gov/citations/20220012988
https://www.overleaf.com/project/5f0c85e8d15dc10001749fa9
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

Bibliography

[KLC98] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra.
“Planning and Acting in Partially Observable Stochastic Domains”. In:
Artif. Intell. 101.1-2 (1998), pp. 99–134 (cit. on pp. 3, 4, 48).

[Kri+13] Lori A Krider, Joseph AMagner, Jim Perry, Bruce Vondracek, and Leonard
C Ferrington Jr. “Air-water temperature relationships in the trout streams
of southeastern Minnesota’s carbonate-sandstone landscape”. In: JAWRA
Journal of the American Water Resources Association 49.4 (2013), pp. 896–
907 (cit. on p. 39).

[LA23] Tobias Ladner and Matthias Althoff. “Automatic Abstraction Refinement
in Neural Network Verification using Sensitivity Analysis”. In: Proceedings
of the 26th ACM International Conference on Hybrid Systems: Compu-
tation and Control. Association for Computing Machinery, 2023 (cit. on
p. 23).

[LCB10] Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit
database. 2010. url: http://yann.lecun.com/exdb/mnist (visited on
05/22/2024) (cit. on pp. 31, 32, 37).

[LDS89] Yann LeCun, John S. Denker, and Sara A. Solla. “Optimal Brain Damage”.
In: NIPS. Morgan Kaufmann, 1989, pp. 598–605 (cit. on p. 16).

[Lee+18] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. “A Simple Unified
Framework for Detecting Out-of-Distribution Samples and Adversarial At-
tacks”. In: NeurIPS. 2018, pp. 7167–7177 (cit. on p. 27).

[Liu+20a] Weitang Liu, Xiaoyun Wang, John D. Owens, and Yixuan Li. “Energy-
based Out-of-distribution Detection”. In: (2020) (cit. on pp. 3, 27, 36, 37).

[Liu+20b] Xingchao Liu, Xing Han, Na Zhang, and Qiang Liu. “Certified Monotonic
Neural Networks”. In: NeurIPS. 2020 (cit. on p. 2).

[LLS18] Shiyu Liang, Yixuan Li, and R. Srikant. “Enhancing The Reliability of Out-
of-distribution Image Detection in Neural Networks”. In: ICLR (Poster).
OpenReview.net, 2018 (cit. on pp. 27, 36, 37).

[Lov91] William S. Lovejoy. “Computationally Feasible Bounds for Partially Ob-
served Markov Decision Processes”. In: Oper. Res. 39.1 (1991), pp. 162–175
(cit. on p. 3).

[Mac+21] David Macêdo, Tsang Ing Ren, Cleber Zanchettin, Adriano L. I. Oliveira,
and Teresa Bernarda Ludermir. “Entropic Out-of-Distribution Detection”.
In: IJCNN. IEEE, 2021, pp. 1–8 (cit. on p. 27).

[MC21] Sergei Manzhos and Tucker Jr. Carrington. “Neural Network Potential En-
ergy Surfaces for Small Molecules and Reactions”. In: Chemical Reviews
121.16 (2021), pp. 10187–10217 (cit. on p. 39).

[Meu+99a] Nicolas Meuleau, Kee-Eung Kim, Leslie Pack Kaelbling, and Anthony R.
Cassandra. “Solving POMDPs by Searching the Space of Finite Policies”.
In: UAI. Morgan Kaufmann, 1999, pp. 417–426 (cit. on pp. 4, 48).

64

http://yann.lecun.com/exdb/mnist

Bibliography

[Meu+99b] Nicolas Meuleau, Leonid Peshkin, Kee-Eung Kim, and Leslie Pack Kael-
bling. “Learning Finite-State Controllers for Partially Observable Environ-
ments”. In: UAI. Morgan Kaufmann, 1999, pp. 427–436 (cit. on pp. 4, 48).

[MHC03a] Omid Madani, Steve Hanks, and Anne Condon. “On the undecidability of
probabilistic planning and related stochastic optimization problems”. In:
Artif. Intell. 147.1-2 (2003), pp. 5–34 (cit. on p. 3).

[MHC03b] Omid Madani, Steve Hanks, and Anne Condon. “On the undecidability of
probabilistic planning and related stochastic optimization problems”. In:
Artif. Intell. 147.1-2 (2003), pp. 5–34 (cit. on p. 3).

[MMR55] J McCarthy, ML Minsky, and N Rochester. A PROPOSAL FOR THE
DARTMOUTH SUMMER RESEARCH PROJECT ON ARTIFICIAL IN-
TELLIGENCE. 1955. url: http://www.cs.toronto.edu/~bor/196f21/
docs/dartmouth-1955-AI-summer-project.pdf (visited on 06/24/2024)
(cit. on p. 8).

[MP43] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas
immanent in nervous activity”. In: The bulletin of mathematical biophysics
5 (1943), pp. 115–133 (cit. on p. 8).

[MS99] Omid Mohseni and Heinz G. Stefan. “Stream temperature/air tempera-
ture relationship: a physical interpretation”. In: Journal of Hydrology 218
(1999), pp. 128–141 (cit. on p. 39).

[NPZ17] Gethin Norman, David Parker, and Xueyi Zou. “Verification and control of
partially observable probabilistic systems”. In: Real Time Syst. 53.3 (2017),
pp. 354–402 (cit. on p. 48).

[Ope24] OpenAI. ChatGPT. Version GPT-4. May 24, 2024. url: https://chat.
openai.com (cit. on pp. 1, 2).

[PA19] Pavithra Prabhakar and Zahra Rahimi Afzal. “Abstraction based Output
Range Analysis for Neural Networks”. In: NeurIPS. 2019, pp. 15762–15772
(cit. on pp. 16, 23).

[Pan+24] Joachim Pander, Johannes Kuhn, Roser Casas-Mulet, Luis Habersetzer,
and Juergen Geist. “Diurnal patterns of spatial stream temperature vari-
ations reveal the need for integrating thermal heterogeneity in riverscape
habitat restoration”. In: Science of The Total Environment 918 (2024),
p. 170786 (cit. on p. 46).

[PFS98] John M Pilgrim, Xing Fang, and Heinz G Stefan. “Stream temperature
correlations with air temperatures in Minnesota: Implications for climate
warming 1”. In: JAWRA Journal of the American Water Resources Asso-
ciation 34.5 (1998), pp. 1109–1121 (cit. on p. 39).

[PGT03] Joelle Pineau, Geoffrey J. Gordon, and Sebastian Thrun. “Point-based
value iteration: An anytime algorithm for POMDPs”. In: IJCAI. Morgan
Kaufmann, 2003, pp. 1025–1032 (cit. on p. 48).

65

http://www.cs.toronto.edu/~bor/196f21/docs/dartmouth-1955-AI-summer-project.pdf
http://www.cs.toronto.edu/~bor/196f21/docs/dartmouth-1955-AI-summer-project.pdf
https://chat.openai.com
https://chat.openai.com

Bibliography

[PM21] Pablo N. Pizarro and Leonardo M. Massone. “Structural design of rein-
forced concrete buildings based on deep neural networks”. In: Engineering
Structures 241 (2021), p. 112377 (cit. on p. 39).

[Pör+22] Hans-Otto Pörtner, Debra C. Roberst, Melinda M. B. Tignor, Elvira Poloczan-
ska, Katja Mintenbeck, Andrés Alegŕıa, Marlies Craig, Stefanie Langsdorf,
Sina Löschke, Vincent Möller, Andrew Okem, and Bardhyl Rama. “Cli-
mate change 2022: Impacts, adaptation and vulnerability. Contribution of
working group II to the sixth assessment report of the intergovernmental
panel on Climate change”. In: Cambridge University Press (2022) (cit. on
p. 39).

[Pra22] Pavithra Prabhakar. “Bisimulations for Neural Network Reduction”. In:
VMCAI. Vol. 13182. Lecture Notes in Computer Science. Springer, 2022,
pp. 285–300 (cit. on pp. 16, 17, 22, 23).

[PT10] Luca Pulina and Armando Tacchella. “An Abstraction-Refinement Ap-
proach to Verification of Artificial Neural Networks”. In: CAV. Vol. 6174.
Lecture Notes in Computer Science. Springer, 2010, pp. 243–257 (cit. on
p. 16).

[Ren+20] Jiahao Ren, Xirong Lin, Jinyun Liu, Tianli Han, Zhilong Wang, Haikuo
Zhang, and Jinjin Li. “Engineering early prediction of supercapacitors’
cycle life using neural networks”. In: Materials Today Energy 18 (2020),
p. 100537 (cit. on p. 39).

[Ren+21] Jie Ren, Stanislav Fort, Jeremiah Z. Liu, Abhijit Guha Roy, Shreyas Padhy,
and Balaji Lakshminarayanan. “A Simple Fix to Mahalanobis Distance for
Improving Near-OOD Detection”. In: CoRR abs/2106.09022 (2021) (cit.
on p. 27).

[RHŠ15] Anamarija Rabi, Marijana Hadzima-Nyarko, and Marija Šperac. “Mod-
elling river temperature from air temperature: case of the River Drava
(Croatia)”. In: Hydrological sciences journal 60.9 (2015), pp. 1490–1507
(cit. on pp. 39, 40).

[RN20] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach (4th Edition). Pearson, 2020 (cit. on pp. 8, 43).

[Rom+24] Tord Romstad, Marco Costalba, Joona Kiiski, and Gary Linscott. Stockfish.
Version 16.1. May 24, 2024. url: https://stockfishchess.org/ (cit. on
p. 1).

[Rou+23] Naghmeh Shafiee Roudbari, Charalambos Poullis, Zachary Patterson, and
Ursula Eicker. “TransGlow: Attention-augmented Transduction model based
on Graph Neural Networks for Water Flow Forecasting”. In: ICMLA. IEEE,
2023, pp. 626–632 (cit. on p. 46).

66

https://stockfishchess.org/

Bibliography

[Sal+22] Mohammadreza Salehi, Hossein Mirzaei, Dan Hendrycks, Yixuan Li, Mo-
hammad Hossein Rohban, and Mohammad Sabokrou. “A Unified Survey
on Anomaly, Novelty, Open-Set, and Out of-Distribution Detection: Solu-
tions and Future Challenges”. In: Trans. Mach. Learn. Res. 2022 (2022)
(cit. on p. 27).

[Sam+21] Wojciech Samek, Grégoire Montavon, Sebastian Lapuschkin, Christopher
J. Anders, and Klaus-Robert Müller. “Explaining Deep Neural Networks
and Beyond: A Review of Methods and Applications”. In: Proc. IEEE 109.3
(2021), pp. 247–278 (cit. on p. 41).

[SB15] Suraj Srinivas and R. Venkatesh Babu. “Data-free Parameter Pruning for
Deep Neural Networks”. In: BMVC. BMVA Press, 2015, pp. 31.1–31.12
(cit. on p. 16).

[SBV21] Jonathan Shlomi, Peter W. Battaglia, and Jean-Roch Vlimant. “Graph
neural networks in particle physics”. In: Mach. Learn. Sci. Technol. 2.2
(2021), p. 21001 (cit. on p. 39).

[Sch+21] Philippe Schwaller, Daniel Probst, Alain C. Vaucher, Vishnu H. Nair, David
Kreutter, Teodoro Laino, and Jean-Louis Reymond. “Mapping the space of
chemical reactions using attention-based neural networks”. In: Nat. Mach.
Intell. 3.2 (2021), pp. 144–152 (cit. on p. 39).

[SG09] Muzammil Shahbaz and Roland Groz. “Inferring Mealy Machines”. In: FM.
Vol. 5850. Lecture Notes in Computer Science. Springer, 2009, pp. 207–222
(cit. on p. 49).

[SGL21] Yiyou Sun, Chuan Guo, and Yixuan Li. “ReAct: Out-of-distribution De-
tection With Rectified Activations”. In: NeurIPS. 2021, pp. 144–157 (cit.
on p. 27).

[Sin+19a] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev.
“An abstract domain for certifying neural networks”. In: Proc. ACM Pro-
gram. Lang. 3.POPL (2019), 41:1–41:30 (cit. on pp. 16, 40, 42).

[Sin+19b] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev.
“Boosting Robustness Certification of Neural Networks”. In: ICLR (Poster).
OpenReview.net, 2019 (cit. on pp. 16, 40).

[SL22] Yiyou Sun and Yixuan Li. “DICE: Leveraging Sparsification for Out-of-
Distribution Detection”. In: ECCV (24). Vol. 13684. Lecture Notes in Com-
puter Science. Springer, 2022, pp. 691–708 (cit. on pp. 3, 27).

[SMI81] K. SMITH. “The prediction of river water temperatures / Prédiction des
températures des eaux de rivière”. In: Hydrological Sciences Bulletin 26.1
(1981), pp. 19–32 (cit. on p. 39).

[SMR22] Kady Sako, Berthine Nyunga Mpinda, and Paulo Canas Rodrigues. “Neural
Networks for Financial Time Series Forecasting”. In: Entropy 24.5 (2022),
p. 657 (cit. on p. 1).

67

Bibliography

[SPK13] Guy Shani, Joelle Pineau, and Robert Kaplow. “A survey of point-based
POMDP solvers”. In: Auton. Agents Multi Agent Syst. 27.1 (2013), pp. 1–
51 (cit. on p. 48).

[SS73] Richard D. Smallwood and Edward J. Sondik. “The Optimal Control of
Partially Observable Markov Processes over a Finite Horizon”. In: Oper.
Res. 21.5 (1973), pp. 1071–1088 (cit. on p. 48).

[SSJ23] Thiago D. Simão, Marnix Suilen, and Nils Jansen. “Safe Policy Improve-
ment for POMDPs via Finite-State Controllers”. In: Proceedings of the
AAAI Conference on Artificial Intelligence 37.12 (2023), pp. 15109–15117
(cit. on p. 4).

[ST20] Matthew Sotoudeh and Aditya V. Thakur. “Abstract Neural Networks”.
In: SAS. Vol. 12389. Lecture Notes in Computer Science. Springer, 2020,
pp. 65–88 (cit. on p. 16).

[ST94] Robert H. Sloan and György Turán. “Learning with Queries but Incomplete
Information (Extended Abstract)”. In: COLT. ACM, 1994, pp. 237–245
(cit. on p. 53).

[Sta+11] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. “The
German Traffic Sign Recognition Benchmark: A multi-class classification
competition”. In: IJCNN. IEEE, 2011, pp. 1453–1460 (cit. on p. 31).

[Sun+22] Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. “Out-of-Distribution
Detection with Deep Nearest Neighbors”. In: ICML. Vol. 162. Proceed-
ings of Machine Learning Research. PMLR, 2022, pp. 20827–20840 (cit. on
p. 27).

[SV05] Matthijs T. J. Spaan and Nikos Vlassis. “Perseus: Randomized Point-based
Value Iteration for POMDPs”. In: J. Artif. Intell. Res. 24 (2005), pp. 195–
220 (cit. on p. 48).

[Sze+14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-
mitru Erhan, Ian J. Goodfellow, and Rob Fergus. “Intriguing properties of
neural networks”. In: ICLR (Poster). 2014 (cit. on p. 2).

[TES24] TEST. “Three Decades of Activations: A Comprehensive Survey of 400 Ac-
tivation Functions for Neural Networks”. In: CoRR abs/2402.09092 (2024)
(cit. on p. 9).

[Wan+22] Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang. “ViM: Out-Of-
Distribution with Virtual-logit Matching”. In: CVPR. IEEE, 2022, pp. 4911–
4920 (cit. on p. 27).

[Wei+23] DorinaWeichert, Alexander Kister, Peter Volbach, Sebastian Houben, Mar-
cus Trost, and Stefan Wrobel. “Explainable production planning under
partial observability in high-precision manufacturing”. In: Journal of Man-
ufacturing Systems 70 (2023), pp. 514–524 (cit. on p. 4).

68

Bibliography

[Win+21] Leonore Winterer, Sebastian Junges, Ralf Wimmer, Nils Jansen, Ufuk
Topcu, Joost-Pieter Katoen, and Bernd Becker. “Strategy Synthesis for
POMDPs in Robot Planning via Game-Based Abstractions”. In: IEEE
Trans. Autom. Control. 66.3 (2021), pp. 1040–1054 (cit. on p. 3).

[WJ21] Guohua Wei and Yi Jin. “Human resource management model based on
three-layer BP neural network and machine learning”. In: J. Intell. Fuzzy
Syst. 40.2 (2021), pp. 2289–2300 (cit. on p. 39).

[XRV17] Han Xiao, Kashif Rasul, and Roland Vollgraf. “Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms”. In: CoRR
abs/1708.07747 (2017) (cit. on p. 31).

[Yan+21] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. “Generalized
Out-of-Distribution Detection: A Survey”. In: CoRR abs/2110.11334 (2021)
(cit. on p. 27).

[Zha+18] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca
Daniel. “Efficient Neural Network Robustness Certification with General
Activation Functions”. In: NeurIPS. 2018, pp. 4944–4953 (cit. on pp. 2, 40,
41).

[Zha+23a] Jingyang Zhang, Jingkang Yang, Pengyun Wang, Haoqi Wang, Yueqian
Lin, Haoran Zhang, Yiyou Sun, Xuefeng Du, Kaiyang Zhou, Wayne Zhang,
Yixuan Li, Ziwei Liu, Yiran Chen, and Hai Li. “OpenOOD v1.5: Enhanced
Benchmark for Out-of-Distribution Detection”. In: CoRR abs/2306.09301
(2023) (cit. on p. 27).

[Zha+23b] Jinsong Zhang, Qiang Fu, Xu Chen, Lun Du, Zelin Li, Gang Wang, Xi-
aoguang Liu, Shi Han, and Dongmei Zhang. “Out-of-Distribution Detec-
tion based on In-Distribution Data Patterns Memorization with Modern
Hopfield Energy”. In: ICLR. OpenReview.net, 2023 (cit. on p. 27).

[Zhu+19] Senlin Zhu, Emmanuel Karlo Nyarko, Marijana Hadzima-Nyarko, Salim
Heddam, and Shiqiang Wu. “Assessing the performance of a suite of ma-
chine learning models for daily river water temperature prediction”. In:
PeerJ 7 (2019), e7065 (cit. on p. 40).

[Zhu+24] Senlin Zhu, Fabio Di Nunno, Jiang Sun, Mariusz Sojka, Mariusz Ptak,
and Francesco Granata. “An optimized NARX-based model for predict-
ing thermal dynamics and heatwaves in rivers”. In: Science of The Total
Environment 926 (2024), p. 171954 (cit. on p. 46).

[ZMC94] Jacek M. Zurada, Aleksander Malinowski, and Ian Cloete. “Sensitivity
Analysis for Minimization of Input Data Dimension for Feedforward Neural
Network”. In: ISCAS. IEEE, 1994, pp. 447–450 (cit. on p. 43).

[ZX23] Zihan Zhang and Xiang Xiang. “Decoupling MaxLogit for Out-of-Distribution
Detection”. In: CVPR. IEEE, 2023, pp. 3388–3397 (cit. on p. 27).

69

Bibliography

[ZYZ18] Guoqiang Zhong, Hui Yao, and Huiyu Zhou. “Merging Neurons for Struc-
ture Compression of Deep Networks”. In: ICPR. IEEE Computer Society,
2018, pp. 1462–1467 (cit. on p. 16).

70

Publications

71

I. Publications

A Syntactic vs Semantic Linear Abstraction and Refinement of
Neural Networks

Reprinted by permission from Springer Nature (License Number 5663520480625): Lec-
ture Notes in Computer Science book series (LNCS,volume 14215) Syntactic vs Semantic
Linear Abstraction and Refinement of Neural Networks, Calvin Chau, Jan Křet́ınský,
Stefanie Mohr © 2023 Springer Nature Switzerland AG (2023)

This paper has been published as a peer-reviewed conference paper.

Calvin Chau, Jan Křet́ınský, Stefanie Mohr (2023). Syntactic vs Semantic
Linear Abstraction and Refinement of Neural Networks. In: André, É., Sun,
J. (eds) Automated Technology for Verification and Analysis. ATVA 2023.
Lecture Notes in Computer Science, vol 14215, pp. 401-421. Springer, Cham.

DOI: https://doi.org/10.1007/978-3-031-45329-8 19

Summary

In this work, we introduce a novel abstraction technique for Neural Networks (NNs) using
linear combinations of neurons as representatives. Previous approaches for abstraction
replace a group of neurons with a single representative that is defined as similar. In-
stead, we can provide a more flexible and powerful abstraction framework by introducing
linear combinations. Furthermore, we provide a formal error estimate to guarantee the
difference between the original and the abstraction. We also provide refinement meth-
ods for our abstraction to balance accuracy and reduction. Additionally, we empirically
compare syntactic and semantic abstraction, where the first only uses of the weights of
the NN, and the latter additionally uses sample inputs. Our approach uses semantic
information of the NN, and we compare it to δ-bisimulations of NNs, which uses the
syntax. We find that semantic abstractions allow for a much more significant reduction
than syntactic abstractions.

Contributions of the author

Composition, discussion and revision of the entire manuscript. Sole contribution of all
proofs and most of the results presented paper. Discussion and development of the ideas,
experimentation and evaluation. Co-lead role in the design and implementation of the
presented tool.

72

https://doi.org/10.1007/978-3-031-45329-8_19

Syntactic vs Semantic Linear Abstraction
and Refinement of Neural Networks

Calvin Chau1 , Jan Křet́ınský2,3 , and Stefanie Mohr2(B)

1 Technische Universität Dresden, Dresden, Germany
calvin.chau@tu-dresden.de

2 Technical University of Munich, Munich, Germany
{kretinsky,mohr}@in.tum.de

3 Masaryk University, Brno, Czech Republic

Abstract. Abstraction is a key verification technique to improve scal-
ability. However, its use for neural networks is so far extremely limited.
Previous approaches for abstracting classification networks replace sev-
eral neurons with one of them that is similar enough. We can classify the
similarity as defined either syntactically (using quantities on the con-
nections between neurons) or semantically (on the activation values of
neurons for various inputs). Unfortunately, the previous approaches only
achieve moderate reductions, when implemented at all. In this work,
we provide a more flexible framework, where a neuron can be replaced
with a linear combination of other neurons, improving the reduction.
We apply this approach both on syntactic and semantic abstractions,
and implement and evaluate them experimentally. Further, we introduce
a refinement method for our abstractions, allowing for finding a better
balance between reduction and precision.

Keywords: Neural network · Abstraction · Machine learning

1 Introduction

Neural Network Abstractions. Abstraction is a key instrument for under-
standing complex systems and analyzing complex problems across all disciplines,
including computer science. Abstraction of complex systems, such as neural net-
works (NN), results in smaller systems, which are not only producing equivalent
outputs (such as in distillation [13]), but additionally can be mapped to the
original system, providing a strong link between the individual parts of the
two systems. Consequently, abstraction find various applications. For instance,
the smaller (abstract) networks are more understandable and the strong link
between the behaviours of the abstract and the original network allows for better
explainability of the original behaviour, too; smaller networks are more efficient

This research was funded in part by the German Research Foundation (DFG) project
427755713 GoPro, the German Federal Ministry of Education and Research (BMBF)
within the project SEMECO Q1 (03ZU1210AG), and the DFG research training group
ConVeY (GRK 2428).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
É. André and J. Sun (Eds.): ATVA 2023, LNCS 14215, pp. 401–421, 2023.
https://doi.org/10.1007/978-3-031-45329-8_19

402 C. Chau et al.

in resource usage during runtime; smaller networks are easier to verify. Again,
with no formal link between the original network and, say, a distilled or pruned
one, verifying the smaller one is of no use to verifying the original one. In con-
trast, for abstractions, the verification guarantee can be in principle transfered to
the original network, be it via lifting a counterexample or a proof of correctness.

Altogether, abstractions of neural networks are a key concept worth inves-
tigating eo ipso, subsequently offering various applications. However, currently
it is still very under-developed. For defining an abstraction, we need a transfor-
mation linking the original neurons to those in the abstraction. Equivalently, we
need a notion of the similarity of neurons, to identify a good representative of a
group of neurons. The difficulty in contrast to, e.g., predicate abstraction of pro-
grams is that neurons have no inner structure such as values of variables stored
in a state. On the one hand, approaches based on bisimilarity [22] offer a solution
focusing on the “syntax” of neurons: the weights of the incoming connections.
The quantities give rise to an equivalence akin to probabilistic bisimulation. On
the other hand, in search of a stronger tool, approaches such as [2] try to identify
“semantics” of the neurons. For instance, given a vector of inputs to the network,
the I/O semantics of a neuron [2] is the vector of activation values of this neuron
obtained on these inputs. This represents a finite-dimensional approximation of
the actual semantics of a neuron as a computational device. Either way, replac-
ing several neurons with one that is very similar yields only moderate savings
on size if the abstract network is supposed to be similar, i.e., yield mostly the
same predictions and ensure a tight connection between the similar neurons.

Our Contribution. We focus on studying abstraction irrespective of the use
case (verification, smaller networks, explainability), to establish a better princi-
pal understanding of this crucial, yet in this context underdeveloped technique.
First, we explore a richer abstraction scheme, where a group of neurons can
be represented not only by a chosen neuron but also by a linear combination
of neurons. Thus instead of keeping exactly one representative per group, we
can “reuse” the chosen representatives in many linear combinations; in other
words, the representatives can attain many roles, partially representing many
groups, which reduces their required count. We provide several algorithms to do
so, ranging from resource-intensive algorithms aiming to show the limits of the
approach to efficient heuristics approximating the former ones quite closely. We
apply these algorithms to the semantic approach of [2] as well as to the syntactic,
bisimulation-like approach similar to [22] not implemented previously. Experi-
mental results confirm the greater power of this linear-combination approach;
further, they provide insight into the advantages of semantic similarity over the
syntactic one, pointing out the more advantageous future research directions.

Further, we provide a formal link between the concrete and abstract neurons
by proving an error bound induced by the abstraction, showing the abstraction
is valid and (approximately) simulates the original network. We show the bound
is better than the one based on bisimulation. While still not very practical, the
experiments show that even on unseen data, the error is always closely bounded
by the error on the data used for generating the abstraction, and mostly even

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 403

a lot smaller. This empirical version of the concept of error could thus enable
the transfer of reasoning about the abstraction to the original network in a yet
much tighter way.

In addition, we suggest abstraction-refinement procedures to better fine-tune
the trade-off between the precision and the size of the abstraction. The experi-
ments reveal that a more aggressive abstraction followed by a refinement provides
better results than a direct, moderate abstraction. Hence involving our refine-
ment in the abstraction process improves the resulting quality, opening new lines
of attack on efficient neural network abstractions.

Summary. Our contribution can be summarized as follows:

– We define abstractions of neural networks with (approximate) equivalences
being linear equations over semantics of neurons. We provide a theoretical
bound on the induced error, see Theorem 1. We reflect this idea also on the
syntactic, bisimulation-based abstraction.

– We implement both approaches and compare them mutually as well as to
their previous, special cases with equivalences being (approximate) identities.
We perform the experiments on a number of standard benchmarks, such as
MNIST, CIFAR, or FashionMNIST, concluding advantages of semantic over
syntactic approaches and of linear over identity-based ones.

– We introduce an abstraction-refinement procedure and also evaluate its ben-
efits experimentally.

Related Work. There are various approaches for verification of NN, however,
we are not presenting another verifier. Instead, we introduce an approach that
is orthogonal to verification and could be integrated with an existing verifier.
Therefore, we do not compare our approach to any verification tool and refer
the interested reader to the Verification of Neural Networks Competition [4] for
an overview of existing approaches [16,26,31,33].

Network compression techniques share many similarities with abstraction
[7] and either focus on reducing the memory footprint [14,15] or computation
time of the model [12], but in contrast, do not provide any formal relation to
the original network, rendering them inappropriate for understanding redundan-
cies or verification. Knowledge distillation is a prominent technique, which can
reduce networks by a significant amount, but completely loses any connection
to the original network [13], and can thus not be used in verification. There is
some progress in using abstract domains for scalable verification, like [26,27,29],
but they do not produce an abstracted NN for verification. Instead, they apply
abstraction only tightly entangled together with the verification algorithm. These
approaches also try to generate a more scalable verification, however, the key
difference is that they do not return an actual abstracted network that could be
reused or manually inspected. Katz et al. [8] introduce an abstraction scheme for
NN, in which they decompose neurons into several parts, before merging them
again to obtain an over-approximation of the original network. However, their
approach is limited to networks with one output neuron. For networks with
more output neurons, the property to be verified needs to be baked into the

404 C. Chau et al.

network, making the approach significantly less flexible. Additionally, this tight
entanglement of specification and neural network does not allow for retrieving
the abstraction later and reusing it for anything else than to verify that specific
property. This strongly contrasts our generic and usage-agnostic abstraction and
their property-restricted abstractions.

Some other works use abstraction after representing a neural network as an
interval neural network [23], or more generally, by using more complex abstract
domains [28]. While theoretically interesting, the practicality of these works has
not been investigated. There are two approaches that we consider to be the
closest to our work: a bisimulation-based approach [22], and DeepAbstract [2],
which we will more closely introduce in the preliminaries, and compare to in the
experiments.

2 Preliminaries

In this work, we focus on classification feedforward neural networks. Such a
neural network N consists of several layers 1, 2, . . . , L, with 1 being the input
layer, L being the output layer and 2, . . . , L − 1 being the hidden layers. Each
layer � contains n� neurons. Neurons of one layer are connected to neurons
of the previous and next layers by means of weighted connections. Associ-
ated with every layer � that is not an output layer is a weight matrix W (�) =
(w(�)(i, j)) ∈ Rn�+1×n� where w(�)(i, j) gives the weights of the connections to
the ith neuron in layer � + 1 from the jth neuron in layer �. We use the nota-
tion W

(�)
i,∗ = [w(�)(i, 1), . . . , w(�)(i, n�)] to denote the incoming weights of neuron

i in layer � + 1 and W
(�)
∗,j = [w(�)(1, j), . . . , w(�)(n�+1, j)]

ᵀ to denote the outgoing

weights of neuron j in layer �. Note that W
(�)
i,∗ and W

(�)
∗,j correspond to the ith row

and jth column of W (�) respectively. A vector b(�) = [b
(�)
1 , . . . , b

(�)
n�] ∈ Rn� called

bias is also associated with each hidden layer �. The input and output of a neuron

i in layer � is denoted by h
(�)
i and z

(�)
i respectively. We call h� = [h

(�)
1 , . . . , h

(�)
n�]ᵀ

the vector of pre-activations and z� = [z
(�)
1 , . . . , z

(�)
n�]ᵀ the vector of activations

of layer �. The neuron takes the input h�, and applies an activation function
φ : R → R element-wise on it. The output is then calculated as z� = φ(h�), where
standard activation functions include tanh, sigmoid, or ReLU [21]. We assume
that the activation function is Lipschitz continuous, which in particular holds
for the aforementioned functions [30]. In a feedforward neural network, informa-
tion flows strictly in one direction: from layer �m to layer �n where �m < �n.
For an n1-dimensional input x ∈ X from some input space X ⊆ Rn1 , the out-
put y ∈ RnL of the neural network N , also written as y = N(x) is iteratively
computed as:

h(0) = z(0) = x

h(�+1) = W (�)z(�) + b(�+1) (1)

z(�+1) = φ(h(�+1)) (2)

y = z(L)

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 405

where φ(x) is the column vector obtained by applying φ component-wise to x.
We abuse the notation and write z(�)(x), when we want to specify that the
output of layer � is computed by starting with x as input to the network.

2.1 Syntactic and Semantic Abstractions

We are interested in a general abstraction scheme that is not only useful for
verification, but also for revealing redundancies, while keeping a formal link to
the original network. We distinguish between two types of abstraction: semantic
and syntactic. Syntactic abstraction makes use of the weights of the network,
the syntactic information, and allows for overapproximation guarantees that are
not restricted to specific inputs. However, as we shall see in the experiments, the
semantic abstraction can capture the behavior of the original network on typical
input data much more accurately than its syntactic counterpart. This comes at
the cost of a more challenging error analysis.

Semantic Information. In line with DeepAbstract [2], we will create the seman-
tic information based on a set of inputs, the I/O set, X = {x1, . . . ,xn} ⊆ X ,
which is typically a subset of the training dataset. We use the inputs xj ∈ X,
feed them to the network and store the output values {z(�)(xj)}xj∈X of a layer

� in a matrix Z(�) = (z
(�)
i (xj))i,j . Note that the columns are the z(�)(xj) and

the rows, denoted as Z
(�)
i,∗, correspond to the values one neuron i produces for

all inputs xj . We refer to the vector Z
(�)
j,∗ as the semantics of neuron i. This

collection of matrices Z(�) for all layers contains the semantic information of the
network.

DeepAbstract. Since we will compare our approach to DeepAbstract [2], we
will give a concise description of the idea of their work. First, it generates the
semantic information Z. For one layer �, it clusters the rows of the matrix by
using standard clustering techniques, e.g. k-means clustering [3]. Each cluster
is considered to be a group of neurons that have similar semantics and similar
behavior. Thus, only one group representative is chosen to remain and the rest
is replaced by the representatives.

Bisimulation. The idea of [22] is to apply the notion of bisimulation to NN. A
bisimulation declares two neurons as equivalent if they agree on their incoming
weights, biases, and activation functions. Additionally, the paper introduces a
δ-bisimulation that allows neurons to be equivalent only up to δ, i.e. two neurons
i, j of layer � with the same activation function are considered to be δ-bisimilar,

if for all k : |w(�−1)(i, k) − w(�−1)(j, k)| ≤ δ and |b(�)
i − b

(�)
j | ≤ δ.

3 Linear Abstraction

Our abstraction of a NN is based on the idea that huge NN in their practical
application are usually trained with more neurons than necessary. Since there

406 C. Chau et al.

Fig. 1. Linear Abstraction - On the left, the original network with the basis B in blue.
On the right, the abstracted network with the removed neuron n1

1 and the changed
output weights of the basis neurons n1

2, n
1
3, where we assume that n1

1 can be simulated
by α

(1)
1,1 · n1

2 + α
(1)
1,2 · n1

3. (Color figure online)

are techniques to avoid “overfitting”, users of machine learning tend to use NN
that are bigger than necessary for their task [19]. Intuitively, such networks thus
contain redundancies. We want to remove these redundancies to decrease the
size of the network and make it more scalable for verification.

Existing approaches group together similar neurons, and then choose a rep-
resentative. Instead, we propose to replace a neuron with a linear combination
of other neurons. More specifically, we want to replace a neuron i of layer �, not
by one single neuron j, but rather by a clever combination of several neurons,
called the basis, B(�) ⊂ {1, . . . , n�}\{i}, which is a subset of all neurons of this
layer and in this case given as their indices. We assume that the behavior of a
neuron can be simulated by a linear combination of the behavior of the basis

neurons, i.e. by
∑

j∈B(�) α
(�)
i,j · Z(�)

j,∗ for some α
(�)
i,j ∈ R.

Example. Consider the neural network in Fig. 1. It has an input layer with
two neurons n0

1, n
0
2, one hidden layer with three neurons n1

1, n
1
2, n

1
3, and an

output layer with two neurons n2
1, n

2
2. We assume that we are given the basis

B(1) = {n1
2, n

1
3}, marked with blue color in the figure, and the linear coefficients

α
(1)
1,1, α

(1)
1,2. That is, we assume that n1

1 can be simulated by the linear combination

α
(1)
1,1 ·n1

2+α
(1)
1,2 ·n1

3. We can remove neuron n1
1 and its outgoing weights [1, 2]ᵀ, and

add the outgoing weights scaled by the linear coefficients to the basis neurons

instead. We add α
(1)
1,1 · [1, 2]ᵀ to the outgoing weights of neuron n1

2, so we get

[−1, 3]ᵀ + α
(1)
1,1 · [1, 2]ᵀ = [−1 + α

(1)
1,1 · 1, 3 + α

(1)
1,1 · 2]ᵀ, and respectively, we get

[−2 + α
(1)
1,2 · 1, 1 + α

(1)
1,2 · 2]ᵀ as the outgoing weights of neuron n1

3.
The computational overhead to compute a linear combination compared to

finding a representative is negligible, as we will see in our experiments (see
Sect. 5.2). On the other hand, they provide more expressive power, subsuming
the aforementioned clustering-based approach [2]. In particular, we can detect
scaled weights that previous approaches failed to identify.

Please note that although it is possible to replace a neuron with a linear
combination of any other neurons in the network, we will only use neurons

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 407

from the same layer due to more efficient support by modern neural network
frameworks.

In the following sections, we will answer three questions: How can one find a
set of neurons that serves as a basis (Sect. 3.1)? How to find the coefficients for the
linear combination (Sect. 3.2)? How to replace a neuron, once its representation
as a linear combination is given (Sect. 3.3)?

3.1 Finding the Basis

Our approach is meant to find a sufficient smaller subset of neurons in one layer,
which is enough to represent the behavior of the whole layer. We will make use of

the semantic information of a layer �, given as Z(�) = (z
(�)
i (xj))i,j (see Sect. 2.1).

Based on this, we try to find a basis of neurons, i.e. a set of indices for neurons
in this layer {j1, . . . jk�

} = B(�) ⊂ {1, . . . , n�}, which can represent the whole
space as well as possible. To this end we want to find a subset of size k = |B(�)|
such that ‖∑

j∈B(�) α
(�)
i,j · Z(�)

j,∗ − Zi,∗‖ is minimized. We denote with

AB =

⎡
⎢⎣

| |
Z

(�)
j1,∗ . . . Z

(�)
jk�

,∗
| |

⎤
⎥⎦ (3)

the matrix containing the activations Z
(�)
j,∗ of the neurons in the basis as columns.

Greedy Algorithm. The problem of finding an optimal basis of size k w.r.t.
L2 distance can be seen as a variation of the column subset selection problem
which is known to be NP-complete [25]. As a consequence, we use a variant of a
greedy algorithm [1]. While it does not always yield the optimal solution, it has
been observed to work reasonably well in practice [9,10].

It has already been observed that layers closer to the output usually contain
more condensed information and more redundancies, and can, thus, be com-
pressed more aggressively [2]. We present a greedy algorithm that chooses which
layer contains more information and needs a larger basis instead of decreasing
the basis sizes equally fast in each layer.

In Algorithm1, we see that the procedure iteratively removes neurons from
the basis. To this end, it iterates over all layers l ∈ {1, . . . , L} in the network.
It tries to remove one neuron at a time from the basis. Then it computes the
projection error of the smaller basis, which is defined as ‖Z(�)ᵀ − ΠAB

Z(�)ᵀ‖,
where ΠAB

is the matrix that projects the columns of Z(�)ᵀ
onto the column

space of AB . The columns of AB are the rows of Z(�) whose neurons belong to
B. It greedily evaluates all neurons in all layers and selects the best neuron of
the best layer to be removed. After checking every layer, the algorithm decides
on the best layer and neuron to be removed, i.e. the one with the smallest error.

Since the approach thoroughly evaluates all possibilities, its runtime depends
on both the number of layers and neurons. A natural alternative would be a
heuristic that guides us similarly well through the search space. We provide our
choice of heuristic below.

408 C. Chau et al.

Algorithm 1. Greedy algorithm over all layers

1: Given: k neurons to be removed
2: ∀l ∈ {1, . . . , L} : B(�) ← {1, . . . , nl}
3: errormin ← ∞, lbest ← −1, nbest ← −1
4: for i ∈ 1, . . . , k do
5: for l ∈ 1, . . . , L do
6: for j ∈ 0, . . . , nl do
7: Compute the projection error errorj of AB(�)\{j}
8: if errorj < errormin then
9: lbest ← l

10: nbest ← j
11: errormin ← errorj

12: Blbest ← Blbest \ {nbest}
13: return B1, . . . , BL

Variance-Based Heuristic. Instead of a step-wise decision that takes a lot of
computation time, we propose to use a variance-based heuristic. We define the
variance of a vector v ∈ Rn in the usual way by Var(v) =

∑n
i=0(vi − Mean(v))2

where Mean(v) is the mean of the vector values. W.l.o.g. let the neurons be

numbered in such a way that Var(z
(�)
1) ≥ · · · ≥ Var(z

(�)
n�). We then choose the

basis to contain the neurons with the k� largest variances, i.e. B = {1, . . . , k}.
We assume that neurons with a higher variance in their output values carry
more information, and are, therefore, more relevant. Indeed, we can see in our
experiments, i.e. Fig. 2, that the heuristic-based approach can achieve similar
results, but in far less time.

3.2 Finding the Coefficients

Given a basis B(�) for some layer �, computed with the before-mentioned app-
roach, we want to find the coefficients that can be used to replace the remaining
neurons which are not part of the basis. We fix a neuron i in layer � that we

want to replace and whose values are stored in Z
(�)
i,∗, and we want to minimize

‖∑
j∈B(�) α

(�)
i,j · Z(�)

j,∗ − Zi,∗‖ for α
(�)
i,j .

Since we want to find a linear combination of vectors, a natural choice is
linear programming. The linear program is straightforward and can be found
in [6, Appendix C]. Note that with the linear program, we are minimizing the

L1-distance between the neuron’s values and its replacement, i.e. ‖∑
j∈B(�) α

(�)
i,j ·

Z
(�)
j,∗ − Zi,∗‖1.

In a different way, we can also consider the vectors Z
(�)
j,∗ for j ∈ B(�) to span a

vector space. If we are given a subset {Z(�)
j,∗|j ∈ B(�) ⊂ {1, . . . , n�}} that forms a

basis for this space, i.e. span((Z
(�)
j,∗)j∈B(�)) = span((Z

(�)
j,∗)j∈{1,...,n�}), we can repre-

sent any other vector z
(�)
i in terms of this basis. However, we usually cannot rep-

resent one neuron perfectly by a linear combination of other neurons. Orthogo-

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 409

nal projection gives us the closest point in the subspace span((Z
(�)
j,∗)j∈B(�))

for any vector, in terms of L2-distance. Then, α = [α
(�)
i,j1

, . . . , α
(�)
i,jk�

]ᵀ :=

(A�
BAB)−1A�

BZ
(�)
i,∗ gives us the coefficients for the orthogonal projection of Z

(�)
i,∗

on the linear space spanned by the columns of AB . For a more detailed descrip-
tion of orthogonal projection see e.g. [17, Chapter 6.8]. Note that we assume
that the columns of AB are linearly independent. If not we can simply replace
the respective neurons directly.

3.3 Replacement

Assuming, we have a basis B(�) of this layer and we already know the coefficients

α
(�)
i,j ∈ R for j ∈ B(�) that we need to simulate the behavior of neuron i. This

means, we have a linear combination
∑

j∈B(�) α
(�)
i,j · Z(�)

j,∗, which we want to use

instead of neuron i itself. We will replace the outgoing weights W (�) of this layer,
such that for all j ∈ B(�)

W̃
(�)
∗,j = [w(�)(1, j) + α

(�)
i,j w(�)(1, i), . . . , w(�)(n�+1, j) + α

(�)
i,j w(�)(n�+1, i)]

ᵀ (4)

= W
(�)
∗,j + α

(�)
i,j W

(�)
∗,i (5)

Furthermore, we set W̃
(�)
∗,i = [0, . . . , 0]ᵀ, and W̃

(�)
i,∗ = [0, . . . , 0]ᵀ. This means that

we will not use the output of neuron i anymore, but rather a weighted sum of
the outputs of neurons in B(�), and that we will not even compute the value of i.
Additionally, we keep track of the changes we apply to the different neurons with

a matrix D(�) = (d
(�)
j,i) ∈ Rn�×n�+1 . Initially, D(�) is 0 and after each replacement,

we add α
(�)
i,j ·w(�)(i, i′) to d

(�)
j,i′ for j ∈ B(�) and i′ ∈ {1, . . . , n�+1}. This is necessary

for restoring neurons at a later point.

In the optimal case, the replacement will not change the overall behavior of
the neural network. We can derive a the same semantic equivalence from [22]
incorporated into our setting:

Proposition 1 (Semantic Equivalence). Let N be a neural network with L
layers, � a layer of N , i a neuron of this layer, and B(�) ⊂ {1, . . . , n�}\{i} a
chosen basis. Let Ñ be the NN after replacing neuron i by a linear combination

of basis vectors with coefficients α
(�)
i,j , with the procedure as described above.

If for all inputs x ∈ X ⊂ X , z
(�)
i (x) =

∑
j∈B(�) α

(�)
i,j z

(�)
j (x), then N and Ñ

are semantically equal, i.e. for all inputs x ∈ X, Ñ(x) = N(x).

It is easy to see that this proposition is true, for a full proof see [6, Appendix A].

However, the proposition assumes equality of z
(�)
i (x) and

∑
j∈B(�) α

(�)
i,j z

(�)
j (x) for

x ∈ X, which virtually never holds for real-world neural networks. Therefore,

we want to minimize the difference |z(�)
i (x)−∑

j∈B(�) α
(�)
i,j z

(�)
j (x)|, which will not

yield a semantically equivalent abstraction, but an abstraction with very similar
behavior. We can then quantify the difference between the output of the

410 C. Chau et al.

original network and the abstraction, i.e. the induced error with the following
Theorem.

Theorem 1 (Over-approximation Guarantee). Let N be an NN with L
layers. For each layer �, we have a basis of neurons B(�), and a set of replaced
neurons I(�). Then, let Ñ be the network after replacing neurons in I(�) as
described above.

We can over-approximate the error between the output of the original network
NL and the output of the abstraction ÑL for x ∈ X ⊂ X by

‖ÑL(x) − NL(x)‖ ≤ b(1 − aL−1)/(1 − a)

with a = λ(‖W‖ + η), b = λ‖W‖ε, with λ(�) being the Lipschitz-constant of
the activation function in layer �, λ = max� λ(�), ‖W‖ = max� ‖W (�)‖1, η =
max� η(�), and ε = max� ε(�), assuming that for all layers � ∈ {1, . . . , L} and for
all inputs x ∈ X, we have

– for i ∈ I(�) : |z(�)
i (x) − ∑

j∈B(�) α
(�)
i,j z

(�)
j (x)| ≤ ε(�)

– |∑i∈I(�) W
(�)
∗,i

∑
t∈B(�) α

(�)
i,t | ≤ η(�)

In other words, we can over-approximate the difference in the output of the
original and the abstracted network by a value that depends on the weight
matrices, the activation function and the tightness of the abstracted neurons to
their replacements. The proof can be found in [6, Appendix B]. This Theorem
provides us with the theoretical guarantee that, given our abstraction, we
can provide a valid over-approximation of the output of the original network.

Comparison to the δ-Bisimulation. Let us recap the error definition from
[22]. The difference of the bisimulation and the original network is bounded by
[(2a)k − 1]b/(2a − 1), where a = λ|S|‖W‖ and b = λ(|P |L(N)‖x‖ + 1)δ1. In this
notation, |S| is the maximum number of neurons per layer in the whole network,
|P | the maximum number of neurons in the bisimulation (can be understood
as the number of neurons in an abstraction), L(N) is the maximum Lipschitz-
constant of all layers, and δ is the maximum absolute difference of the bias and
sum of the incoming weights.

The drawbacks of that approach are twofold: (i) the error is based on one spe-
cific input, and (ii) it makes use of the Lipschitz-constant of the whole network.
Calculating the Lipschitz constant of an NN is still part of ongoing research [11]
and not a trivial problem. In contrast, we improve on both. Our error calculation
generalizes over a set of inputs. Additionally, we use local information, stored in
the weight-matrices, to circumvent using the Lipschitz-constant of the NN.

4 Refinement

For certain inputs the abstraction might not reflect the behavior of the original
network. For these inputs, so-called counterexamples, we may want to refine the

1 Please note that this statement is slightly different from the paper ((2a)k instead of
(2/a)k), which we believe to be a typo in the paper.

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 411

abstraction, as opposed to starting the abstraction from the original network
again. We consider an input to be a counterexample whenever the abstraction
assigns it a different label than the original network. However, a counterexample
can be any input that does not align with the specifications.

We propose to refine the abstraction by restoring some of the replaced neu-
rons. To do this, we need to know which neurons should be replaced and how. We
first briefly mention three heuristics to choose a neuron for restoration. After-
ward, we explain how to restore a neuron. Note that the refinement offers more
than a “roll-back” of the most recent step of the abstraction since it picks the
step-to-be-rolled-back in retrospect reflecting all other steps, leading to a more
informed choice. This could in principle be done directly in the abstraction phase,
but at an infeasible cost of a huge look-ahead.

Refinement Heuristics. We propose three different heuristics: difference-
guided, gradient-guided, and look-ahead.

– The difference-guided refinement looks at the difference of a neuron in the
original and its representation as a linear combination in the abstraction. It
replaces the neuron with the largest difference.

– The gradient-guided refinement additionally takes the gradient of the NN
into account, that is computed as in the training phase of the NN. This
takes into account how the whole network would need to change to fix the
counterexample.

– The look-ahead is the most greedy method and would try out every replaced
neuron. It would check how much the network would improve if the neuron
was replaced and then chooses the neuron with the highest improvement.

More details on the approaches can be found in [6, Appendix D].

Restoration of a Neuron. The restoration principle can be seen as the coun-

terpart of the replacement. Let ˜̃N be the network obtained by replacing several
neurons in the original network N , where we want to restore a deleted neuron i
of layer �. To do this, we need not only to get the original neuron back, including
its incoming and outgoing weights but also to remove the additional outgoing
weights from the basis neurons. Intuitively, the restoration removes the linear
combination, ensures that the original outgoing weights for the neuron are used,
and adjusts the incoming weights of the neuron. We may have changed layer
� − 1, and thus we cannot restore the original incoming weights of neuron i, but
we have to adapt it to changes in the basis B(�−1). This can be done with the
following changes:

– ∀j ∈ B(�): W̃
(�)
∗,j = ˜̃W

(�)
∗,j − αjW

(�)
∗,j

– W̃
(�)
∗,i = W

(�)
∗,i

– ∀j ∈ B(�−1): w̃(�−1)(i, j) = w(�−1)(i, j) + d
(�−1)
j,i

Afterward, we subtract αj ·w(�)(i, i′) from d
(�)
j,i′ for i′ ∈ {1, . . . , n�+1} and j ∈ B(�).

412 C. Chau et al.

5 Experimental Results

Our experimental section is divided into several parts: The first one covers how
the different methods for finding a basis and the coefficients compare, as described
in Sect. 3.2 and Sect. 3.1. The second part shows experiments on our approach in
comparison to existing works, namely DeepAbstract [2] and our implementation of
bisimulation [22] (which was not implemented before). The third part contains the
comparison between the abstraction based on syntactic and semantic information.
The fourth part describes our experiments on abstraction refinement. Finally, the
last part contains experiments on the error induced by our abstraction. Note that
supplemental experiments can be found in the Appendix.

Lastly, the work of Katz et al. [8] tightly couples the abstraction with the
subsequent particular verification, by integrating the specification as layers into
the network. It is, thus, not clear how an abstraction from [8] could be extracted
from the tool and reused for another purpose. Additionally, our abstraction
would have to be connected with some verification algorithm (DeepPoly, as done
by DeepAbstract, or some other) to compare. Any comparison of the two works
would then mostly compare the different verification tools, not really the abstrac-
tions. Although a comparison of different verifiers linked to our LiNNA is an
interesting next step into one of the possible applications, it is out of the scope
of this paper, which examines the abstraction itself (see Introduction).

Implementation. We implemented the approach in our tool LiNNA (Linear
N eural N etwork Abstraction)2. We used networks that were trained on MNIST
[20], CIFAR-10 [18], and FashionMNIST [32] for our experiments. In the fol-
lowing, we refer to the corresponding trained networks with “L × n”, where L
denotes the number of hidden layers and n is the number of neurons in these
hidden layers. All experiments were conducted on a computer with Ubuntu 22.04
LTS with 2.6 GHz Intel c© CoreTM i7 processors, and 32 GB of RAM.

Performance Measures. We will compare the approaches mostly on (i) the
reduction rate and (ii) the accuracy on a test set. Intuitively, the reduction rate
describes how much the NN was reduced by abstraction. If an NN N has in total
n neurons, but after reduction, there are m neurons left, then the reduction rate
is then defined as RR(N) = 1− m

n . The accuracy of a NN on a test set is defined
as the ratio of how many inputs are predicted with the correct label. This is the
key performance indicator in machine learning and shows how well a network
generalizes to unseen data. In evaluating our abstraction, we follow the same
principle since we want to know how well the NN generalizes after abstraction.
Note that this test set was not used for training or computing the abstraction.

5.1 Abstraction

Finding the Basis. We have given two different methods in Sect. 3.1 to find a
good basis B. While the orthogonal projection yields an equally good abstraction

2 https://github.com/cxlvinchau/LiNNA.

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 413

Fig. 2. Finding the basis for replacement - Evaluation on different datasets. The plots
contain a comparison of LiNNA while using the greedy variant (solid) and the variance-
based heuristic (dashed) for finding a basis with orthogonal projection. Comparison of
accuracy (blue) in percent and computation time (red) in seconds. (Color figure online)

compared to linear programming, it outperforms the latter in terms of runtime
by magnitudes. Hence, we conducted the rest of the experiments with orthog-
onal projection. The full comparison between orthogonal projection and linear
programming can be found in [6, Fig. 14, Appendix E].

When we compare the greedy and the heuristic-based approach, shown in
Fig. 2, we see that the former outperforms the latter in terms of accuracy
on MNIST and FashionMNIST. On CIFAR-10, the variance-based approach is
slightly better. However, the variance-based approach is always faster than the
greedy approach and scales better, as can be seen for all datasets. Unsurpris-
ingly, the greedy approach takes more time for higher reduction rates, because it
needs to evaluate many candidates. The variance-based approach just takes the
best neurons according to their variance, which has to be calculated only once.
Therefore, the calculation is constant in terms of removed neurons.

The plots show one more difference in the behavior: On MNIST and Fashion-
MNIST, we see a quite stable accuracy until a reduction rate of 60%. We cannot
see the same behavior on CIFAR-10. We believe this is due to the accuracy and
size of the networks. Whereas it is fairly easy to train a feedforward network
for MNIST and FashionMNIST on a regular computer, this is more challenging
for CIFAR-10. We plan to include more extensive experiments including more
involved NN architectures in future work. Finally, our abstraction relies on the
assumption that NNs contain a lot of redundant information.

We want to emphasize, that in machine learning, it is common to train a
huge network that contains many more neurons than necessary to solve the task
[34]. After the introduction of regularization techniques (e.g. [24]), the problem
of over-fitting (e.g. [5]) has become often negligible. Therefore, the automatic
response to a bad neural network is often to increase its size, either in depth or
in width. Our approach can detect these cases and abstract away the redundant
information.

Finding the Coefficients. We have in total four different approaches to find-
ing the coefficients: greedy or heuristic-based linear programming, and greedy
or heuristic-based orthogonal projection. All four have similar accuracies for the

414 C. Chau et al.

Fig. 3. Comparison of LiNNA to
related work - LiNNA (greedy and
heuristic-based variant), DeepAbstract
[2], and our implementation of the
bisimulation [22] is evaluated in terms
of accuracy on the test set for a cer-
tain reduction rate. The experiment
was conducted on an MNIST 3 × 100
network.

Fig. 4. Scalability of LiNNA - Average
runtime for 20 different reduction rates
on one network. The plot at the top
depicts the runtime for MNIST net-
works with 4 layers, w.r.t. number of
neurons. The plot at the bottom shows
the runtime for MNIST networks with
100 neurons per layer, w.r.t. number of
layers.

same reduction rate, whereas the heuristic ones are mostly just slightly worse
than the greedy ones. For a more detailed evaluation, please refer to [6, Appendix
G]. The runtimes of the four approaches, however, differ a lot. Take for example
an MNIST 3 × 100 network. We assume that the abstraction is performed by
starting with the full network and reducing up to a certain reduction rate. Thus,
we have runtimes for each of the approaches for each reduction rate. We take
the average over all the reductions and get 47 s for the greedy orthogonal projec-
tion, 5130 s for the greedy linear programming, 1 s for the heuristic orthogonal
projection, and 2 s for the heuristic linear programming. Linear programming
takes a lot more time than orthogonal projection, and, as already seen before,
the heuristic approaches are much faster than the greedy ones. Please refer to
[6, Appendix J] for more experiments on the runtime. Therefore, we propose to
use the heuristic approach and the orthogonal projection.

Scalability. We evaluate how our approach scales to networks of different sizes.
We evaluate (1) how our approach scales with an increasing number of layers,
and (2) how it scales with a fixed number of layers but an increasing number of
neurons. We show our experiments in Fig. 4. The runtime is the average runtime
over 20 different reduction rates on the same network. One can imagine this as
averaging the runtimes shown in Fig. 2. We can see that the variance-based app-
roach has almost constant runtime, whereas the runtime of the greedy approach
is increasing for both a higher number of layers and neurons.

Final Assessment. We have four possibilities on how to abstract an NN: greedy
orthogonal projection, greedy linear programming, heuristic-based orthogonal

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 415

Fig. 5. Evolution of the accuracy on the test set for different reduction rates, for an
increasing number of layers, or neurons. We show LiNNA (blue-green) for semantic
abstraction, and for syntactic abstraction, bisimulation (red-yellow). The networks were
trained on MNIST and have a fixed number of neurons (100) on the left, and a fixed
number of layers (4) on the right.

projection, and heuristic-based linear programming. Given that the orthogonal
projection outperforms linear programming in terms of accuracy and computa-
tion time, we propose to use orthogonal projection. We believe that it is sufficient
to use the heuristic-based approach, thereby gaining faster runtimes and only
barely sacrificing any accuracy. Whenever we refer to LiNNA from now on with-
out any additions, it will be the heuristic-based orthogonal projection.

5.2 Comparison to Existing Work

We want to show how our approach compares to existing works, i.e. DeepAbstract
and the bisimulation. Since there is no implementation available for the latter,
we implemented it ourselves. Please refer to [6, Appendix F] for the details.
The results of the comparison are shown in Fig. 3. It is evident that DeepAb-
stract achieves higher accuracies than the bisimulation, but LiNNA outperforms
DeepAbstract and the bisimulation in terms of accuracy for all reduction rates.

Concerning the runtime, we measure the runtime of each approach for a cer-
tain reduction rate, starting from the full network. We find that (in the median)
LiNNA (greedy) needs 55 s up to 199 s, LiNNA (heuristic) 2 s up to 3 s, DeepAb-
stract 187 s up to 2420 s, and the bisimulation 1 s up to 2 s, on MNIST networks
of different sizes (starting from 4 × 50 up to 11 × 100). The details can be found
in [6, Appendix J]. The bisimulation performs best, however just slightly ahead
of the heuristic-based LiNNA. The greedy LiNNA, as well as DeepAbstract both
have a much higher computation time.

However, in terms of accuracy, greedy LiNNA seems to be the best-
performing approach, given sufficient time. Due to efficiency, we suggest using
heuristic-based LiNNA, as it is as fast as the bisimulation, but its accuracy is a
lot better and even close to greedy LiNNA.

Since we are interested in the general behavior of the abstraction, we want
to see how the methods work for varying sizes of networks, but not only in
terms of scalability. In Fig. 5, we show the trend for bisimulation and LiNNA for
an increasing number of layers resp. neurons per layer. On the left, we fix the

416 C. Chau et al.

Fig. 6. Syntactic VS. Semantic - This
plot shows the difference between using
semantic resp. syntactic information
for the abstraction on an MNIST
5 × 100 network. Semantic: LiNNA
(semantic) and DeepAbstract. Syntac-
tic: LiNNA (syntactic) and the bisimu-
lation.

Fig. 7. Refinement - This plot shows
the accuracy of an MNIST 5×100 net-
work that was abstracted and refined to
a certain reduction rate R. There is also
a plot for an abstraction to the same
reduction rate as after the refinement
but without refining.

number of neurons per layer to 100 and incrementally increase the number of
layers. On the right, we fix the number of layers to four and increase the number
of neurons.

We can see that the performance of the networks from the bisimulation varies
a lot and gets slightly worse when there are more layers, whereas LiNNA has a
very small variation and the performance of the abstractions increases slightly
for more layers. Both approaches compute abstractions that perform better the
more neurons are in a layer, but LiNNA converges to a much steeper curve at
high reduction rates.

For NNs with 400 or more neurons, LiNNA can reduce 80% of the neurons
without a significant loss in accuracy, whereas the bisimulation can do the same
only for up to a reduction rate of 55%.

5.3 Semantic vs Syntactic

In the following, we want to show the differences between semantic and syntactic
abstractions. Recall that syntactic abstraction makes use of the weights of the
network, the syntactic information, with no consideration of the actual behavior
of the NN on the inputs. Semantic abstraction, on the other hand, focuses on the
values of the neurons on an input dataset, which also incorporates information
about the weights. DeepAbstract and LiNNA, both use semantic information,
whereas bisimulation uses syntactic information. We additionally evaluate the
performance of LiNNA on syntactic information.

Which type of information is better for abstraction: semantic or syntactic?
Note that both DeepAbstract and the bisimulation represent a group of neurons
by one single representative, whereas LiNNA makes use of a linear combination.

We summarize our results in Fig. 6. For smaller reduction rates, the bisimula-
tion performs better than LiNNA on syntactic information; for higher reduction
rates it is reversed. In general, the approaches based on semantics (DeepAbstract

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 417

Fig. 8. Comparison of refinement tech-
niques on different architectures for
MNIST. The respective networks were
abstracted with a reduction rate of
50%. The lines show the variance, the
box represents 50% of the data, the line
in the box shows the median.

Fig. 9. Refinement on different layers
- We considered abstractions that were
obtained with a 50% reduction rate
and fixed 1000 counterexamples. The
plots depict the percentage of restored
neurons in the layers of the different
MNIST networks.

and LiNNA - semantic) outperform the other two approaches w.r.t. accuracy.
While abstraction based on syntactic information can provide global guarantees
for any input, abstraction based on semantic information relies on the fact that
its inputs during abstraction are similar to the ones it will be evaluated on later.
However, we see that still the semantic information is more appropriate for pre-
serving accuracy because it combines the knowledge about possible inputs with
the knowledge about the weights.

5.4 Refining the Network

We propose refinement of the abstraction in cases where it does not capture all
the behavior anymore, instead of restarting the abstraction process. We consider
networks that are abstracted up to certain reduction rates, i.e. 20%, 30%, . . . ,
90%, and use the refinement to regain 10% of the neurons. For example, we
reduce the network by 90% and then use refinement to get back to a reduction
rate of 80%. We evaluate this refined network on the test dataset and plot its
accuracy. Additionally, we show the accuracy of the same NN which is directly
reduced to an 80% reduction rate, without refinement. This plot is shown in
Fig. 7 for a 5 × 100 network, trained on MNIST.

The gradient and look-ahead refinement have a similar performance. How-
ever, the difference-based approach even outperforms the direct reduction itself.
This behavior can be explained by the fact that the refinement and the abstrac-
tion look at different metrics for removing/restoring neurons. The refinement can
focus directly on optimizing for the inputs at hand, whereas the abstraction was
generated on the training set. In conclusion, the refinement can even improve
the abstraction and it is beneficial to abstract slightly more than required, and
refine for the relevant inputs, rather than having a finer abstraction directly.

418 C. Chau et al.

Comparison of theDifferent Approaches. We collect images that are labeled
differently by the abstraction and observe the number of neurons that are restored
in order to fix the classification of each image. We ran the experiment on differ-
ent networks that were abstracted with a 50% reduction rate and considered 1000
counterexamples for each network. The results are summarized in Fig. 8, where
we have boxplots for each refinement method on four different network architec-
tures. The look-ahead approach is the most effective technique since it requires
the smallest number of restored neurons. In the median, it only requires 1 to 2
operations. The gradient-based approach performs noticeably worse but outper-
forms the difference-based approach on all networks. The computation time, how-
ever, gives a different perspective: Repairing one counterexample takes on aver-
age <1 s for the difference-based approach, 1 s for the gradient-based, but the
look-ahead approach takes on average 4 s. Interestingly, the look-ahead approach
restores fewer neurons but performs worse in accuracy. The difference-based per-
forms better in terms of accuracy while restoring more neurons.

Insight on the Relevance of Layers. We also investigated in which layers
the different refinement techniques tend to restore the neurons. The plots in
Fig. 9 illustrate the percentage of restored neurons in each layer. Notably, the
look-ahead approach restores most neurons in the first layer, and very few or
none in the later layers, whereas the other approaches have a more uniform
behavior. However, the more layers the network has, the more the gradient- and
difference-based approaches tend to restore more neurons in the first layer. As
reported already by [2], the first layers seem to have a larger influence on the
network’s output and hence should be focused on during refinement. It is even
more interesting that the difference-based approach does not focus on the first
layers as much as the look-ahead approach, but it is better in terms of accuracy.

5.5 Error Calculation

We want to show how the abstraction simulates the original network on unseen
data not only w.r.t. the output but on every single neuron. In other words, is
the discrepancy between the concrete and abstract network higher on the test
data than on the training data that generate the abstraction, or does the link
between the neuron and its linear abstraction generalize well?

In Fig. 10, we look at this ratio (“relative error of the abstraction”), i.e. the
absolute difference of (activation values of) a simulated abstract neuron to the
original neuron, once on the test dataset divided by the maximum value on the
training dataset. We can see that there are cases where the error can be greater
than one (meaning “larger than on the training set”), see the first row of the

plot. However, the geometric mean, defined as
(
ΠN

i=1ai

) 1
N , calculated over all

images is very small. Note that more experiments can be found in [6, Appendix
L]. In conclusion, we can say that our abstraction is close to the original also on
the test dataset, although the theoretical error calculation does not guarantee so
tight a simulation. Future work should reveal how to further utilize the empirical
proximity in transferring the reasoning from the abstraction to the original.

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 419

Fig. 10. Histograms of the relative error of the values of the neurons in an MNIST
3×100 network and its abstraction (reduced by 30%). The first row shows the maximum
relative error of each neuron in the NN, that occurred for some input from the test set.
The second row shows the geometric mean of the relative error of each neuron over 100
images of the test set.

6 Conclusions

The focus of this work was to examine abstraction not as a part of a verification
procedure, but rather as a stand-alone transformation, which can later be used in
different ways: as a preprocessing step for verification, as means of obtaining an
equivalent smaller network, or to gain insights about the network and its training,
such as identifying where redundancies arise in trained neural networks. (This is
analogous to the situation of bisimulation, which has been largely investigated
on its own not necessarily as a part of a verification procedure, and its use in
verification is only one of the applications.)

We have introduced LiNNA, which abstracts a network by replacing neurons
with linear combinations of other neurons and also equip it with a refinement
method. We bound the error and thus the difference between the abstraction
and the original network in Theorem1. The theorem yields a lower and an upper
bound on the network’s output, thereby providing its over-approximation.

We showed that the linear extension provides better performance than exist-
ing work on abstraction for classification networks, both DeepAbstract, and the
bisimulation-based approach. We focused our experimental evaluation on accu-
racy, since the aim of the abstraction is to faithfully mimic the whole classifica-
tion process in the smaller, abstract network, not just one concrete property to
be verified, which describes only a very specific aspect of the network. Interest-
ingly, the practical error is dramatically smaller than the worst-case bounds. We
hope this first, experimental step will stimulate interest in research that could
utilize this actual advantage, which is currently not supported by any respective
theory.

Furthermore, we show that the use of semantic information should be pre-
ferred over syntactic information because it allows for higher reductions while
preserving similar behavior and being cheap since the I/O sets can be quite
small. Bringing back semantics could take us closer to the efficiency of classical
software abstraction, where the semantics of states is the very key, going way
beyond bisimulation.

420 C. Chau et al.

References

1. Altschuler, J., et al.: Greedy column subset selection: new bounds and distributed
algorithms. In: Balcan, M., Weinberger, K.Q. (eds.) Proceedings of the 33nd Inter-
national Conference on Machine Learning, ICML, New York City, NY, USA,
vol. 48, pp. 2539–2548. JMLR Workshop and Conference Proceedings. JMLR.org
(2016)

2. Ashok, P., Hashemi, V., Křet́ınský, J., Mohr, S.: DeepAbstract: neural network
abstraction for accelerating verification. In: Hung, D.V., Sokolsky, O. (eds.) ATVA
2020. LNCS, vol. 12302, pp. 92–107. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-59152-6 5

3. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science
and Statistics, 5th edn. Springer, Cham (2007)

4. Brix, C., et al.: First three years of the international verification of neural networks
competition (VNN-COMP). Int. J. Softw. Tools Technol. Transfer 1–11 (2023).
https://doi.org/10.1007/s10009-023-00703-4

5. Caruana, R., Lawrence, S., Giles, C.: Overfitting in neural nets: backpropagation,
conjugate gradient, and early stopping. In: Leen, T., Dietterich, T., Tresp, V. (eds.)
Advances in Neural Information Processing Systems, vol. 13. MIT Press (2000)

6. Chau, C., Křet́ınskỳ, J., Mohr, S.: Syntactic vs semantic linear abstraction and
refinement of neural networks (2023)

7. Cheng, Y., Wang, D., Zhou, P., Zhang, T.: A survey of model compression and
acceleration for deep neural networks. Preprint arXiv:1710.09282 (2017)

8. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for
neural network verification. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS,
vol. 12224, pp. 43–65. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53288-8 3

9. Farahat, A.K., Ghodsi, A., Kamel, M.S.: A fast greedy algorithm for generalized
column subset selection. Preprint arXiv:1312.6820 (2013)

10. Farahat, A.K., Ghodsi, A., Kamel, M.S.: An efficient greedy method for unsuper-
vised feature selection. In: 11th International Conference on Data Mining, Van-
couver, BC, Canada, pp. 161–170. IEEE (2011)

11. Fazlyab, M., et al.: Efficient and accurate estimation of Lipschitz constants for
deep neural networks. In: Wallach, H., et al. (eds.) Advances in Neural Information
Processing Systems, vol. 32. Curran Associates Inc. (2019)

12. Gong, Y., Liu, L., Yang, M., Bourdev, L.: Compressing deep convolutional networks
using vector quantization. Preprint arXiv:1412.6115 (2014)

13. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural net-
work. In: NeurIPS Deep Learning Workshop (2014)

14. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4700–4708 (2017)

15. Jian, X., Jinyu, L., Yifan, G.: Restructuring of deep neural network acoustic models
with singular value decomposition. In: Interspeech, pp. 2365–2369 (2013). https://
doi.org/10.21437/interspeech.2013-552

16. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

17. Kirkwood, J.R., Kirkwood, B.H.: Elementary Linear Algebra. Chapman and
Hall/CRC (2017)

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 421

18. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

19. Lawrence, S., Giles, C., Tsoi, A.: Lessons in neural network training: overfitting
may be harder than expected. In: Anon (ed.) Proceedings of the National Confer-
ence on Artificial Intelligence, pp. 540–545. AAAI (1997)

20. LeCun, Y.: The MNIST database of handwritten digits (1998). http://yann.lecun.
com/exdb/mnist/

21. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural net-
work acoustic models. http://robotics.stanford.edu/∼amaas/papers/relu hybrid
icml2013 final.pdf

22. Prabhakar, P.: Bisimulations for neural network reduction. In: Finkbeiner, B.,
Wies, T. (eds.) VMCAI 2022. LNCS, vol. 13182, pp. 285–300. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-94583-1 14

23. Prabhakar, P., Rahimi Afzal, Z.: Abstraction based output range analysis for neural
networks. In: Wallach, H., et al. (eds.) Advances in Neural Information Processing
Systems, vol. 32. Curran Associates Inc. (2019)

24. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61,
85–117 (2015). https://doi.org/10.1016/j.neunet.2014.09.003

25. Shitov, Y.: Column subset selection is NP-complete. Linear Algebra Appl. 610,
52–58 (2021). https://doi.org/10.1016/j.laa.2020.09.015

26. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. 3(POPL) (2019). https://doi.org/
10.1145/3290354

27. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: Boosting robustness certification
of neural networks. In: 7th International Conference on Learning Representations,
ICLR, New Orleans, LA, USA. OpenReview.net (2019)

28. Sotoudeh, M., Thakur, A.V.: Abstract neural networks. In: Pichardie, D., Sighire-
anu, M. (eds.) SAS 2020. LNCS, vol. 12389, pp. 65–88. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-65474-0 4

29. Tran, H.-D., et al.: Robustness verification of semantic segmentation neural net-
works using relaxed reachability. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021.
LNCS, vol. 12759, pp. 263–286. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-81685-8 12

30. Virmaux, A., Scaman, K.: Lipschitz regularity of deep neural networks: analysis
and efficient estimation. In: Bengio, S., et al. (eds.) Advances in Neural Informa-
tion Processing Systems 31: Annual Conference on Neural Information Processing
Systems, NeurIPS, Montréal, Canada, pp. 3839–3848 (2018)

31. Wang, S., et al.: Beta-CROWN: efficient bound propagation with per-neuron split
constraints for neural network robustness verification. In: Ranzato, M., et al. (eds.)
Advances in Neural Information Processing Systems, vol. 34, pp. 29909–29921.
Curran Associates Inc. (2021)

32. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. Preprint arXiv:1708.07747 (2017)

33. Xu, K., et al.: Fast and complete: enabling complete neural network verification
with rapid and massively parallel incomplete verifiers. In: International Conference
on Learning Representations (2021)

34. Zhang, C., et al.: Understanding deep learning requires rethinking generalization.
CoRR, abs/1611.03530 (2016). http://arxiv.org/abs/1611.03530

I. Publications

B Assessment of Neural Networks for Stream-Water-Temperature
Prediction

©2021 IEEE. Reprinted, with permission, from Stefanie Mohr, Konstantina Drainas
and Jürgen Geist. “Assessment of Neural Networks for Stream-Water-Temperature Pre-
diction”. IEEE, Conference Proceedings: 20th IEEE International Conference on Ma-
chine Learning and Applications (ICMLA), 2021.

This paper has been published as a peer-reviewed conference paper.

Stefanie Mohr, Konstantina Drainas and Jürgen Geist. Assessment of Neu-
ral Networks for Stream-Water-Temperature Prediction. In: 20th IEEE In-
ternational Conference on Machine Learning and Applications (ICMLA),
Pasadena, CA, USA, 2021, pp. 891-896.

DOI: https://doi.org/10.1109/ICMLA52953.2021.00147

Summary

In this work, we explore the application of NNs for predicting the temperature of streams,
an area of growing importance due to climate change. We highlight the inadequacies
of traditional metrics like Root Mean Squared Error (RMSE) for evaluating the perfor-
mance of NNs, and introduce several new methods for a comprehensive analysis: robust-
ness analysis, which evaluates how small changes affect the output; min-max analysis,
which determines the potential output range of the NN; and impact analysis, which
evaluates the influence of the input features on the model predictions. These methods
aim to improve the reliability and understandability of non-expert users of NNs. We
validate these methods on six German streams, demonstrating that NNs can provide
accurate predictions of water temperature.

Contributions of the author

Composition and revision of the manuscript with significant role in writing Sections 3
and 4. Discussion and revision of the entire manuscript and the results. Discussion and
development of the ideas, experimentation and evaluation with the following notable
individual contributions: Development of the analysis methods, implementation of the
analysis, and evaluation.

94

https://doi.org/10.1109/ICMLA52953.2021.00147

Assessment of Neural Networks for
Stream-Water-Temperature Prediction

Stefanie Mohr
Chair of Theoretical Computer Science

Technical University of Munich
Munich, Germany

0000-0002-8630-3218

Konstantina Drainas
Chair of Aquatic Systems Biology

Technical University of Munich
Munich, Germany

0000-0001-6771-2123

Prof. Dr. Jürgen Geist
Chair of Aquatic Systems Biology

Technical University of Munich
Munich, Germany

0000-0001-7698-3443

Abstract—Climate change results in altered air and water
temperatures. Increases affect physicochemical properties, such
as oxygen concentration, and can shift species distribution
and survival, with consequences for ecosystem functioning and
services. These ecosystem services have integral value for hu-
mankind and are forecasted to alter under climate warming.
A mechanistic understanding of the drivers and magnitude of
expected changes is essential in identifying system resilience and
mitigation measures. In this work, we present a selection of state-
of-the-art Neural Networks (NN) for the prediction of water
temperatures in six streams in Germany. We show that the use of
methods that compare observed and predicted values, exemplified
with the Root Mean Square Error (RMSE), is not sufficient for
their assessment. Hence we introduce additional analysis methods
for our models to complement the state-of-the-art metrics. These
analyses evaluate the NN’s robustness, possible maximal and
minimal values, and the impact of single input parameters on
the output. We thus contribute to understanding the processes
within the NN and help applicants choose architectures and input
parameters for reliable water temperature prediction models.

Index Terms—neural network, prediction, water temperature,
climate change, verification, evaluation, robustness

I. INTRODUCTION

Recent years have already shown the impact of climate
change on various organisms, among them keystone species
from aquatic ecosystems, such as macroinvertebrates. These
animals, which by convention can be retained by a 500 µm
mesh net and lack a backbone, are often overlooked in the
public discourse, even though they are abundant in nearly
all types of streams and rivers all over the world [1] and
have great relevance for the functioning of stream ecosystems,
since they play a very important role in energy flow and
hence also for higher levels of the food chain [2]. However,
certain macroinvertebrate species and many fish species have
stringent cold-water temperature requirements, which makes
them particularly vulnerable to warmer water conditions. Air
temperature has a strong influence on the temperature of
rivers, particularly in broad and flat headwater streams that
show tight coupling to atmospheric processes due to the high
ratio of stream surface to water depth [3]. Consequently,
increases in air temperature will also affect water temperature,
leading to reduced cold water patches as possible habitats
[4]. In Germany, an increase by 1.5°C in the annual mean

temperature between 1881 and 2018 has already been detected
[5]. Similarly, an increase in mountain-lake water temperature
between 0.1°C and 1.1°C per decade has been observed [6].
For ecological stakeholders, the knowledge of whether and
how much temperature will change is highly important for
the introduction of preventive policies, e.g. investing in shady
riparian vegetation to reduce stream water temperature [7].

To be able to plan and execute such preventive policies,
good and reliable models for water temperature prediction
are essential. Their creation has two main advantages: Firstly,
it will help to predict future changes in temperature and
thus helps in choosing reasonable prevention and mitigation
methods. Secondly, based on a few years of measurements,
water temperature in streams can be predicted instead of
measured. Even though measurements are more precise, pre-
dictions would not only reduce costs and effort but also
establish possibilities for researchers as well as for ecological
stakeholders all over the world to work with data that up to
now have been hard to obtain.

Different approaches for water temperature prediction exist
and have already been used for various aquatic systems. Linear
regression, for example, is often used to describe the relation-
ship between air and water temperature [8], [9], [10], [11],
[12]. However, when plotting air against water temperature,
physical effects concerning high and low temperatures lead to
a non-linear, s-shaped relationship between the two parameters
[13]. Additionally, atmospheric conditions, topography, stream
discharge, bedform, and riparian vegetation play a relevant
role as an influence on water temperature [8], [14]. Hence,
linear regression based on air temperature can not be con-
sidered optimal for water temperature prediction. Addressing
the non-linear relationship, Neural Networks (NN) seem very
promising for reliable water temperature predictions.

We use the knowledge gained in hitherto studies to create
NN for water temperature prediction and introduce analysis
methods besides the commonly used metrics. Since these
metrics exclusively compare observed and predicted values,
we do not rely on them but complement them by our additional
analysis methods, to assess and hence choose proper NN for
water temperature prediction.

As much as NN are known to be effective in learning, they
are also known to be vulnerable to perturbations [15], [16].

891

2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)

978-1-6654-4337-1/21/$31.00 ©2021 IEEE
DOI 10.1109/ICMLA52953.2021.00147

20
21

 2
0t

h
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 M
ac

hi
ne

 L
ea

rn
in

g
an

d
A

pp
lic

at
io

ns
 (I

C
M

LA
) |

 9
78

-1
-6

65
4-

43
37

-1
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

M
LA

52
95

3.
20

21
.0

01
47

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 06,2023 at 09:01:35 UTC from IEEE Xplore. Restrictions apply.

In our setting, a small change in the output is not necessarily
a problem. However, users of river temperature models, such
as hydrologists or employees in water management offices,
may not be aware that there is a difference between a NN-
model and a classical model, e.g. linear regression. That is
why we need a more thorough analysis of the NN to evaluate
its behavior more critically. For this application, we introduce
three methods: Robustness-, Min/Max- and Impact-Analysis.

The Robustness-Analysis mimics the approach that is al-
ready known for classification [17], [18]. It evaluates the
impact of a small perturbation on the output value. In a linear
regression model, a perturbation of the input would be linearly
transformed to the output. For NN, this is not as simple
because their behavior is not linear. That is why the calculation
of a robustness-value is a problem that has gained a lot of
interest in the last few years [15], [16], [17], [18]. We adopt
an approach from [19] that evaluates a NN in terms of its
robustness.

Furthermore, the Min/Max-Analysis is meant to determine
minimal and maximal values that the NN can take. For
classical models, this value is almost obvious or at least can
be evaluated by simple calculus. NN make this more difficult
due to their complicated structure. However, we adopt the idea
of [20] that generates specific input vectors to the NN that
fulfill any pre-defined property. Even though the application
was different, we can use a slightly adapted approach here.

The purpose of the Impact-Analysis is to help future devel-
opers of prediction models. The target groups who will want to
use our approach may not be computer scientists themselves,
but hydrologists or biologists. Thus, we need a method that
visualizes clearly which input values were most important for
the decision-making of the NN. On the one hand, this can help
in adapting the model, on the other hand, it may also result in
insights into the correlation between stream temperatures and
other features. Therefore, we use a similar approach to [21] to
determine which input features contribute most to calculating
the output value.

We aim to introduce assessment methods for non-experts in
the field of NN. Therefore, we not only implement methods
with understandable output but also use easily accessible
data, to not limit our approach to specific measurement re-
quirements. Our data were collected at different streams in
Germany, which were selected as described in Section III-A.
Currently, we have an individual model for each stream trained
on data from one measurement site each. This means that the
input data was not gathered along the whole length of the
streams but at one certain measurement site per stream.

We summarize our contributions as follows:
• We create NN for six different streams in Germany
• We show that metrics like the RMSE are not sufficient

to assess NN for water temperature prediction properly
• We introduce thorough analysis methods for regression

problems in NN
– to compare it to classical approaches
– to be able to choose robust architectures and input

combinations for reliable predictions

– to make it more understandable to the user

II. STATE OF THE ART

A. Water temperature prediction

As changes in water temperature have been identified as
a key component of aquatic ecosystem health, their accurate
prediction becomes increasingly important. Hence, several
approaches for water temperature prediction already exist. The
simplest approach is linear regression, presuming a linear rela-
tionship between air and water temperature [8], [9], [10], [11],
[12]. Another approach is stochastic modeling, e.g., multiple
regression analysis [8], [22], [23], second-order Markov pro-
cesses [22], Box and Jenkins time-series models [22], [23], and
second-order autoregressive models [23]. Machine learning
approaches, including Gaussian process regression, decision
trees, and NN, have been tested, too [24]. In comparison,
NN have shown either well [24] or even best [11], [25]
performance and are becoming increasingly popular [11], [24],
[25], [26], [27].

The studies using NN for water temperature prediction
assessed their models based on bias, Coefficient of
Determination [25], Coefficient of Correlation, Coefficient
of Efficiency, Adjusted Coefficient of Efficiency [11], Mean
Absolute Error, Willmott Index of Agreement [24], Mean
Square Error [26], and the Root Mean Square Error (RMSE)
[11], [24], [25]. Even though there is a wide variety in these
metrics, they all mainly compare observed and predicted
values, not considering the underlying processes and the
reliability of the NN’s predictions.
Also, these metrics do not consider input parameters and their
impact on the output, besides changes in prediction accuracy.
Nonetheless, several approaches have tried to improve water
temperature prediction by additional input parameters that are
supposed to complement air temperature from current and
previous days as input parameters: runoff/relative change in
flow [23], [24], which is the part of the effective precipitation
that flows into the stream [28], declination of sun [26], soil
temperature [29], riparian vegetation [29] and day of the year
[24]. The most promising of those parameters is the day of
the year because it improves the performance and does not
require additional effort in data collection. Another parameter,
the runoff, was found to usually play a relatively small role
in water temperature prediction but shows to be increasingly
important for high-altitude catchments [24].
To the best of our knowledge, the current best RMSE values
vary between 0.46°C [24] and 1.58°C [27] in NN approaches
over different streams, NN architectures, and input parameters.

B. Explainable AI

While all the metrics for evaluating classical regression
models, like mentioned above, determine the difference be-
tween prediction and observation, NN need more thorough
analysis. It is an open problem to understand and interpret
their exact behavior, which is why they go by the name of
black-box models. Among others, some techniques visualize
patterns in input images that trigger the NN [30], evaluate their

892

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 06,2023 at 09:01:35 UTC from IEEE Xplore. Restrictions apply.

sensitivity to certain inputs [21], calculate Integrated Gradients
[31], or perform layer-wise relevance propagation [32] which
is specifically interesting for inputs that are images. A broad
overview of many possible techniques can be found in [33].
Almost all of the recent works focus on classification networks
whose interpretability is hard to determine. However, for
regression networks, this problem is different. In our case,
there is just one continuous output value that has to be
observed and not categorical labels. That is why we use the
gradients of the input values, similar to [31], as a method to
visualize the behavior of the NN.

C. Verification

NN are naturally very susceptible to adversarial attacks,
as many works have demonstrated in recent years [15], [20].
Consequently, various verification techniques for NN are being
developed these days. Most of these focus on proving the
robustness of the NN [18], [19]. Local robustness is usually
defined for classification networks: On a small area around
each input to the NN, it should still predict the same label as
for the original. On regression networks, this property cannot
be defined in the same way. We cannot expect the NN to
predict the same value for a slightly perturbed input. We still
want to bind this prediction error in a small region around
the inputs. Unfortunately, many tools for verification only
support classification networks. That is why we decided to
use a variant of DeepPoly [19]. This tool uses an abstraction
of all possible input values, namely a particular neighborhood,
and propagates this through the network. In the end, it results
in an interval of possible output values of the NN.

III. OUR APPROACH

A. Data

We used the following values as possible input features for
the NN:

• air temperature [°C]: daily mean values, measured in
the distance of 3.25 to 47.03 km from water temperature
measurement sites

• runoff [m3/s]: the part of the effective precipitation that
flows into the streams and rivers, measured as the amount
of water per unit time at each of the selected measurement
sites

• day of the year: the date represented by a value in the
interval of 0 to 365

The daily mean air temperature [°C] is provided by the
German Meteorological Center (Deutscher Wetterdienst, abbr.
DWD) [34]. The daily mean water temperature [°C] and
runoff [m3/s] are provided by the ”Gewässerkundlicher Di-
enst Bayern” (abbr. GkD) [35], a department of the Bavarian
Environmental Agency. The data are free of cost and accessible
via download [34], [35]. For our experiments, we use the
data from six German streams selected by the mean annual
runoff MQ ≤ 1 m3/s and a minimum of 1500 data points.
For each stream, there is one measurement site for water
temperature and runoff by the GkD and one to four surround-
ing measurement sites for air temperature by the DWD. In

our case, runoff measurements are conducted by the GkD.
Hence we can access the data easily. Still, especially thinking
about future predictions, it might not be recommendable to
include runoff as it is another value that has to be measured
or predicted. However, the importance of runoff in water
temperature prediction models has already been shown. It
seems to increase the performance for high-altitude catchments
[24], which one should keep in mind while considering it as
an input parameter. Since not all measurement devices were
set up at the same time, measurement periods vary between
six and 24 years, depending on the measurement site.

B. Models

The data structure is quite simple, which is why using
complex NN is unnecessary. In the course of this work, we use
fully connected NN, which have at most three hidden layers
and 90 hidden neurons in total. Several previous approaches
showed satisfactory performance, even though they used far
simpler models than NN. That is why we can use smaller
models with a modest number of layers and neurons. For
the training of the NN, we used a particular subset of input
features, as described in Section III-A.

C. Model Analysis

Regression models, not only NN, are usually evaluated by
metrics that compare measured values with predicted values
(see Section II-A). In this work, we use the RMSE (as defined
in [11]) as a representative for these metrics because it is a
usual and intuitive measure.
For simple models, e.g., linear regression or simple stochastic
models, the behavior is well-defined and well-known and
therefore does not require thorough analysis. The behavior of
NN, on the other hand, is not well-known yet. To address this
issue, we introduce three additional analyzing methods. These
are supposed to help to understand the behavior of the NN.

1) Robustness Analysis: Local robustness, as defined in
[36], is usually concerned with classification networks and the
prediction of labels. Since our approach is based on a regres-
sion problem, we do not check whether labels are identical
but the following: Given an input and its neighborhood, how
much does the value of the prediction of the NN change at
most in this area? More formally: If we have a NN f : X → R
that is defined on its input set X and predicts values in R, and
an ε defining the size of the neighborhood, we want to get a
δ such that for a subset of inputs of interest D:

∀x ∈ D ⊂ X ∀y ∈ Nε(x) : |f(y)− f(x)| < δ (1)

where Nε defines the ε-neighborhood.
If the robustness is low, even a small perturbation to the

input values can result in a big difference in the output values.
The tool that we are using to evaluate the robustness of our NN
is called DeepPoly [19]. It was originally designed to check
the local robustness of classification networks but we adapted
it to fit our application.

893

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 06,2023 at 09:01:35 UTC from IEEE Xplore. Restrictions apply.

2) MinMaxAnalysis: On a simple model, such as a fitted
sine function, its minimum and maximum values are obvious
and can easily be derived by calculus. However, this is not as
simple for NN. For them, it is neither obvious nor an easy
calculation. We adapt the idea from [20] and use gradient
descent. The principle is similar to backpropagation for learn-
ing a NN. Instead of learning optimal weights to minimize
the loss function, we optimize the input vector to minimize
resp. maximize the output value, while keeping the values in
a reasonable range. That is, -45°C to 60°C for temperature,
and -1 to 40 m3/s for the runoff. This yields input vectors with
either very high or very low output values. Since the starting
position of gradient descent can heavily influence its result, we
start the optimization process from a set of randomly chosen
input vectors, and we look at the minimum resp. maximum
observed output value.

3) Impact Analysis: What we call impact analysis is similar
to sensitivity analysis, which is used to determine which input
the NN is sensitive on [21]. The key idea is to measure how
much an input feature contributes to the calculation of the
output value. This can be done by calculating the gradient
of the input features based on the loss function. This value
indicates how much a change in the input feature will affect
the computation of the output value. On the one hand, it gives
an idea of which features are necessary, and on the other hand,
it helps in inspecting the differences between the streams. If
the influence of the parameters on the streams is different,
this could indicate a relationship between the streams that is
unknown so far.

IV. EXPERIMENTS

With the help of a vast grid search, we found that the
use of the default hyper-parameters is suitable for accurate
water temperature prediction in all cases. To be able to use
DeepPoly, we chose ReLU as an activation function. For
our fully connected NN, we determined three hidden layers
to return consistently good results based on the grid search.
Based on this selection, we compare combinations of several
input parameters with different numbers of nodes per layer,
using normalized input data. The dataset is split into test-,
train- and validation data; resp. 25%, 7.5% and 67.5% of the
whole data. The optimizer for the training is L-BFGS that is
run on a total of 10000 epochs. Details on the dataset and
training can be found in [37].

In Section IV-A, we fix the architecture to 9-7-13 nodes,
since this performs well according to robustness in Sec-
tion IV-B. Also, we fix input parameters in Section IV-B to
those showing the lowest RMSE values in Section IV-A.

A. Input feature selection

In Table I we show a subset of our results, with the com-
binations of our input values as follows: only air temperature
(A), air temperature and runoff (A+R), air temperature and day
of the year (A+D), and the combination of all three of them
(A+R+D). Additionally, we present a comparison between
only having one weather station for the prediction, and as

TABLE I
RMSE VALUES FOR NN WITH DIFFERENT INPUT COMBINATIONS.

A: AIR TEMPERATURE. R: RUNOFF. D: DAY OF THE YEAR.

Stream A A+R A+D A+R+D

One airstation
Aubach 0.84 0.84 0.49 0.48
Abens 0.88 0.69 0.72 0.55
Bernauer Ache 1.02 0.91 0.83 0.70
Grosse Ohe 1.10 0.96 0.68 0.59
Otterbach 1.74 1.72 1.57 1.54
Sulzbach 1.09 1.06 0.92 0.91

All airstations
Aubach 0.79 0.79 0.48 0.47
Abens 0.87 0.68 0.67 0.52
Bernauer Ache 1.00 0.92 0.83 0.67
Grosse Ohe 0.97 0.51 0.80 0.48
Otterbach 1.70 1.68 1.57 1.57
Sulzbach 1.07 1.02 0.91 0.89

many as there are in the direct neighborhood of the stream.
We can observe that the obtained RMSE values are already
similar to those determined in [24], if we use only air
temperature as input. For most streams, it decreases if we
add runoff as an input parameter. The RMSE decreases even
more if we combine air temperature and day of the year as
an input. Moreover, the best RMSE values are obtained if the
combination of all three input parameters A+R+D is used. On
the other hand, using all weather stations decreases the RMSE
in only three out of six streams for the input combinations
A+D and A+R+D. For the combination A+R it decreases
the RMSE in already five out of six streams and for only
air temperature as input, even all six streams show decreased
RMSE values.

In summary, we can observe that the best RMSE values are
obtained if all available input parameters are used. However,
we obtain comparable results with the A+D input combina-
tion for several streams, confirming that the runoff does not
necessarily have a big impact. Moreover, even among the best
RMSE values obtained with the A+R+D input combination,
we find a high variety in prediction accuracy between the
different streams, ranging between 0.47°C and 1.56°C. We
conjecture that there are stream-dependent parameters that we
do not use in this work and that should be investigated further
by hydrologists.

B. Robustness Analysis

While the robustness analysis is meant to be an evaluation
method, we already use it to choose a good architecture by
training three NN with different architectures for each stream,
using the best input parameter combinations as identified in
Section IV-A. We evaluate the different NN on the RMSE
and the NN’s robustness. To test the robustness, we add a
perturbation of 0.01 to the air temperature and discharge which
corresponds to approximately 1°C perturbation on the temper-
ature and 0.4 m3/s on the discharge. The perturbation analysis
generates the minimum and maximum possible outcome for
the perturbed input, as displayed in Table II: On the one hand,
bigger NN usually generate higher possible perturbations. On

894

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 06,2023 at 09:01:35 UTC from IEEE Xplore. Restrictions apply.

TABLE II
DIFFERENT NN ARCHITECTURES (SHAPE) FOR EACH STREAM WITH

CORRESPONDING RMSE, AVERAGE DIFFERENCE AFTER PERTURBATION
(MEANPERTURB) AND MINIMUM AND MAXIMUM VALUES THAT THE

BEST NN CAN TAKE FOR EACH STREAM.

Stream Shape RMSE MeanPerturb Max Min

Aubach 4-5-6 0.66 0.99
Aubach 9-7-13 0.47 0.7 49.52 -1.96
Aubach 30-30-30 0.44 0.82
Abens 4-5-6 0.63 0.78
Abens 9-7-13 0.52 1.1 43.78 -19.70
Abens 30-30-30 0.50 1.7
Bernauer Ache 4-5-6 0.83 1.04
Bernauer Ache 9-7-13 0.67 1.19 42.38 -10.71
Bernauer Ache 30-30-30 0.63 1.62
Grosse Ohe 4-5-6 0.53 1.18
Grosse Ohe 9-7-13 0.48 1.07 50.14 -0.39
Grosse Ohe 30-30-30 0.47 1.18
Otterbach 4-5-6 1.70 1.45
Otterbach 9-7-13 1.54 1.36 48.82 -5.63
Otterbach 30-30-30 1.55 1.44
Sulzbach 4-5-6 1.05 1.66
Sulzbach 9-7-13 0.89 1.29 61.16 -0.36
Sulzbach 30-30-30 0.81 3.12

the other hand, for the biggest NN (30-30-30), the RMSE is
best in five out of six streams. This confirms that choosing NN
architecture should not be based on the RMSE alone, since it
is inconclusive in terms of NN robustness. As we aim to find
a good balance between prediction accuracy and perturbation
behavior, we use the medium-sized architecture (9-7-13) for
further analysis.

C. MinMax-Analysis

When using unrealistic input values, e.g. temperatures of
-45°C and 60°C for each of the two weather stations for the
last three days combined with very low discharge on January
1st, we can obtain very high and low values. For instance,
for Sulzbach, this combination leads to a maximum value of
61.16°C (see Table II). These input value combinations are
artificial and unrealistic. Still, we observe that all minimum
and maximum values displayed in Table II can only be
obtained with input values at the boundary of the allowed
input values, in our case -45°C and 60°C for air temperature,
and -1 to 40 m3/s for runoff. To apply this approach in
the hydrological context for guaranteeing that the NN does
not predict unreasonable values, we have to define reasonable
values for each relevant waterbody first. With this information,
the MinMax-Analysis is a powerful tool to test the NN’s
reliability, especially in the context of prediction of future
water temperatures.

D. Impact Analysis

For the impact analysis, we have chosen the model of
Aubach as an example, since this model performed best in
all categories. It is depicted in Figure 1. On the x-axis, the
respective value’s importance for the prediction is represented.
On the y-axis, all input features of the NN are displayed. The

Fig. 1. Impact analysis for Aubach. The x-axis shows the importance for the
prediction of each value on the y-axis. The dots represent all values that have
occurred in the analysis, the squares mark the median of those. Stations 1 and
2 represent air temperatures, measured at the respective weather stations.

dots represent all of the important values that have occurred,
the square indicates their median. Comparing with the feature
selection, we can confirm that besides air temperature the day
of the year has an impact on the prediction, as well as the
runoff. Interestingly, the air temperature values of weather
station two have a much higher impact on the result than
the values of weather station one, confirming the only low
decrease of RMSE between the use of one vs. the use of all
stations as seen in Table I.

V. CONCLUSION AND FUTURE WORK

We show that precise water temperature predictions for
German streams are possible with NN-based models. However,
the precision of the resulting NN varies widely, which is
an open point for further examination. Furthermore, the best
achieved RMSE of 0.44 is still not as small as the usual
measurement inaccuracy, which is at 0.3°C. A future goal is
thus to improve the precision to a point where the model is
just as good as a direct measurement or at least close enough.
We confirm that the day of the year is an important factor,
and so is the runoff. Additionally, we apply methods already
known for classification problems in an adapted version to
our regression problem. This improves the understanding of
the behavior of NN for users that are not familiar with it,
especially their limitations and their sensitivity to changes.
With this, we contribute to more reliable water temperature
predictions that will be applied to different climate change
scenarios.
Besides the improvement of the training methods, we suggest
finding additional easily accessible data on streams that might
improve water temperature prediction from a hydrological
perspective. One could make use of satellite images to include
vegetation patterns as an additional input parameter. We also
think it would be beneficial to use our methods of assessment,
especially the impact analysis, and further examine whether
and why certain input features are more important in some
models, and less in others. Additionally, the heterogeneity
between the different streams should be examined further, for

895

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 06,2023 at 09:01:35 UTC from IEEE Xplore. Restrictions apply.

which our methods will contribute to an interdisciplinary step
forward. Concerning the analysis of the NN, the possibilities
are also not yet exhausted. There are various other verification
tools, that can be used to check certain properties of the NN,
e.g. [38]. Some tools try to evaluate NN-based systems which
could be used, e.g. [39], to have a more precise evaluation of
the minimal and maximal value of the NN.

ACKNOWLEDGMENT

This work was financially supported by the DFG Research
Training Group on Continuous Verification of Cyber-Physical
Systems (GRK 2428) and the AquaKlif project of the Bayklif
network funded by the Bavarian State Ministry of Science
and Arts (Bayerisches Staatsministerium für Wissenschaft und
Kunst). We also want to thank Jan Křetı́nský, Romy Wild, and
Lisa Kaule for their continuous support.

REFERENCES

[1] F. R. Hauer and V. H. Resh, “Chapter 15 - Macroinvertebrates,” in
Methods in stream ecology, F. R. Hauer and G. A. Lamberti, Eds.
London and San Diego and Cambridge, MA and Oxford: AP Academic
Press an imprint of Elsevier, 2017, pp. 297–319.

[2] J. B. Wallace and J. R. Webster, “The role of macroinvertebrates in
stream ecosystem function,” Annual review of entomology, vol. 41, pp.
115–139, 1996.

[3] T. Gomi, R. C. Sidle, and J. S. Richardson, “Understanding processes
and downstream linkages of headwater systems: headwaters differ from
downstream reaches by their close coupling to hillslope processes, more
temporal and spatial variation, and their need for different means of
protection from land use,” BioScience, vol. 52, no. 10, pp. 905–916,
2002.

[4] J. Kuhn, R. Casas-Mulet, J. Pander, and J. Geist, “Assessing stream
thermal heterogeneity and cold-water patches from uav-based imagery:
A matter of classification methods and metrics,” Remote Sensing, vol. 13,
no. 7, p. 1379, 2021.

[5] Federal Environment Agency, “Monitoringbericht 2019 zur Deutschen
Anpassungsstrategie an den Klimawandel,” 2019.

[6] W. Kuefner, A. M. Hofmann, J. Geist, and U. Raeder, “Evaluating
climate change impacts on mountain lakes by applying the new sili-
cification value to paleolimnological samples,” Science of The Total
Environment, vol. 715, p. 136913, 2020.

[7] H. Trimmel, P. Weihs, D. Leidinger, H. Formayer, G. Kalny, and
A. Melcher, “Can riparian vegetation shade mitigate the expected
rise in stream temperatures due to climate change during heat waves
in a human-impacted pre-alpine river?” Hydrology and Earth System
Sciences, vol. 22, no. 1, pp. 437–461, 2018.

[8] D. Caissie, “The thermal regime of rivers: a review,” Freshwater Biology,
vol. 51, no. 8, pp. 1389–1406, 2006.

[9] L. A. Krider, J. A. Magner, J. Perry, B. Vondracek, and L. C. Ferrington,
“Air-Water Temperature Relationships in the Trout Streams of South-
eastern Minnesota’s Carbonate-Sandstone Landscape,” JAWRA Journal
of the American Water Resources Association, vol. 49, no. 4, pp. 896–
907, 2013.

[10] J. M. Pilgrim, X. Fang, and H. G. Stefan, “Stream Temperature
Correlations with Air Temperatures in Minnesota: Implications for
Climate Warming,” JAWRA Journal of the American Water Resources
Association, vol. 34, no. 5, pp. 1109–1121, 1998.

[11] A. Rabi, M. Hadzima-Nyarko, and M. Šperac, “Modelling river tem-
perature from air temperature: case of the River Drava (Croatia),”
Hydrological Sciences Journal, vol. 60, no. 9, pp. 1490–1507, 2015.

[12] K. Smith, “The prediction of river water temperatures / Prédiction
des températures des eaux de rivière,” Hydrological Sciences Bulletin,
vol. 26, no. 1, pp. 19–32, 1981.

[13] O. Mohseni and H. G. Stefan, “Stream temperature/air temperature
relationship: a physical interpretation,” Journal of Hydrology, vol. 218,
no. 3-4, pp. 128–141, 1999.

[14] R. L. Beschta, “Riparian shade and stream temperature: an alternative
perspective,” Rangelands, vol. 19, no. 2, pp. 25–28, 1997.

[15] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in EuroS&P. IEEE, 2016.

[16] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning
in computer vision: A survey,” IEEE Access, vol. 6, pp. 14 410–14 430,
2018.

[17] C. Cheng, G. Nührenberg, and H. Ruess, “Maximum resilience of
artificial neural networks,” in ATVA, 2017.

[18] R. Ehlers, “Formal verification of piece-wise linear feed-forward neural
networks,” in ATVA, 2017.

[19] G. Singh, T. Gehr, M. Püschel, and M. Vechev, “An abstract domain for
certifying neural networks,” POPL, vol. 3, 2019.

[20] C. Szegedy, W. Zaremba, I. Sutskever, J. B. Estrach, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,” in
ICLR, 2014.

[21] J. M. Zurada, A. Malinowski, and I. Cloete, “Sensitivity analysis for
minimization of input data dimension for feedforward neural network,”
in Proceedings of IEEE International Symposium on Circuits and
Systems-ISCAS’94, vol. 6. IEEE, 1994, pp. 447–450.

[22] D. Caissie, N. El-Jabi, and A. St-Hilaire, “Stochastic modelling of water
temperatures in a small stream using air to water relations,” Canadian
Journal of Civil Engineering, vol. 25, no. 2, pp. 250–260, 1998.

[23] B. Ahmadi-Nedushan, A. St-Hilaire, T. B. M. J. Ouarda, L. Bilodeau,
É. Robichaud, N. Thiémonge, and B. Bobée, “Predicting river water
temperatures using stochastic models: case study of the Moisie River
(Québec, Canada),” Hydrological Processes, vol. 21, no. 1, pp. 21–34,
2007.

[24] S. Zhu, E. K. Nyarko, M. Hadzima-Nyarko, S. Heddam, and S. Wu,
“Assessing the performance of a suite of machine learning models for
daily river water temperature prediction,” PeerJ, vol. 7, p. e7065, 2019.

[25] J.-F. Chenard and D. Caissie, “Stream temperature modelling using artifi-
cial neural networks: application on Catamaran Brook, New Brunswick,
Canada,” Hydrological Processes, vol. 22, no. 17, pp. 3361–3372, 2008.

[26] A. P. Piotrowski, M. J. Napiorkowski, J. J. Napiorkowski, and M. Osuch,
“Comparing various artificial neural network types for water temperature
prediction in rivers,” Journal of Hydrology, vol. 529, pp. 302–315, 2015.

[27] M. Hadzima-Nyarko, A. Rabi, and M. Šperac, “Implementation of
Artificial Neural Networks in Modeling the Water-Air Temperature
Relationship of the River Drava,” Water Resources Management, vol. 28,
no. 5, pp. 1379–1394, 2014.

[28] “Abfluss Bayern,” 22.06.2021. [Online]. Available:
https://www.gkd.bayern.de/de/fluesse/abfluss

[29] A. St-Hilaire, G. Morin, N. El-Jabi, and D. Caissie, “Water temperature
modelling in a small forested stream: implication of forest canopy and
soil temperature,” Canadian Journal of Civil Engineering, vol. 27, no. 6,
pp. 1095–1108, 2000.

[30] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
ICLR, 2014.

[31] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep
networks,” in ICML, 2017, pp. 3319–3328.

[32] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and
W. Samek, “On pixel-wise explanations for non-linear classifier deci-
sions by layer-wise relevance propagation,” PloS one, vol. 10, no. 7, p.
e0130140, 2015.

[33] G. Montavon, W. Samek, and K.-R. Müller, “Methods for interpreting
and understanding deep neural networks,” Digital Signal Processing,
vol. 73, pp. 1–15, 2018.

[34] Deutscher Wetterdienst, “Dwd climate data center (cdc): Historical
daily station observations (temperature, pressure, precipitation,sunshine
duration, etc.) for germany, version v21.3, 2021.” [Online]. Available:
https://www.dwd.de/DE/klimaumwelt/cdc/cdc node.html

[35] Bayerisches Landesamt für Umwelt, www.lfu.bayern.de, “GKD
Bayern,” 22.06.2021. [Online]. Available: https://www.gkd.bayern.de/de/

[36] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient SMT solver for verifying deep neural networks,”
in CAV (1), 2017.

[37] S. Mohr, K. Drainas, and J. Geist, “Assessment of neural
networks for stream-water-temperature prediction.” [Online]. Available:
https://arxiv.org/abs/2110.04254

[38] G. Katz et al., “The marabou framework for verification and analysis of
deep neural networks,” in CAV, 2019, pp. 443–452.

[39] M. Sotoudeh and A. V. Thakur, “Syrenn: A tool for analyzing deep
neural networks,” in TACAS, 2021.

896

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 06,2023 at 09:01:35 UTC from IEEE Xplore. Restrictions apply.

C. Learning Explainable and Better Performing Representations of POMDP Strategies

C Learning Explainable and Better Performing Representations
of POMDP Strategies

Licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.

This paper has been published as a peer-reviewed conference paper.

Alexander Bork, Debraj Chakraborty, Kush Grover, Jan Křet́ınský, Stefanie
Mohr (2024). Learning Explainable and Better Performing Representations
of POMDP Strategies. In: Finkbeiner, B., Kovács, L. (eds) Tools and Algo-
rithms for the Construction and Analysis of Systems. TACAS 2024. Lecture
Notes in Computer Science, vol 14571, pp. 299-319. Springer, Cham.

DOI: https://doi.org/10.1007/978-3-031-57249-4 15

Summary

In this work, we develop a novel method for learning Finite State Controllers (FSCs)
to represent strategies of Partially Observable Markov Decision Processes (POMDPs).
Since strategies for POMDPs typically require memory, FSCs are a standard model
to represent them. So far, however, there has been no focus on generating such a
representation for any given strategy. While there is some work on directly generating
FSCs [And+22], this approach does not scale well. Our approach is very efficient and
can be used in addition to any other solution method for POMDPs.
We use a modification of the L*-algorithm for automata learning. T This is (a)

efficient and highly scalable and (b) generates small and, therefore, explainable FSC
representations. Furthermore, we present heuristics to improve the given strategy, which
yields even better-performing strategies.

Contributions of the author

Composition and revision of the manuscript with significant role in writing Section
3. Discussion and development of the ideas, implementation and evaluation with the
following notable individual contributions: design and implementation of the learning
process and integration into Storm and development of the heuristics.

101

https://doi.org/10.1007/978-3-031-57249-4_15

Learning Explainable and Better Performing

Representations of POMDP Strategies ⋆

Alexander Bork1 , Debraj Chakraborty2 , Kush Grover3 , Jan
Křet́ınský2,3 , and Stefanie Mohr3 ()

Abstract. Strategies for partially observable Markov decision processes
(POMDP) typically require memory. One way to represent this memory
is via automata. We present a method to learn an automaton representa-
tion of a strategy using a modication of the L

∗-algorithm. Compared to
the tabular representation of a strategy, the resulting automaton is dra-
matically smaller and thus also more explainable. Moreover, in the learn-
ing process, our heuristics may even improve the strategy’s performance.
We compare our approach to an existing approach that synthesizes an
automaton directly from the POMDP, thereby solving it. Our experi-
ments show that our approach can lead to signicant improvements in
the size and quality of the resulting strategy representations.

1 Introduction

Partially Observable Markov Decision Processes (POMDPs) combine
non-determinism, probability and partial observability. Consequently, they have
gained popularity in various applications as a model of planning in an unsafe
and only partially observable environment. Coming from the machine learning
community [30], they also gained interest in the formal methods community
[25,11,14,22]. They are a very powerful model, able to faithfully capture real-life
scenarios where we cannot assume perfect knowledge, which is often the case.
Unfortunately, the great power comes with the hardness of analysis. Typical
objectives of interest such as reachability or total reward already result in un-
decidable problems [25]. Namely, the resolution of the non-determinism (a.k.a.
synthesis of a strategy, policy, scheduler, or controller) cannot be done algorithmi-
cally while guaranteeing optimality w.r.t. the objective. Consequently, heuristics

⋆ This research was funded in part by the German Research Foundation (DFG)
project 427755713 GOPro, the MUNI Award in Science and Humanities (MU-
NI/I/1757/2021) of the Grant Agency of Masaryk University, the DFG GRK 2428
(ConVeY) and the DFG RTG 2236/2 (UnRAVeL).

1 RWTH Aachen University, Aachen, Germany

alexander.bork@cs.rwth-aachen.de
2 Masaryk University, Brno, Czechia

chakraborty kretinsky,jan.kretinsky @
3 Technical University of Munich, Munich, Germany

kush.grov stefanie.mohr @tum.de

{ }

{ }

, fi.muni.cz

er,

c The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14571, pp. 299–319, 2024.
https://doi.org/10.1007/978-3-031-57249-4_15

to synthesize practically well-performing strategies became of signicant interest.
Let us name several aspects playing a key role in applicability of such synthesis
procedures:

③❤1 quality of the synthesized strategies,
③❤2 size and explainability of the representation of the synthesized strategies,
③❤3 scalability of the computation method.

Strategy Representation. While 1 and 3 are of obvious importance, it is
important to note the aspect 2 . A strategy is a function mapping the current
history (sequence of observations so far) to an action available in the current
state. When written as a list of history-action pairs, it results in a large and in-
comprehensible table. In contrast, when equivalently written as a Mealy machine
transducing the stream of observation to a stream of actions, its size may be dra-
matically lower (making it easier to implement and more ecient to execute)
and its representation more explainable (making it easier to certify). Besides,
better understandability allows for easier maintenance and modication. To put
it in a contrast, explicit (table-like) or, e.g., neural-network representations of
the function can hardly be hoped to be understandable by any human (even
domain expert). Compact and understandable representations of strategies have
recently gained attention, e.g., [12,27], also for POMDP [21,3], and even tool
support [7] and [4], respectively. See [6] for detailed aspects of motivation for
compact representations.

Current Approaches For POMDP, the state of the art is torn into two
streams.

On the one hand, tools such as Storm [11] feature a classic belief-based
analysis, which essentially blows up the state space, making it easier to analyze.
Consequently, it is still reasonably scalable 3 , but the size of the resulting strat-
egy is even larger than that of the state space of the POMDP and is simply given
as a table, i.e., not doing well w.r.t. the representation 2 . Moreover, to achieve
the scalability (and in fact even termination), the analysis has to be stopped at
some places (“cut-os”), resulting in poorer performance 1 . On the other hand,
the exhaustive bounded synthesis as in PAYNT [4] tries to synthesize a small
Mealy machine representing a good strategy (while thus solving the POMDP)
and if it fails, it tries again with an increased allowed size of the automaton.
While this approach typically achieves better quality 1 and, by principle, bet-
ter size and explainability 2 , it is extremely expensive and does not scale at all
if the strategy requires a larger automaton 3 . While symbiotic approaches are
emerging [2], the best of both worlds has not been achieved yet.

Our Contribution We design a highly scalable postprocessing step, which
improves the quality and the representation of the strategy. It is compatible
with any framework producing any strategy representation, requiring only that
we can query the strategy function (which action corresponds to a given observa-
tion sequence). In particular, Storm, which itself is scalable, can thus prot from

300 A. Bork et al.

improving the quality and the representation of the produced strategies. Our pro-
cedure learns a compact representation of the given strategy as a Mealy machine
using automata-learning techniques, in two dierent ways. First, through learn-
ing the complete strategy, we get its automaton representation, which is fully
equivalent and thus achieving also the same value. Second, we provide heuristics
learning small modications of the strategy. Indeed, for some inputs (observa-
tion sequences), we ignore what the strategy suggests, in particular when the
strategy is not dened, but also when it explicitly states that it is unsure about
its choice (such as at the cut-o points, where the sequences become too long
and the strategy was not optimised well at these later points). Whenever we
ignore the strategy, we try to devise with a possibly better solution. For in-
stance, we can adopt the decision that the currently learnt automaton suggests,
or we can reect other decisions in similar situations. This way we produce a
simpler strategy (thus also comparatively smaller), which can, in principle, x
the suboptimal decisions of the strategy stemming from the limitations of the
original analysis (such as bounds on the exploration) or any other irregularities.
Of course, this only works well if the true optimal strategy is “sensible”, i.e., has
inner structure allowing for a simple automaton representation. For practical,
hence sensible, problems, this is typically the case.

Summary of our contribution:

– We provide a method to take any POMDP strategy and transform it into
an equivalent or similar (upon choice) automaton, yielding small size and
potential for explainability.

– Thereby we often improve the quality of the strategy.

– The experiments conrm the improvements and frequent proximity to best
known values (typically of PAYNT) on the simpler benchmarks.

– The experiments indicate great scalability even on harder benchmarks
where the comparison tool times out. The auspicious comparison on sim-
pler benchmarks warrants the trust in good absolute quality and size on the
harder ones.

Related Work Methods to solve planning problems on POMDPs have been
studied extensively in the literature [34,18,32]. Many state-of-the-art solvers use
point-based methods like PBVI [29], Perseus [35] and SARSOP [23] to treat
bounded and unbounded discounted properties. For these methods, strategies
are typically represented using so called α-vectors. Apart from a signicant over-
head in the analysis, they completely lack of explainability. Notably, while the
SARSOP implementation provides an export of its computed strategies in an
automaton format, we have not been able to nd an explanation of how it is
generated.

Methods based on the (partial) exploration and solving of the belief MDP
underlying the POMDP [28,10,11] have been implemented in the probabilistic
model checkers Storm [20] and Prism [24]. The focus of these methods is opti-
mizing innite-horizon objectives without discounting. Recent work [2] describes

Learning Explainable and Better Performing Representations 301

how strategies are extracted from the results of these belief exploration meth-
ods. The resulting strategy representation, however, is rather large and contains
potentially redundant information.

Orthogonal to the methods above, there are approaches that directly synthe-
size strategies from a space of candidates [16,26]. The synthesized strategy is then
applied to the POMDP to yield a Markov chain. Analyzing this Markov chain
yields the objective value achieved by the strategy. Methods used for searching
policies include using inductive synthesis [3], gradient decent [19] or convex op-
timization [1,21,15]. [2] describes an integration of a belief exploration approach
[11] with inductive synthesis [3].

Our approach is orthogonal to the solution methods in that it uses an ex-
isting strategy representation and learns a new, potentially more concise nite-
state controller representation. Furthermore, our modications of learned strat-
egy representations shares similarities with approaches for strategy improvement
[36,13,33].

2 Preliminaries

For a countable set S, we denote its power set by 2S . A (discrete) probabil-
ity distribution on a countable set S is a function d : S → [0, 1] such that

s∈S d(S) = 1. We denote the set of all probability distributions on the set S
as Dist(S). For d ∈ Dist(S), the support of d is supp(d) = {s ∈ S | d(s) > 0}.
We use the Iverson bracket notation where [x] = 1 if the expression x is true
and 0 otherwise. For two sets S, T , we dene the set of concatenations of S with
T as S · T = {s · t | s ∈ S, t ∈ T}. We analogously dene the set of n-times
concatenation of S with itself as Sn for n ≥ 1 and S0 = {ϵ} is the set containing
the empty string. We denote by S∗ =


∞

i=0 S
n the set of all nite strings over S

and by S+ =


∞

i=1 S
n the set of all non-empty nite strings over S. For a nite

string w = w1w2 . . . wn, the string w[0, i] with w[0, 0] = ϵ and w[0, i] = w1 . . . wi

for 0 < i ≤ n is a prex of w. The string w[i, n] = wi . . . wn with 0 < i ≤ n is a
sux of w. A set W ⊆ S∗ is prex-closed if for all w ∈ S∗, w = w1 . . . wn ∈ W
implies w[0, i] ∈ W for all 0 ≤ i ≤ n. A set W ′ ⊆ S∗ is sux-closed if ϵ /∈ W
and for all w ∈ S∗, w = w1 . . . wn ∈ W implies w[i, n] ∈ W for all 0 < i ≤ n.

Denition 1 (MDP). A Markov decision process (MDP) is a tuple M =
(S,A, P, s0) where S is a countable set of states, A is a nite set of actions,
P : S × A ⇀ Dist(S) is a partial transition function, and s0 ∈ S is the initial
state.

For an MDP M = (S,A, P, s0), s ∈ S and a ∈ A, let Post
M(s, a) = {s′ |

P (s, a, s′) > 0} be the set of successor states of s in M that can be reached
by taking the action a. We also dene the set of enabled actions in s ∈ S by
A(s) = {a ∈ A | P (s, a) ̸= ⊥}. A Markov chain (MC) is an MDP with |A(s)| = 1
for all s ∈ S. For an MDP M, a nite path ρ = s0a0s1 . . . si of length i ≥ 0
is a sequence of states and actions such that for all t ∈ [0, i − 1], at ∈ A(st)
and st+1 ∈ Post

M(st, at). Similarly, an innite path is an innite sequence ρ =

302 A. Bork et al.

s0a0s1a1s2 . . . such that for all t ∈ N, at ∈ A(st) and st+1 ∈ Post
M(st, at). For

an MDP M, we denote the set of all nite paths by FPathsM, and of all innite
paths by IPathsM.

Denition 2 (POMDP). A partially observable MDP (POMDP) is a tuple
P = (M, Z,O) where M = (S,A, P, s0) is the underlying MDP with nite num-
ber of states, Z is a nite set of observations, and O : S → Z is an observation
function that maps each state to an observation.

For POMDPs, we require that states with the same observation have the same
set of enabled actions, i.e., O(s) = O(s′) implies A(s) = A(s′) for all s, s′ ∈ S.
This way, we can lift the notion of enabled actions to an observation z ∈ Z by set-
ting A(z) = A(s) for some state s ∈ S with O(s) = z. The notion of observation
O for states can be lifted to paths: for a path ρ = s0a0s1a1 . . ., we dene O(ρ) =
O(s0)a0O(s1)a1 Two paths ρ1 and ρ2 are called observation-equivalent if
O(ρ1) = O(ρ2). We call an element ō ∈ Z∗ an observation sequence and denote
the observation sequence of a path ρ = s0a0s1 . . . by O(ρ) = O(s0)O(s1)

0

b

1

y

2

b

3

g

Fig. 1: Running
example: POMDP

Example 1. Consider the POMDP graphically depicted in
Fig. 1, modeling a basic robot planning task. A robot is
dropped uniformly at random in one of four grid cells.
Its goal is to reach cell 3. The robot’s sensors cannot to
distinguish cells 0 and 2, while cells 1 and 3 provide unique
information. For the POMDP model, we use states 0, 1,
2, and 3 to indicate the robot’s position. We mimic the
random initialization by introducing a unique initial state
s0 with a unique observation i (init). s0 has a single action

that reaches any of the other four states with equal probability 0.25. Thus, the
state space of the POMDP is S = {s0, 0, 1, 2, 3}. To represent the observations
of the robot, we use three observations b, y and g, so Z = {i, b, y, g}. States 0
and 2 have the same observation, while states 1 and 3 are uniquely identiable,
formally O = {(s0 → i), (0 → b), (1 → y), (2 → b), (3 → g)}. The goal is for the
robot to reach state 3. In each state, it can choose to move up, down, left, or
right, A = {s, u, d, l, r}. In each step, executing the chosen action may fail with
a probability of p = 0.5, causing the robot to remain in its current cell without
changing states.

Denition 3 (Strategy). A strategy for an MDP M is a function π : FPathsM →

Dist(A) such that for all paths ρ ∈ FPathsM, supp(π(ρ)) ⊆ A(last(ρ)).

A strategy π is deterministic if |supp(π(ρ))| = 1 for all paths ρ ∈ FPathsM.
Otherwise, it is randomized. A strategy π is called memoryless if it depends only
on last(ρ) i.e. for any two paths ρ1, ρ2 ∈ FPathsM, if last(ρ1) = last(ρ2) then
π(ρ1) = π(ρ2). As general strategies have access to full state information, they
are unsuitable for partially observable domains. Therefore, POMDPs require a
notion of strategies based only on observations. For a POMDP P , we call a

Learning Explainable and Better Performing Representations 303

strategy observation-based if for any ρ1, ρ2 ∈ FPathsM, O(ρ1) = O(ρ2) implies
π(ρ1) = π(ρ2), i.e. the strategy has same output on observation-equivalent paths.

We are interested in representing observation-based strategies approximating
optimal objective values for innite horizon objectives without discounting, also
called indenite-horizon objectives, i.e., maximum/minimum reachability prob-
abilities and expected total reward objectives. We emphasize that our general
learning framework also generalizes straightforwardly to strategies for dierent
objectives. In contrast to fully observable MDPs, deciding if a given strategy is
optimal for an indenite-horizon objective on a POMDP is generally undecidable
[25]. In fact, optimal behavior requires access to the full history of observations,
necessitating an arbitrary amount of memory. As such, our goal is to learn a
small representation of a strategy using only a nite amount of memory that
approximates optimal values as well as possible.

We represent these strategies as nite-state controllers (FSCs) – automata
that compactly encode strategies with access to memory and randomization in
a POMDP.

Denition 4 (Finite-State Controller). A nite-state controller (FSC) is a
tuple F = (N, γ, δ, n0) where N is a nite set of nodes, γ : N × Z → Dist(A)
is an action mapping, δ : N × Z → N is the transition function, and n0 is the
initial node.

We denote by πF the strategy represented by the FSC F and use F for the set
of all FSCs for a POMDP P . Given an FSC F = (N, γ, δ, n0) that is currently
in node n, and a POMDP P with underlying MDP M = (S,A, P, s0), in state
s, the action to play by an agent following F is chosen randomly from the
distribution γ(n,O(s)). F then updates its current node to n′ = δ(n, z). The
state of the POMDP is updated according to P . As such, an FSC induces a
Markov chain MF = (S × N, {α}, PF , (s0, n0)) where PF ((s, n),α, (s′, n′)) is
[δ(n,O(s)) = n′] ·


a∈A(s) γ(n,O(s))(a) · P (s, a, s′).

An FSC can be interpreted as a Mealy machine: nodes correspond directly
to states of the Mealy machine, which takes observations as input. The set of
output symbols is the set of all distributions over actions occurring in the FSC.

3 Learning a Finite-State Controller

We present a framework for learning a concise nite-state controller representa-
tion from a given strategy for a POMDP. Our approach mimics an extension of
the L* automaton learning approach [5] for learning Mealy machines [31]. The
main dierence in our approach is that we have a sparse learning space: not
all observations of a POMDP are possible to reach from all states. Thus, there
are many observation sequences that can never occur in the POMDP. To mark
situations where this occurs, i.e. where a learned FSC has complete freedom to
decide what to do, we introduce a “don’t-care” symbol †.

Furthermore, for some policy computation methods, the strategy we receive
as input may be incomplete. Although some observation sequence can appear

304 A. Bork et al.

Create initial
FSC

Equivalence
check

Update
FSC

Strategy

table S

FSC F

trueinitial FSC F
FSC F

false
+

counter-example

Minimize FSC

Fig. 2: Depiction of the FSC learning framework

in the POMDP, the strategy does not specify what to do when it occurs. This
can for example be caused by reaching the depth limit in an exploration based
approach. We use a “don’t-know” symbol χ to mark such cases. While the non-
occurring sequences do not directly inuence the learning process, they cannot
be ignored completely. These χ need to be replaced by actual actions using some
heuristics for the nal FSC to yield a complete strategy (see Section 3.4).

An overview of the learning process is depicted in Fig. 2. We expect as
input a (partially dened) strategy in the form of a table that maps observation
sequences in the POMDP to a distribution over actions.

Denition 5 (Strategy Table). A strategy table S for a POMDP P is a
relation S ⊆ Z∗ × (Dist(A) ∪ {χ}). A row of S is an element (ō, d) ∈ S.

For (ō, d) ∈ S, if supp(d) contains only a single action a, we write it as (ō, a).
We say a strategy table S is consistent if and only if for ō ∈ Z∗, (ō, d1) ∈ S
and (ō, d2) ∈ S implies d1 = d2, i.e. each observation sequence has at most one
unique output. A consistent strategy table S (partially) denes an observation-
based strategy πS with πS(ρ) = d if and only if (O(ρ), d) ∈ S and d ̸= χ.
For consistent strategy tables, the FSC resulting from our approach correctly
represents the partially dened strategy.

Example 2. Table 1 depicts a strategy table for the POMDP described in Exam-
ple 1. The table does not specify what to do in state 3 as at that point, the robot
has already achieved its target. The action chosen at that point is irrelevant. In-
tuitively, the strategy table describes that the robot should go right as long as
it sees b, and goes down once it sees y. The FSC in Figure 3 fully captures the
behaviour described by the strategy table and thus accurately represents it.

In our framework, the input strategy table is used to build an initial FSC
which is then compared to the input. If the initial FSC is already equivalent to
the given strategy table, we are done and we output the FSC. Otherwise, we get
a counterexample and use it to update the FSC. This process of checking for

Learning Explainable and Better Performing Representations 305

Observation sequence Action

i s

i y d

i b r

Table 1: Example strategy table for the POMDP
in Example 1. It only contains observation se-
quences of length at most 2.

b: r

y: d

i: s

Fig. 3: FSC representing the
strategy table of Table 1.

equivalence and updating the FSC is repeated until the FSC is equivalent to the
table.

In the sequel, we rst explain how our learning approach works on general
input of the form described above. Then we show how the learning approach
is integrated with an existing POMDP solution method by means of the belief
exploration framework from [11]. Lastly, we introduce heuristics for improvement
of the learned policies when the information in the table is incomplete.

3.1 Automaton Learning

The regular L* approach is used to learn a DFA for a regular language. It is
intuitively described as: a teacher has information about an automaton and a
student wants to learn that automaton. The student asks the teacher whether
specic words are part of the language (membership query). At some point,
the student proposes a solution candidate (in case of L*, a DFA) and asks the
teacher whether it is correct, i.e. whether the proposed automaton accepts the
language (equivalence query). Instead of the membership query of standard L*,
the extension to Mealy machines [31] uses an output query, since we are not
interested in the membership of a word in a language but rather the output of the
Mealy machine corresponding to a specic word. As such, our learning approach
needs access to an output query, specifying the output of the strategy table for
a given observation sequence, and an equivalence query, checking whether an
FSC accurately represents the strategy table. We formally dene the two types
of queries.

Denition 6 (Output Query (OQ)). The output query for a strategy table
S is the function OQS : Z∗ → Dist(A) ∪ {χ, †} with OQS(ō) = d if (ō, d) ∈ S
and OQS(ō) = † otherwise.

Denition 7 (Equivalence Query (EQ)). The equivalence query for a strat-
egy table S is a function EQS : F → Z∗ dened as follows: EQS(F) = ϵ if for
all (ō, d) ∈ S and for all ρ with O(ρ) = ō, πF (ρ) = d. Otherwise, EQS(F) = c
where c ∈ {ō | (ō, d) ∈ S, ∃ρ ∈ FPathsM(P) : O(ρ) = ō ∧ πF (ρ) ̸= d} is a
counterexample where S and F have dierent output.

The output query (OQ) takes an observation sequence ō, and outputs the
distribution (or the χ symbol) suggested by the strategy table. If the given ob-
servation sequence is not present in the strategy table, it returns the † symbol,

306 A. Bork et al.

i.e., a ”don’t care”-symbol. The equivalence query (EQ) takes a hypothesis FSC
Fhyp and asks whether it accurately represents S. In case it does not, an obser-
vation sequence where Fhyp and S dier is generated as a counterexample.

Using the denitions of these two queries, we formalise our problem statement
as follows:
Problem Statement: Given a POMDP P , a strategy table S, an output
query OQS and an equivalence query EQS , compute a small FSC F such
that EQS(F) = ϵ.

Learning Table We aim at solving the problem using a learning framework
similar to L∗. We learn an FSC by creating a learning table which keeps track
of the observation sequences and the outputs the learner assumes they should
yield in the strategy. Formally, it is dened as follows:

Denition 8 (Learning Table). A learning table for POMDP P is a tuple
T = (R,C, E) where R ⊂ Z∗ is a prex-closed nite set of nite strings over
the observations representing the upper row indices, the set R · Z are the lower
rows indices and C ⊂ Z+ is a sux-closed nite set of non-empty nite strings
over Z – the columns. E : (R ∪R · Z)×C → Dist(A) ∪ {χ, †} is a mapping that
represents the entries of the table.

i b y

ϵ s † †

i † r d

b † † †

y † † †

Table 2:
Running example -
initial table

Intuitively speaking, the table is divided into upper
and lower rows. Initially, the columns of the learning
table are the observations in the POMDP. Additional
columns may be added in the learning process to further
rene the behavior of the learned FSC. Upper rows ef-
fectively result in nodes of the learned FSC, while lower
rows specify destinations of the transitions. For a row
in the upper rows, each entry represents the output of
the FSC corresponding to their respective observation
(column). For an upper row, if a column is labelled only
with an observation, the corresponding entry represents
the output of the FSC on that observation. As an ex-

ample, Table 2 contains the initial learning table for our running example. We
do not include observation g for the target state as we are not interested in the
behavior of the strategy after the target has been reached.

We say that two rows r1, r2 ∈ R ∪R ·Z are equivalent (r1 ≡ r2) if they fully
agree on their entries, i.e., r1 ≡ r2 if and only if E(r1, c) = E(r2, c) for all c ∈ C.
The equivalence class of a row r ∈ R ∪R · Z is [r] = {r′ | r ≡ r′}.

From Learning Table to FSC To transform a learning table into an FSC,
the table needs to be of a specic form. In particular, it needs to be closed and
consistent. A learning table is closed if for each lower row l ∈ R · Z, there is an
upper row u ∈ R such that l ≡ u.

Learning Explainable and Better Performing Representations 307

x y

ϵ a b

x a b

y a b

ϵ

x: a

y: b

Fig. 4: Transformation of a
learning table to an FSC.

A learning table is consistent if for each
r1, r2 ∈ R such that r1 ≡ r2, we have r1 · e ≡

r2 · e for all e ∈ Z. Closure of a learning table
guarantees that each transition – dened in
the FSC by a lower row – leads to a valid node,
i.e. the node corresponding to the equivalent
upper row. Consistency, on the other hand,
guarantees that the table unambiguously de-
nes the output of a node in the FSC given
an observation.

Using the notions of closure and consistency, we can dene the transformation
of a learning table into the learned FSC :

Denition 9 (Learned FSC). Given a closed and consistent learning table
T = (R,C, E), we obtain a learned FSC FT = (NT , γT , δT , n0,T) where:
NT = {[r] | r ∈ R}, i.e., the nodes are the upper rows of the table; γT ([r], o) =
E(r, o) for all o ∈ Z, i.e. the output of a transition is dened by its entry in the
table; δT ([r], o) = [r · o] for all r ∈ R, o ∈ Z, i.e., the destination of a transition
from node [r] with observation o is the node corresponding to the upper row
equivalent to the lower row r · o; n0,T = [ϵ], i.e., the initial state is [ϵ].

Example 3. We demonstrate how to transform a table to an FSC in Fig. 4. The
upper rows become states, the lower rows show the transitions. In this example,
on both the observations x,y, we stay in the state and play action a and b,
respectively.

3.2 Algorithm

We present our algorithm for learning an FSC from a strategy table. We have
already seen the abstract view of the approach in Fig. 2. Algorithm 1 contains
the pseudo-code for our learning algorithm. It consists of four main parts, also
pictured in Fig. 2: initialization, equivalence check, update of the FSC, mini-
mization.

First, we initialise the learning table. The columns are initially lled with all
available observations Z, i.e. we set C ← Z. We start with a single upper row
ϵ, representing the empty observation sequence. In the lower rows, we add the
observation sequences of length 1. The entries of the table are then lled using
output queries. For example, consider the strategy table in Table 1. The learning
table after initialisation is shown in Table 2. The strategy table only contains
observation sequences starting with i. Thus, for any sequence starting with b or
y, all entries are †.

After initialising the table, we check whether it is closed. If the table is
not closed, all rows in the lower part of the table that do not occur in the
upper part are moved to the upper part. Formally, we set R ← R ∪ {l} for
all l ∈ R · Z with l ̸≡ u for all u ∈ R. In our example, this means that we
move the rows (i | † r d) and (b | † † †) to the upper part of the table.

308 A. Bork et al.

Algorithm 1 Learning an FSC

Input: POMDP P , strategy table S

1: R ← {ϵ}, C ← Z

2: for all r ∈ R ∪R · Z, e ∈ C do

3: E(r, e) ←OutputQuery(r · e)
4: end for

5: MakeClosedAndConsistent(R,C, E)

6: c ←EquivalenceQuery(S,F(R,C,E))

7: while c ̸= ϵ do

8: C ← C ∪ set of all prexes of c
9: for all r ∈ R ∪R · Z, e ∈ C do

10: E(r, e) ←OutputQuery(r · e)
11: end for

12: MakeClosedAndConsistent(R,C, E)

13: c ←EquivalenceQuery(S,F(R,C,E))

14: end while

15: T ← (R,C, E),T ←Minimize(T)

Output: FSC FT generated from S

Once the table is closed (and naturally consistent), we check for each row in
the given strategy table S whether it coincides with the action provided for this
observation sequence by our hypothesis FSC Fhyp. This is done formally using
the equivalence query, i.e. we check if EQS(Fhyp) = ϵ. If our hypothesis is not
correct, we get a counterexample c ∈ Z+ where the output of S and Fhyp dier.
We add all non-empty prexes of c to C and ll the table. We repeat this until
Fhyp is equivalent to the strategy table S.

After the equivalence has been established, we use the “don’t-care” entries †
to further minimise the FSC. These entries only appear for observation sequences
that do not occur in the strategy table. Thus, changing them to any action does
not change the FSC’s behaviour with respect to the strategy table. We use this
fact to merge nodes of the FSC to obtain a smaller one that still captures the
behaviour of the strategy table. It is not trivial to already exploit “don’t care”
entries during the learning phase. Two upper rows that are compatible in terms
of the outputs they suggest, i.e. they either agree or have a † where the other
suggests an output, might be split when a new counterexample is added. As
such, we postpone minimisation of the FSC until the learning is nished.

3.3 Proof of Concept: Belief Exploration

For integrating our learning approach with an existing POMDP solution frame-
work, we need to consider how the strategy table is constructed. Assume that the
solution method outputs some representation of a strategy. For strategies that
are equivalent to some FSC, one possibility is to pre-compute the strategy table.
However, it is not clear how to determine the length of observation sequences
that need to be considered. A more reasonable view is considering the strategy

Learning Explainable and Better Performing Representations 309

representation as a symbolic representation of the strategy table as long as it
permits computable output and equivalence queries.

We demonstrate how this works by considering the belief exploration frame-
work of [11]. The idea of belief exploration is to explore (a fragment of) the belief
MDP corresponding to the POMDP. Then, model checking techniques are used
on this nite MDP to optimise objectives and nd a strategy. States of the belief
MDP are beliefs – distributions over states of the POMDP that describe the like-
lihood of being in a state given the observation history. The strategy output of
the belief exploration is a memoryless deterministic strategy πbel that maps each
belief to the optimal action. It is well-known that there is a direct correspon-
dence between strategies on the belief MDP and its POMDP [34]. A decision in
a belief corresponds to a decision in the POMDP for all observation sequences
that lead to the belief in the belief MDP. Thus, πbel can also be interpreted as
a strategy for the POMDP that we want to learn using our approach.

First, assume that the belief MDP is nite. Dening the computation of
the output query is conceptually straightforward. During each output query, we
search for the belief b that corresponds to the observation sequence in the belief
MDP. If we nd it, the output is πbel(b), otherwise the query outputs “don’t
care” (†). For the equivalence query, we consider one representative observation
sequence for each belief b. We compare whether πbel(b) coincides with the output
of the hypothesis FSC on the corresponding observation sequence. If not, this
sequence is a counterexample. To deal with innite belief MDPs, [11] employs a
partial exploration of the reachable belief space of the POMDP. At the points
where the exploration has been stopped (cut-o states), they use approxima-
tions based on pre-computed, small strategies on the POMDP to yield a nite
abstraction of the belief MDP. The strategy πbel computed on this abstraction,
however, does not output valid actions for the POMDP in the cut-o states. We
modify the output query described above and introduce a set of χ symbols, i.e.,
χ0, ...χn. On observation sequences of cut-o states, the output query returns
“don’t-know” corresponding to that cuto, i.e., χi for “cut-o” strategy i. This
allows us to later integrate the strategies used for approximation in our learned
FSC or even substitute these strategies by dierent ones.

3.4 Improving Learned FSCs for Incomplete Information

FSCs learned using the learning approach described in Section 3.2 may still con-
tain transitions with output “don’t-know” (χ). To make the FSC applicable to a
POMDP, these outputs need to be replaced by distributions over actions of the
POMDP. For this purpose, we suggest two heuristics. They are designed to be
general, i.e. they do not consider any information that the underlying POMDP
solution method provides. Furthermore, they use the idea that already learned
behavior might oer a basis for generalization. As a result, the information al-
ready present in the FSC is used to replace the “don’t-know” outputs. We note
that additional heuristics can take for example the structure of the POMDP
or information available in the POMDP solution method used to generate the
strategy table into account. For illustrating the heuristics, we assume that all

310 A. Bork et al.

output distributions are Dirac. We denote the number of transitions in the FSC
with observation o with output not equal to †i or χi for some i by #(o) and the
number of transitions with output action a for o by #(o, a).
– Heuristic 1 – Distribution: Intuitively, this heuristic replaces “don’t know”

by a distribution over all actions that the FSC already chooses for an ob-
servation. The resulting FSC therefore represents a randomized strategy, i.e.
the strategy may probabilistically choose between actions. This happens only
in nodes of the FSC where “don’t know” occurs. Furthermore, this does not
mean that the FSC itself is randomized; its structure remains deterministic.
Only some outputs represent randomization over actions. In this method, we
replace the ith “don’t know” χi by an action distribution where the proba-

bility of action a under observation o is given by #(o,a)
#(o) . If #(o) = 0, we keep

χi instead which, in the belief exploration approach of Storm, represents
a precomputed cuto strategy. In approaches where the strategy does not
provide any information at all it can be replaced by †. Intuitively, we try
to copy the behavior of the FSC for an observation and since the optimal
action is unknown, we use a distribution over all possible actions.

– Heuristic 2 – Minimizing Using †-transitions: As for ease of implementation
and explainability, smaller FSCs are preferable, this heuristic aims at replac-
ing χi outputs such that we can minimise the FSC as much as possible. For
this purpose, we simply replace all occurrences of χi by †, i.e. we replace
“don’t-know” by “don’t-care” outputs. This allows the FSC to behave ar-
bitrarily on these transitions. By then applying an additional minimisation
step, we can potentially reduce the size of our FSC. Intuitively, this allows
for a smaller FSC that might be able to generalize better than specifying
all actions directly. Note that this heuristic will transform any deterministic
FSC into a smaller representation that is still deterministic, and will not
induce any randomization.

4 Experimental Evaluation

We implemented a prototype of the policy automaton learning framework on
top of version 1.8.1 of the probabilistic model checker Storm [20]. As input,
our implementation takes the belief MC induced by the optimal policy on the
belief MDP abstraction computed by Storm’s belief exploration for POMDPs
[11]. This Markov chain, labeled with observations and actions chosen by the
computed strategy, encodes all information necessary for our approach as de-
scribed in Section 3.3. We apply our learning techniques to obtain a nite-state
controller representation of a policy. This FSC can be exported into a human-
readable format or analyzed by building the Markov chain induced by the learned
policy directly on the POMDP. As a baseline comparison for the learned FSC, we
use the tool PAYNT [4]. Recall that PAYNT uses a technique called inductive
synthesis to directly synthesize FSCs with respect to a given objective.

Recent research has shown that PAYNT’s performance greatly improves
when working in tandem with belief exploration [2]. As such, the comparison

Learning Explainable and Better Performing Representations 311

100 101 102 103

100

101

102

103

TO

TO

Storm

F
S
C

si
z
e

base H1 H2

(a) Size of input MC (from Storm) vs.
size of learned FSC (number of nodes)

2 4 8 16 32 64

2

4

8

16

32

64

TO

TO

PAYNT FSC size

L
e
a
rn

e
d

F
S
C

si
z
e

base H1 H2

(b) Size of learned FSC in comparison to
PAYNT (in number of nodes)

Fig. 5: Comparison of the resulting FSC size

made here does not show the full capabilities of PAYNT. The tandem approach
is likely to outperform our approach in many cases. We want to, however, show
a comparison of our approach with a more basic, and thus more comparable,
method. We emphasize furthermore that integrating our approach in the frame-
work of [2] is a promising prospect for future work.

Setup. The experiments are run on two cores of an Intel® Xeon® Platinum
8160 CPU using 64GB RAM and a time limit of 1 hour. We run Storm’s
POMDP model checking framework using default parameters. In particular, we
use the heuristically determined exploration depth for the belief MDP approx-
imation and apply cut-os where we choose not to explore further. We refer
to [11] for more information. For PAYNT, we use abstraction-renement with
multi-core support [3]. We run experiments for the two heuristics described in
Section 3.4. Additionally, we provide another result described as the “base” ap-
proach. This is specic to the input given by Storm and encodes the strategy
obtained from Storm exactly by keeping the cut-o strategies, represented as
χi (see the extended version of this paper [8] for more technical details).

Benchmarks. As benchmarks for our evaluation, we consider the models from
[2]. The benchmark set contains models taken from the literature [3,10,11,17]
meant to illustrate the strengths and weaknesses of the belief exploration and
inductive synthesis approaches. As such, they also showcase how our learning
approach transforms the output of the belief exploration concerning the size and
quality of the computed FSC. An overview of the used benchmarks is available
as part of the extended version of this paper [8].

4.1 Results

Our approach is general and meant to be used on top of other algorithms to
transform possibly big and hardly explainable strategies into small FSCs. How-
ever, we want to explore whether our results are comparable to state-of-the-art
work for directly learning FSCs. Therefore, we compare our FSCs to PAYNT.

312 A. Bork et al.

First, we talk about the size of the FSC generated by our method compared
to the MC generated by Storm and the FSCs generated by PAYNT. Secondly,
we show the scalability of our approach by comparing the runtime with PAYNT.
Lastly, we discuss the quality of the synthesized FSCs compared to PAYNT and
also discuss the trade-o between runtime and quality of the FSC.

10−3 100 103

10−3

100

103

TO

TO

PAYNT time

L
e
a
rn

e
d

F
S
C

ti
m
e

base H1 H2

Fig. 6: Runtime comparison:
our approach vs. PAYNT

Small and Explainable FSCs. Given a strategy
table, our approach results in the smallest possible
FSC for the represented strategy. As an overview,
in Fig. 5a, we show a comparison of the sizes of the
belief MC from Storm to the size of our FSC. The
dashed line corresponds to a 10-fold reduction in
size, showing our approach’s usefulness. We gen-
erate FSCs of sizes 1 to 64; however, more than
80% of the FSCs are smaller than ten nodes, and
only two are bigger than 60. More than half of the
generated FSCs have less than four nodes. In one
case, we reduce 4517 states in the MC to an FSC
of size 12.

We claim that these concise representations
can generally be considered explainable, in particular when compared to huge
original strategy representations. When the given strategy is deterministic, our
learning approach would construct a deterministic FSC which is easy to explain.
While improving the FSC by replacing the “don’t know” actions (Section 3.4),
heuristic 2 still keeps the FSC deterministic as it only replaces the χ actions with
† actions before minimisation. Heuristic 1 often introduces some randomization
when it replaces the χ actions with a distribution. But even in that case, they
are only in selected sink states which does not impede explainability.

In Fig. 5b, we provide the size comparison of PAYNT’s FSCs and ours.
Our FSCs are slightly bigger than PAYNT’s in general, but our approach also
returns smaller FSCs in some cases. This is to be expected since the approach of
PAYNT is iteratively searching through the space of FSCs, starting with only
one memory node and adding memory only once it is necessary. Therefore, it
is meant to nd the smallest possible FSC. However, PAYNT times out much
more often because of its exhaustive search on small FSC. Additionally, our
FSC are bound to be as big as necessary to represent the given strategy. Let
us consider the benchmark grid-avoid-4-0. In this model, a robot moves in a
grid of size four by four with no knowledge about its position. It starts randomly
at any place in the grid and has to move towards a goal without falling into a
“hole”. PAYNT produces a strategy of size 3, which moves right once and then
iterates between moving right and down. The nature of Storm’s exploration
leads to a strategy that moves right three times and then down forever. This can
be represented in an FSC of size at least 5.

Scalability. Regarding scalability, Figure 6 shows that our approach outper-
forms PAYNT on almost all cases. The dotted lines show dierences by a factor
of 10. There are only two benchmarks, for which our approach times out and

Learning Explainable and Better Performing Representations 313

Table 3: Comparison to PAYNT on value, size, and time (in that order) on
selected benchmarks. The reported time for our approach includes the time of
Storm for producing the strategy table and the time for learning the FSC.

Learning heuristics
Category Model Storm base H1 H2 Paynt

A

problem-paynt-storm-combined
8.07 8.07 7.67 7.67 7.67

18 6 7 3 3

Rmin <1s <1s 349s

problem-storm-extended
3009.0 3009.0 98.0 98.0 98.0

64 61 62 1 1

Rmin <1s <1s <1 s

refuel-20
0.14 0.14 0.23 0.23 TO
46 4 4 3

Pmax 73s s 75s 74s 74s

grid-avoid-4-01
0.75 0.75 0.9 0.67 0.93

10 5 6 3 5
Pmax <1s <1s 726s

B

posterior-awareness
12.0 12.0 12.0 12.0 11.99

5 4 4 4 4

Rmin <1s <1s <1 s

4x5x2-95
1.29 1.29 1.28 1.26 2.02

26 18 18 16 4

Rmax <1s <1s 2807s

C

query-s2
395.66 395.66 391.9 343.94 486.69

43 9 9 4 2

Rmax <1s <1s 5s

drone-4-1
0.75 TO TO TO 0.87

3217 1

Pmax 1s 2250s

PAYNT does not. In one of these cases, PAYNT also takes more than 2000s to
produce a result.

Runtime and Quality of FSCs. Comparing the quality of results, we need
to put into consideration that our approach often runs within a fraction of the
available time. We run Storm with its default values to get a strategy. As
demonstrated in [3], running Storm using non-default parameters, specically
larger exploration thresholds, results in better strategies at the cost of longer
runtimes. Our approach directly prots from such better input strategies.

Since the learning is done in far less than a second for most of the benchmarks,
we suggest using a portfolio of the heuristics. This allows us to output the optimal
solution among all our heuristics with negligible computational overhead. To
simplify the presentation of our results, we categorize the benchmarks into three
groups: A, B, and C, based on the overall performance of our method. Due to
space constraints, we provide detailed results for only a selection of benchmarks
for each category and do not discuss benchmarks for which both approaches
experienced timeouts. The complete set of results is given in [8].

Category A. This category represents benchmarks where our approach is ar-
guably favored, assuming the portfolio approach. There are a total of 19 bench-
marks in this category, and we observe that we can improve all variants of
properties using heuristics. Only one time, PAYNT produces a slightly better
probability value (0.93 vs 0.9), but it takes signicantly more time (726s vs < 1s).

314 A. Bork et al.

There are 7 cases where we can generate FSCs while PAYNT times out and on
6 out of these 7 cases, we get the smallest FSCs reported in state-of-the-art
[2]. In this category, we also include benchmarks on which the heuristics im-
proved on Storm’s strategy to achieve the same value as PAYNT while being
more ecient, e.g. problem-paynt-storm-combined. Also, for the benchmark
problem-storm-extended, designed to be dicult for Storm, we reduce the
approximate total reward from 3009 to 98, resulting in an FSC of size 1 in < 1s.

Category B. This category contains benchmarks on which there is no clear front-
runner. There are a total of 7 benchmarks in this category. Three of these bench-
marks are similar to posterior-awareness, where the results produced and the
time taken are quite similar for both approaches. The other 4 benchmarks (sim-
ilar to 4x5x2-95) show that the value generated by our approach is signicantly
worse; however, it takes signicantly less time. Depending on the situation, this
trade-o between quality and runtime may favor either approach.

Category C. This category shows the weakness of our method compared to
PAYNT. In this category, there are a total of 3 benchmarks, out of which our
approach times out 2 times. It is notable that the drone-benchmarks seem to be
generally hard: PAYNT needs 2250s for drone-4-1, and both approaches time
out for the bigger instances. There is only one benchmark, query-s2, where we
produce a worse value without any signicant time advantage over PAYNT.

5 Conclusion

In this paper, we present an approach to learn an FSC for representing POMDP
strategies. Our FSCs are (i) always smaller than the given representation, and
(ii) the FSC structure is simple, which together increases the strategy’s explain-
ability. The structure of the FSC is always deterministic. Additionally, one of our
heuristics only generates deterministic output actions (without randomization).
The other heuristic typically represents a randomized strategy. However, only
output actions are randomized, not the FSC structure. Besides, this randomiza-
tion happens in only a very restricted form. Further, our heuristics achieved no-
table improvements in the performance of many strategies produced by Storm

and provably perform equal or better than the baseline, while retaining negligible
resource consumption. Altogether, our comparison against PAYNT underscores
the competitiveness of our method, frequently yielding FSCs of comparable qual-
ity with signicant improvements in terms of runtime and size.

This attests to the scalability and eciency of our approach and also high-
lights its applicability in scenarios challenging for other tools.

Concerning future work, several directions open up. Further heuristics can
be designed to solve some of the patterns occurring in the cases where our
approach could not match the size achieved by PAYNT. Furthermore, we would
like to integrate our approach into other approaches in order to improve them,
in particular the tandem synthesis approach from [2] is a suitable candidate.
Data Availability. The artifact accompanying this paper [9] contains source code,
benchmark les, and replication scripts for our experiments.

Learning Explainable and Better Performing Representations 315

References

1. Amato, C., Bernstein, D.S., Zilberstein, S.: Optimizing xed-size stochastic con-
trollers for pomdps and decentralized pomdps. Auton. Agents Multi Agent Syst.
21(3), 293–320 (2010), https://doi.org/10.1007/s10458-009-9103-z

2. Andriushchenko, R., Bork, A., Ceska, M., Junges, S., Katoen, J., Macák, F.: Search
and explore: Symbiotic policy synthesis in pomdps. In: Computer Aided Verica-
tion - 35th International Conference, CAV 2023, Paris, France, July 17-22, 2023,
Proceedings, Part III. Lecture Notes in Computer Science, vol. 13966, pp. 113–135.
Springer (2023), https://doi.org/10.1007/978-3-031-37709-9_6

3. Andriushchenko, R., Ceska, M., Junges, S., Katoen, J.: Inductive synthesis of nite-
state controllers for pomdps. In: Uncertainty in Articial Intelligence, Proceedings
of the Thirty-Eighth Conference on Uncertainty in Articial Intelligence, UAI 2022,
1-5 August 2022, Eindhoven, The Netherlands. Proceedings of Machine Learning
Research, vol. 180, pp. 85–95. PMLR (2022), https://proceedings.mlr.press/
v180/andriushchenko22a.html

4. Andriushchenko, R., Ceska, M., Junges, S., Katoen, J., Stupinský, S.: PAYNT: A
tool for inductive synthesis of probabilistic programs. In: Computer Aided Ver-
ication - 33rd International Conference, CAV 2021, Virtual Event, July 20-23,
2021, Proceedings, Part I. Lecture Notes in Computer Science, vol. 12759, pp.
856–869. Springer (2021). https://doi.org/10.1007/978-3-030-81685-8 40, https:

//doi.org/10.1007/978-3-030-81685-8_40

5. Angluin, D.: Learning regular sets from queries and counterexamples. In-
formation and computation 75(2), 87–106 (1987), https://doi.org/10.1016/

0890-5401(87)90052-6

6. Ashok, P., Jackermeier, M., Jagtap, P., Kret́ınský, J., Weininger, M., Zamani,
M.: dtcontrol: decision tree learning algorithms for controller representation.
In: HSCC. pp. 17:1–17:7. ACM (2020), https://dl.acm.org/doi/abs/10.1145/
3365365.3383468

7. Ashok, P., Jackermeier, M., Křet́ınský, J., Weinhuber, C., Weininger, M., Yadav,
M.: dtcontrol 2.0: Explainable strategy representation via decision tree learning
steered by experts. In: TACAS (2). Lecture Notes in Computer Science, vol. 12652,
pp. 326–345. Springer (2021), https://doi.org/10.1007/978-3-030-72013-1_17

8. Bork, A., Chakraborty, D., Grover, K., Kretinsky, J., Mohr, S.: Learning Explain-
able and Better Performing Representations of POMDP Strategies. arXiv preprint
arXiv:2401.07656 (2024), https://doi.org/10.48550/arXiv.2401.07656

9. Bork, A., Chakraborty, D., Grover, K., Mohr, S., Kretinsky, J.: Artifact for Paper:
Learning Explainable and Better Performing Representations of POMDP Strate-
gies, https://doi.org/10.5281/zenodo.10437018

10. Bork, A., Junges, S., Katoen, J., Quatmann, T.: Verication of indenite-horizon
pomdps. In: Automated Technology for Verication and Analysis - 18th Interna-
tional Symposium, ATVA 2020, Hanoi, Vietnam, October 19-23, 2020, Proceed-
ings. Lecture Notes in Computer Science, vol. 12302, pp. 288–304. Springer (2020),
https://doi.org/10.1007/978-3-030-59152-6_16

11. Bork, A., Katoen, J.P., Quatmann, T.: Under-approximating expected total re-
wards in pomdps. In: International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. pp. 22–40. Springer (2022), https:

//doi.org/10.1007/978-3-030-99527-0_2

12. Brázdil, T., Chatterjee, K., Chmelik, M., Fellner, A., Křet́ınský, J.: Counterexam-
ple explanation by learning small strategies in markov decision processes. In: CAV

316 A. Bork et al.

(1). Lecture Notes in Computer Science, vol. 9206, pp. 158–177. Springer (2015),
https://doi.org/10.1007/978-3-319-21690-4_10

13. Carr, S., Jansen, N., Wimmer, R., Serban, A.C., Becker, B., Topcu, U.:
Counterexample-guided strategy improvement for pomdps using recurrent neu-
ral networks. In: Kraus, S. (ed.) Proceedings of the Twenty-Eighth International
Joint Conference on Articial Intelligence, IJCAI 2019, Macao, China, August
10-16, 2019. pp. 5532–5539. ijcai.org (2019), https://doi.org/10.24963/ijcai.
2019/768

14. Chatterjee, K., Chmelik, M., Tracol, M.: What is decidable about partially observ-
able markov decision processes with ω-regular objectives. Journal of Computer and
System Sciences 82(5), 878–911 (2016), https://doi.org/10.1016/j.jcss.2016.
02.009

15. Cubuktepe, M., Jansen, N., Junges, S., Marandi, A., Suilen, M., Topcu, U.: Robust
nite-state controllers for uncertain pomdps. In: Thirty-Fifth AAAI Conference on
Articial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applica-
tions of Articial Intelligence, IAAI 2021, The Eleventh Symposium on Educational
Advances in Articial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021.
pp. 11792–11800. AAAI Press (2021), https://doi.org/10.1609/aaai.v35i13.

17401

16. Hansen, E.A.: Solving pomdps by searching in policy space. In: Cooper, G.F.,
Moral, S. (eds.) UAI ’98: Proceedings of the Fourteenth Conference on Uncer-
tainty in Articial Intelligence, University of Wisconsin Business School, Madi-
son, Wisconsin, USA, July 24-26, 1998. pp. 211–219. Morgan Kaufmann (1998),
https://dl.acm.org/doi/abs/10.5555/2074094.2074119

17. Hauskrecht, M.: Incremental methods for computing bounds in partially observable
markov decision processes. In: Proceedings of the Fourteenth National Conference
on Articial Intelligence and Ninth Innovative Applications of Articial Intelligence
Conference, AAAI 97, IAAI 97, July 27-31, 1997, Providence, Rhode Island, USA.
pp. 734–739. AAAI Press / The MIT Press (1997), https://dl.acm.org/doi/10.
5555/1867406.1867520

18. Hauskrecht, M.: Value-function approximations for partially observable markov
decision processes. J. Artif. Intell. Res. 13, 33–94 (2000), https://doi.org/10.
1613/jair.678

19. Heck, L., Spel, J., Junges, S., Moerman, J., Katoen, J.: Gradient-descent for
randomized controllers under partial observability. In: Verication, Model Check-
ing, and Abstract Interpretation - 23rd International Conference, VMCAI 2022,
Philadelphia, PA, USA, January 16-18, 2022, Proceedings. Lecture Notes in Com-
puter Science, vol. 13182, pp. 127–150. Springer (2022), https://doi.org/10.

1007/978-3-030-94583-1_7

20. Hensel, C., Junges, S., Katoen, J., Quatmann, T., Volk, M.: The probabilistic
model checker storm. Int. J. Softw. Tools Technol. Transf. 24(4), 589–610 (2022),
https://doi.org/10.1007/s10009-021-00633-z

21. Junges, S., Jansen, N., Wimmer, R., Quatmann, T., Winterer, L., Katoen, J.,
Becker, B.: Finite-state controllers of pomdps using parameter synthesis. In:
Globerson, A., Silva, R. (eds.) Proceedings of the Thirty-Fourth Conference on
Uncertainty in Articial Intelligence, UAI 2018, Monterey, California, USA, Au-
gust 6-10, 2018. pp. 519–529. AUAI Press (2018)

22. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in par-
tially observable stochastic domains. Articial Intelligence 101(1), 99–134 (1998),
https://doi.org/10.1016/S0004-3702(98)00023-X

Learning Explainable and Better Performing Representations 317

23. Kurniawati, H., Hsu, D., Lee, W.S.: SARSOP: ecient point-based POMDP plan-
ning by approximating optimally reachable belief spaces. In: Brock, O., Trinkle,
J., Ramos, F. (eds.) Robotics: Science and Systems IV, Eidgenössische Technische
Hochschule Zürich, Zurich, Switzerland, June 25-28, 2008. The MIT Press (2008),
https://doi.org/10.15607/RSS.2008.IV.009

24. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verication of probabilis-
tic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided
Verication - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July
14-20, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6806, pp. 585–
591. Springer (2011), https://doi.org/10.1007/978-3-642-22110-1_47

25. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning
and related stochastic optimization problems. Articial Intelligence 147(1-2), 5–34
(2003), https://doi.org/10.1016/S0004-3702(02)00378-8

26. Meuleau, N., Kim, K., Kaelbling, L.P., Cassandra, A.R.: Solving pomdps by search-
ing the space of nite policies. In: Laskey, K.B., Prade, H. (eds.) UAI ’99: Proceed-
ings of the Fifteenth Conference on Uncertainty in Articial Intelligence, Stock-
holm, Sweden, July 30 - August 1, 1999. pp. 417–426. Morgan Kaufmann (1999),
https://dl.acm.org/doi/10.5555/2073796.2073844

27. Neider, D., Topcu, U.: An automaton learning approach to solving safety games
over innite graphs. In: TACAS. Lecture Notes in Computer Science, vol. 9636,
pp. 204–221. Springer (2016), https://doi.org/10.1007/978-3-662-49674-9_12

28. Norman, G., Parker, D., Zou, X.: Verication and control of partially observable
probabilistic systems. Real Time Syst. 53(3), 354–402 (2017), https://doi.org/
10.1007/s11241-017-9269-4

29. Pineau, J., Gordon, G.J., Thrun, S.: Point-based value iteration: An anytime al-
gorithm for pomdps. In: Gottlob, G., Walsh, T. (eds.) IJCAI-03, Proceedings of
the Eighteenth International Joint Conference on Articial Intelligence, Acapulco,
Mexico, August 9-15, 2003. pp. 1025–1032. Morgan Kaufmann (2003)

30. Russell, S.J.: Articial intelligence a modern approach. Pearson Education, Inc.
(2010), https://dl.acm.org/doi/book/10.5555/1671238

31. Shahbaz, M., Groz, R.: Inferring mealy machines. In: Cavalcanti, A., Dams,
D. (eds.) FM 2009: Formal Methods, Second World Congress, Eindhoven, The
Netherlands, November 2-6, 2009. Proceedings. Lecture Notes in Computer
Science, vol. 5850, pp. 207–222. Springer (2009), https://doi.org/10.1007/

978-3-642-05089-3_14

32. Shani, G., Pineau, J., Kaplow, R.: A survey of point-based pomdp solvers. Au-
tonomous Agents and Multi-Agent Systems 27, 1–51 (2013), https://doi.org/
10.1007/s10458-012-9200-2

33. Simão, T.D., Suilen, M., Jansen, N.: Safe policy improvement for pomdps via
nite-state controllers. In: Proceedings of the Thirty-Seventh AAAI Conference
on Articial Intelligence and Thirty-Fifth Conference on Innovative Applications
of Articial Intelligence and Thirteenth Symposium on Educational Advances in
Articial Intelligence. AAAI’23/IAAI’23/EAAI’23, AAAI Press (2023), https://
doi.org/10.1609/aaai.v37i12.26763

34. Smallwood, R.D., Sondik, E.J.: The optimal control of partially observable markov
processes over a nite horizon. Oper. Res. 21(5), 1071–1088 (1973), https://doi.
org/10.1287/opre.21.5.1071

35. Spaan, M.T.J., Vlassis, N.: Perseus: Randomized point-based value iteration for
pomdps. J. Artif. Intell. Res. 24, 195–220 (2005), https://doi.org/10.1613/

jair.1659

318 A. Bork et al.

36. Thomas, P., Theocharous, G., Ghavamzadeh, M.: High-condence o-policy eval-
uation. In: Proceedings of the AAAI Conference on Articial Intelligence. vol. 29
(2015), https://dl.acm.org/doi/10.5555/2888116.2888134

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Learning Explainable and Better Performing Representations 319

D. Monitizer: Automating Design and Evaluation of Neural Network Monitors

D Monitizer: Automating Design and Evaluation of Neural Net-
work Monitors

Licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.

This paper is to be published as a peer-reviewed conference paper.

Muqsit Azeem, Marta Grobelna, Sudeep Kanav, Jan Křet́ınský, Stefanie
Mohr, and Sabine Rieder: Monitizer: Automating Design and Evaluation of
Neural Network Monitors. In: Gurfinkel, A., Ganesh, V. (eds) Computer
Aided Verification. CAV 2024. Lecture Notes in Computer Science, vol
14682. Springer, Cham.

DOI: https://doi.org/10.1007/978-3-031-65630-9 14

Summary

With Neural Networks (NNs) being employed increasingly in safety-critical systems,
their unpredictable behavior on Out-of-Distribution (OOD) inputs can create great risk.
Therefore, we need monitors to check for such inputs. To address this, we introduce
Monitizer to automate the design, optimization, and evaluation of NN monitors.
Monitizer solves several challenges in monitoring: First, it provides a modular

framework that allows users to apply monitors from the literature or develop their own;
second, it offers an optimization mechanism to tune the hyperparameters of the mon-
itors for better performance; last, Monitizer contains a transparent evaluation based
on a hierarchy of OOD classes. It also offers a one-click solution for automatic selection
and optimization of the best monitor, reducing the need for extensive user expertise.
Additionally, it includes a library of 19 monitors, 9 datasets, and 15 NNs, making it
usable straight out of the box.
For developers and researchers, Monitizer provides a framework to integrate and

develop novel monitoring techniques with minimal effort.

Contributions of the author

Composition and revision of the manuscript with significant role in writing sections 3
and 4. Discussion and development of the ideas, implementation and evaluation with
the following notable individual contributions: Leading role in the design and imple-
mentation of the presented tool, and creation of the software artifact for the conference
submission.

123

https://doi.org/10.1007/978-3-031-65630-9_14

Monitizer: Automating Design
and Evaluation of Neural Network

Monitors

Muqsit Azeem1 , Marta Grobelna1 , Sudeep Kanav2 ,
Jan Křetínský1,2(B) , Stefanie Mohr1 , and Sabine Rieder1,2,3

1 Technical University of Munich, Munich, Germany
jan.kretinsky@tum.de

2 Masaryk University, Brno, Czech Republic
3 Audi AG, Ingolstadt, Germany

Abstract. The behavior of neural networks (NNs) on previously unseen
types of data (out-of-distribution or OOD) is typically unpredictable.
This can be dangerous if the network’s output is used for decision making
in a safety-critical system. Hence, detecting that an input is OOD is
crucial for the safe application of the NN. Verication approaches do not
scale to practical NNs, making runtime monitoring more appealing for
practical use. While various monitors have been suggested recently, their
optimization for a given problem, as well as comparison with each other
and reproduction of results, remain challenging.

We present a tool for users and developers of NN monitors. It allows
for (i) application of various types of monitors from the literature to
a given input NN, (ii) optimization of the monitor’s hyperparameters,
and (iii) experimental evaluation and comparison to other approaches.
Besides, it facilitates the development of new monitoring approaches. We
demonstrate the tool’s usability on several use cases of dierent types of
users as well as on a case study comparing dierent approaches from
recent literature.

1 Introduction

Neural networks (NNs) are increasingly used in safety-critical applications due
to their good performance even on complex problems. However, their notorious
unreliability makes their safety assurance even more important. In particular,
even if the NN is well trained on the data that it is given and works well on similar
data (so-called in-distribution (ID) data), it is unclear what it does if presented
with a signicantly dierent input (so-called out-of-distribution (OOD) data).
For instance, what if an NN for trac signs recognition trained on pictures taken

This research was funded in part by the German Research Foundation (DFG)
project 427755713 GOPro and the MUNI Award in Science and Humanities
MUNI/I/1757/2021 of the Grant Agency of Masaryk University.
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14682, pp. 265–279, 2024.
https://doi.org/10.1007/978-3-031-65630-9_14

266 M. Azeem et al.

in Nevada is now presented with a trac sign in rainy weather, a European one,
or a billboard with an elephant?

To ensure safety in all situations, we must at least recognize that the input
is OOD; thus, the network’s answer is unreliable, no matter its condence. Veri-
cation, a classic approach for proving safety, is extremely costly and essentially
infeasible for practical NNs [34]. Moreover, it is mainly done for ID or related
data [6,34]. For instance, robustness is typically proven for neighborhoods of
essential points, which may ensure correct behavior in the presence of noise or
rain, but not elephants [18,24,25,35]. In contrast, runtime verication and par-
ticularly runtime monitoring provide a cheap alternative. Moreover, the industry
also nds it appealing as it is currently the only formal-methods approach appli-
cable to industrial-sized NNs.

OOD runtime monitoring methods have recently started ourishing [7,14,20,
22,32,42]. Such a runtime monitor tries to detect if the current input to the NN
is OOD. To this end, it typically monitors the behavior of the network (e.g.,
the output probabilities or the activation values of the neurons) and evaluates
whether the obtained values resemble the ones observed on known ID data. If
not, the monitor raises an alarm to convey suspicion about OOD data.

Fig. 1. Illustration of challenges for OOD detection

Challenges: While this approach has demonstrated potential, several practical
issues arise:

– How can we compare two monitors and determine which one is better? Con-
sidering the example of autonomous driving, an OOD input could arise from
the fact that some noise was introduced by sensors or the brightness of the
environment was perturbed. A monitor might perform well on one kind of
OOD input but may not on another [44], as better performance in one class
of OOD data does not imply the same in another class (see Fig. 1a).

Monitizer: Automating Design and Evaluation of Neural Network Monitors 267

– Applying a particular monitoring technology to a concrete NN involves signif-
icant tweaking and hyperparameter tuning, with no push-button technology
available. OOD monitors typically compute a value from the input and the
behavior of the NN. The input is considered OOD if this value is smaller than
a congurable threshold τ (see Fig. 1)b. The value of this threshold has a sig-
nicant inuence on the performance of the monitors. More inputs would
be classied as OOD if the threshold value is high, and vice versa. More-
over, OOD monitors generally have multiple parameters that require tuning,
thereby aggravating the complexity of manual conguration.

– As OOD monitoring can currently be described as a search for a good heuris-
tic, many more heuristics will appear, implying the need for streamlining their
handling and fair comparison.

In this paper, we provide the infrastructure for users and developers of NN
monitors aiming at detecting OOD inputs (onwards just “monitors”).

Our contributions can be summarized as follows:

– We provide a modular tool called Monitizer for automatic learning/con-
structing, optimizing, and evaluating monitors.

– Monitizer supports (i) easy practical use, providing various recent monitors
from the literature, which can directly be optimized and applied to user-given
networks and datasets with no further inputs required; the push-button solu-
tion oers automatic choice of the best available monitor without requiring
any knowledge on the side of the user; (ii) advanced development use, with the
possibility of easily integrating a new monitor or new evaluation techniques.
The framework also foresees and allows for the integration of monitoring other
properties than OOD.

– We provide a library of 19 well-known monitors from the scientic literature
to be used o-the-shelf, accompanied by 9 datasets and 15 NNs, which can
be used for easy but rich automatic evaluation and comparison of monitors
on various OOD categories.

– We demonstrate the functionality for principled use cases accompanied by
examples and a case study comparing a few recent monitoring approaches.

Altogether, we are giving users the infrastructure for automatic creation of mon-
itors, development of new methods, and their comparison to similar approaches.

2 Related Work

NN Monitoring Frameworks. OpenOOD [47,48] contains task-specic
benchmarks for OOD detection that consist of an ID and multiple OOD datasets
for specic tasks (e.g., Open Set Recognition and Anomaly Detection). Both
OpenOOD and Monitizer contain several dierent monitors and benchmarks.
Monitizer provides functionality to tune the monitors for the given objective,
supports a comprehensive evaluation of monitors on a specic ID dataset by

268 M. Azeem et al.

automatically providing generated OOD inputs by, e.g., the addition of noise,
and can easily be extended with more datasets. OpenOOD, in contrast to Moni-
tizer, does not support hyperparameter tuning and generation of OOD inputs.

Samuels et al. propose a framework to optimize an OOD monitor during
runtime on newly experienced OOD inputs [26]. While this contains optimiza-
tion, the framework is specic to one monitor and is based on active learning.
Monitizer is meant to work in an oine setting and optimize a monitor before
it is deployed. Additionally, Monitizer is built for extensibility and reusability,
which the other tool is not, e.g., it lacks an executable.

PyTorch-OOD [27] is a library for OOD detection, yet despite its name, it
is not part of the ocial PyTorch-library. It includes several monitors, datasets,
and supports the evaluation of the integrated monitors. Both Monitizer and
PyTorch-OOD provide a library of monitors and datasets. However, there are
signicant dierences. Monitizer supports optimization of monitors, allowing
us to return monitors optimal for a chosen objective, provides a more structured
view of the dataset, and provides a transparent and detailed evaluation showing
how a monitor performs on dierent OOD classes. Besides, we provide a one-click
solution to easily evaluate the whole set of monitors and automatically return
the best available option, ne-tuned to the case. Consequently, Monitizer is a
tool that is much easier to use and extend. Last but not least, it is an alternative
implementation that allows cross-checking outcomes, thereby making monitoring
more trustworthy.
OOD Benchmarking. Various datasets have been published for OOD bench-
marking [15,16,19,37,38], Breitenstein et al. present a classication for dierent
types of OOD data in automated driving [5], and Ferreira et al. propose a bench-
mark set for OOD with several dierent categories [11].

3 Monitizer

Monitizer aims to assist the developers and users of NN monitors and devel-
opers of new monitoring techniques by supporting optimization and transparent
evaluation of their monitors. It structures OOD data in a hierarchy of classes, and
a monitor can be tuned for any (combination) of these classes. It also provides
a one-click solution to evaluate a set of monitors and return the best available
option optimized for the given requirement.

3.1 Overview

Monitizer oers two main building blocks, as demonstrated in Fig. 2: optimiza-
tion and evaluation of NN monitors. NN monitors are typically parameterized
and usually depend on the NN and dataset. Before one can evaluate them, they
need to be congured and possibly tuned. We refer to monitors that are not yet
congured as monitor templates. Monitizer optimizes the monitor templates
and evaluates them afterward on several dierent OOD classes, i.e., types of
OOD data.

Monitizer: Automating Design and Evaluation of Neural Network Monitors 269

Fig. 2. Architecture of Monitizer: The required inputs are an NN and the dataset
(both can be chosen from existing options). The dashed area indicates optional inputs,
and the bold-faced option indicates the default value. The icons(see footnote 1) indicate
which types of users are expected to use each of the options.

Monitizer needs at least two inputs (see Fig. 2): an NN, and an ID-dataset.
The user can also provide a monitor template and an optimization conguration
(consisting of an optimization objective and optimization method). If these are
not provided, Monitizer reverts to the default values (i.e., evaluating all mon-
itors using the AUROC-score without optimization). For both inputs, the user
can choose from the options we oer or provide a custom implementation.

Monitizer optimizes the provided monitor based on the optimization objec-
tives and method on the given ID dataset. An example of optimization would
be:1 maximize the detection accuracy on blurry images, but keep the accuracy
on ID images at least 70%. Optimization is necessary to obtain a monitor that is
ready to use. However, it is possible to evaluate a monitor template on its default
values for the parameters using the AUROC -score (Area Under the Receiver
Operating Characteristic Curve)2.

On successful execution, Monitizer provides the user with a conguration
of the monitor template and the evaluation result. This can be either a table
with the accuracy of OOD detection for each OOD dataset along with a parallel
coordinate plot for the same (in case of optimization) or the AUROC score.

1 Thanks to Flaticon.com for the Icons.
2 The ROC (Receiver Operating Characteristic) curve shows the performance of a

binary classier with dierent decision thresholds. The AUROC computes the area
under this curve. The best possible value is 1, indicating perfect prediction.

270 M. Azeem et al.

3.2 Use Cases

We envision three dierent types of users for Monitizer:

1. The End User

Context: The end user of a monitor, e.g., an engineer in the aviation indus-
try, is interested in the end product, not in the intricacies of the underlying
monitoring technique. She intends to evaluate one or all monitors provided
by Monitizer for her custom NN and dataset, and wants to come to a con-
clusion on which one to use. She has an NN that needs to be monitored.
Additionally, she has her own proprietary ID dataset, e.g., the one on which
the NN was trained. She wants a monitor fullling some requirement, e.g.,
one that is optimal on average for all classes or one that can detect a specic
type of OOD that her NN is not able to handle properly.

Usage: Such a user can obtain a monitor tuned to her needs using Monitizer
without much eort. Monitizer supports this feature out of the box. It
provides various monitors (19 at present) that can be optimized for a given
network. In case she wants to use a custom NN or a dataset, she has to provide
the NN as PyTorch-dump or in onnx-format [4] and add some lines of code
to implement the interface for loading her data.

Required Eort: After providing the interface for her custom dataset, the
user only has to trigger the execution. The execution time depends on the
hardware quality, the NN’s size, the chosen monitor’s complexity, and the
dataset’s size.

2. The Developer of Monitors

Context: The developer of monitoring techniques, e.g., a researcher working
in runtime verication of NNs, aims to create novel techniques and assess
their performance in comparison to established methods.

Usage: Such a user can plug their novel monitor into Monitizer and evaluate
it. Monitizer directly provides the most commonly used NNs and datasets
for academic evaluation.

Required Eort: The code for the monitor needs to be in Python and should
implement the functions specied in the interface for monitors in Monitizer.
Afterward, she can trigger the evaluation of her monitoring technique.

3. The Scholar

Context: An expert in monitoring, e.g., an experienced researcher in NN run-
time verication, intends to explore beyond the current boundaries. She might
want to adapt an NN monitor to properties other than OOD, or to experi-
ment with custom NNs or datasets.

Monitizer: Automating Design and Evaluation of Neural Network Monitors 271

Usage: Monitizer provides interfaces, and instructions on how to integrate
new NNs, datasets, monitors, custom optimization methods and objectives.

Required Eort: The required integration eort depends on the complexity of
the concrete use case. For example, adding an NN would take much less time
than developing a new monitor.

More detailed examples are available in [1].

3.3 Phases of Monitizer

An execution of Monitizer is typically a sequence of three phases: parse, opti-
mize, and evaluate. As mentioned, the user can decide to skip the optimization
or the evaluation.
Parse. This phase parses the input, loads the NN and dataset, and instantiates
the monitor. It also performs sanity checks on the inputs, e.g., the datasets are
available in the le system, the provided monitor is implemented correctly, etc.
Optimize. This phase tunes the parameters of a given monitor template to
maximize an objective. It depends on two inputs, the optimization method and
the optimization objective, that the user has to give.

An illustrative depiction of this process can be found in [1]. The optimization
method denes the search space and generates a new candidate monitor by set-
ting its parameters. Monitizer then uses the optimization objective to evaluate
this candidate. If the objective is to optimize at least one OOD class, Monitizer
evaluates the monitor on a validation set of this class, which is distinct from the
test set used in the evaluation later. The optimization method obtains this result
and decides whether to continue optimizing or stop and return the best monitor
that it has found.

Monitizer provides three optimization methods: random, grid-search, and
gradient descent. Random search tries out a specied number of random sets
of parameters and returns the monitor that worked best among these. Grid-
search species a search grid by looking at the minimal and maximal values
of the parameters. It then denes a grid on the search space. The monitor is
infused with these parameters for each grid vertex and evaluated on the objec-
tive. Gradient-descent follows the gradient of the objective function towards the
optimum.

Monitizer supports multi-objective optimization of monitors. A user can
specify a set of OOD classes to optimize for and the minimum required accuracy
for ID detection. Single objective optimization is a special case when only one
OOD class is specied for optimization. Based on a conguration value, Moni-
tizer would generate a set of dierent weight combinations for the objectives
and create and evaluate a monitor for each of these combinations. If there are
two objectives, Monitizer generates a Pareto frontier plot; in the case of more
than two objectives, the tool generates a table. The user obtains the performance
of the optimized monitor for each weight-combination of objectives.

272 M. Azeem et al.

Fig. 3. Class diagram depicting the dierent types of OOD data.

Evaluate. The evaluation of NN monitors in Monitizer is structured accord-
ing to the OOD classication (detailed in the next section). We introduce this
classication of OOD data to enable a clearer evaluation and gain knowledge
about which monitor performs well on which particular class of OOD. Typically,
no monitor performs well on every class of OOD [44]. We highlight this in our
evaluation to ensure a fair and meaningful comparison between monitors rather
than restricting to a non-transparent and possibly biased average score.

After evaluation, Monitizer reports the detection accuracy for each OOD
class and can also produce a parallel-coordinates-plot displaying the reported
accuracy. Monitizer can also provide condence intervals for the evaluation
quality, which is explained in [1].

3.4 Classification of Out-of-Distribution Data

We now introduce our classication of OOD data. At the top level, an OOD input
can either be generated, i.e., obtained by distorting ID data [3,14,17,31,41], or
it can be collected using data from some other available dataset.

Fig. 4. Examples for OOD

The notion of generated OOD
is straightforward. These classes are
created by slightly distorting ID
data, for example, by increasing the
contrast or adding noise. An impor-
tant factor is the amount of distor-
tion, e.g., the amount of noise, as it
inuences the NN’s performance and
needs to be high enough to transform
an ID into an OOD input.

We explain the idea of collected
OOD with the help of an exam-
ple shown in Fig. 4. Consider an ID

Monitizer: Automating Design and Evaluation of Neural Network Monitors 273

dataset that consists of textures (Fig. 4a). Images containing objects (Fig. 4b)
dier from images showing just a texture. But, when we consider a dataset
of numbers as ID (Fig. 4c), it seems much more similar to a dataset of letters
(Fig. 4d) than textures are to objects. In the rst case, the datasets have no
common meaning or concept, as if they were belonging to a new world. In the
second case, the environment and the underlying concept are similar, but an
unseen object is placed in it.

Figure 3 shows our classication of the OOD data. It is based on the kind of
OOD data we found in the literature (discussed in Sect. 2). [1] contains a detailed
description of each class and an illustrative gure.
OOD Benchmarks Implementation. Note that the generated OOD will be
automatically created by Monitizer for any given ID dataset. The collected
OOD data has to be manually selected. We provide a few preselected datasets
(for example, KMNIST [9] as unseen objects for MNIST [29]) in the tool. A
user can easily add more when needed. However, for a user like the developer
of monitors, MNIST and CIFAR-10 are often sucient to test new monitoring
methodologies, as related work has shown [13,20].

3.5 Library of Monitors, NNs, and Datasets

Monitizer currently includes 19 monitors, accompanied by 9 datasets and 15
NNs. In the following, we give an overview of the available options.

Monitors. Monitizer provides dierent highly cited monitors, which are also
included in other tools such as OpenOOD/Pytorch-OOD. We extended this
list by adding monitors from the formal methods community (e.g., Box moni-
tor, Gaussian monitor). The following monitors are available in Monitizer:
ASH-B,ASH-P,ASH-S [10], Box-monitor [20], DICE [42], Energy [32],
Entropy [33], Gaussian [13], GradNorm [23], KL Matching [15], KNN [43],
MaxLogit [50], MDS [30], Softmax [17], ODIN [31], ReAct [41], Maha-
lanobis [39], SHE [49], Temperature [12] VIM [45].

Datasets. The following datasets are available in Monitizer: CIFAR-10,
CIFAR-100 [28], DTD [8], FashionMNIST [46], GTSRB [21], ImageNet [40],
K-MNIST [9], MNIST [29], SVHN [36].

Neural Networks Monitizer provides at least one pretrained NN for each avail-
able dataset. The library contains more NNs trained on commonly used datasets
in academia, such as MNIST and CIFAR-10, allowing users to evaluate monitors
on dierent architectures. [1] contains a detailed description of the pretrained
NNs.

4 Summary of Evaluation by Case Study

We demonstrate the necessity of having a clear evaluation in Table 1. The full
table containing all available OOD datasets can be found in [1]. We evaluate the

274 M. Azeem et al.

Table 1. Comparison of the AUROC-score of all implemented monitors on dierent
OOD datasets multiplied by 100 (and rounded to the nearest integer). All monitors
were evaluated on a fully connected network trained on MNIST. The cells are colored
according to the relative performance of a monitor (column) in a specic OOD class
(row). The monitors are divided in three ranks and the darker color represents better
performance. If several monitors have the same score, they all belong to the better
group.

Perturbations A
SH

-B
[1

0]

A
SH

-P
[1

0]

A
SH

-S
[1

0]

D
IC

E
[4

2]

E
ne

rg
y

[3
2]

E
nt

ro
py

[3
3]

G
au

ss
[1

3]

G
ra

dN
or

m
[2

3]

K
L

M
at

ch
in

g
[1

5]

K
N

N
[4

3]

M
D

S
[3

0]

M
ah

al
an

ob
is

[3
9]

M
ax

L
og

it
[5

0]

O
D

IN
[3

1]

R
eA

ct
[4

1]

SH
E

[4
9]

So
ft

m
ax

[1
7]

T
em

pe
ra

tu
re

[1
2]

V
IM

[4
5]

Gaussian 64 65 65 65 65 37 48 89 35 48 62 66 35 50 56 38 61 65 46
Contrast 45 41 41 41 41 56 44 20 56 42 64 49 59 50 51 57 46 41 50
Invert 28 21 21 21 21 47 0 0 39 0 100 100 79 43 92 88 56 21 0
Rotate 60 62 62 61 61 38 43 79 39 41 69 67 39 50 59 41 62 61 41

KMNIST 64 82 81 81 82 18 16 84 18 10 98 97 18 54 84 30 82 82 14

available monitors on a network trained on the MNIST dataset on a GPU and
depict the AUROC score. The values of MDS and Mahalanobis can dier when
switching between CPU and GPU; refer to [1] for details. The Box monitor [20]
is not included as it does not have a single threshold and, therefore, no AUROC
score can be computed. The table shows the ranking of the monitors for the
detection of Gaussian noise, increased contrast, color inversion, rotation, and a
new, albeit similar dataset (KMNIST). A darker color indicates a better ranking.
One can see that there is barely any common behavior among the monitors. For
example, while GradNorm performs best on Gaussian noise, it performs worst
on inverted images.

This also shows that it is important for the user to dene her goal for the
monitor. Not every monitor will be great at detecting a particular type of OOD,
and she must carefully choose the right monitor for her setting. Monitizer
eases this task. In addition, it highlights the need for a clear evaluation of new
monitoring methods in scientic publications.

We illustrate further features of Monitizer using the following four moni-
tors: Energy [32], ODIN [31], Box [20], and Gaussian [13]. The rst two were
proposed by the machine-learning community, and the latter two by the formal
methods community.

The output produced by Monitizer in the form of tables and plots (depicted
in Fig. 5) helps the user see the eect of the choice of monitor, chosen objective,
and dataset on the monitor’s eectiveness. Monitizer allows users to experi-
ment with dierent choices and select the one suitable for their needs. Figure 5
shows the evaluation of the mentioned monitors with the MNIST dataset as ID

Monitizer: Automating Design and Evaluation of Neural Network Monitors 275

Fig. 5. The monitor templates were optimized on MNIST as ID and for detecting
New-World / CIFAR-10 as OOD while keeping 70% accuracy on ID. All monitors were
optimized randomly.

data and an optimization with the goal of detecting pre-selected images of the
CIFAR-10 dataset as those are entirely unknown to the network. The optimiza-
tion was performed randomly. This resulted in the Gaussian monitor only cor-
rectly classifying around 70% of ID data, whereas the other monitors have higher
accuracy on ID data. Consequently, the other monitors perform worse than the
Gaussian monitor in detecting OOD data, as there is a tradeo between good
performance on ID and OOD data. This highlights the necessity of proper opti-
mization for each monitor. See [1] for a detailed evaluation where we report on
the experiments with dierent monitors, optimization objectives, and datasets.

Our experiments show that dierent monitors have dierent strengths and
limitations. One can tune a monitor for a specic purpose (e.g., detecting a par-
ticular OOD class with very high accuracy); however, this aects its performance
in other OOD classes.

5 Conclusion

Monitizer is a tool for automating the design and evaluation of NN monitors.
It supports developers of new monitoring techniques, potential users of avail-
able monitors, and researchers attempting to improve the state of the art. In
particular, it optimizes the monitor for the objectives specied by the user and
thoroughly evaluates it.

Monitizer provides a library of 19 monitors, accompanied by 9 datasets
and 15 NNs (at least one for each dataset), and three optimization methods
(random, grid-search, and gradient descent). Additionally, all these inputs can
be easily customized by a few lines of Python code, allowing a user to provide
their monitors, datasets, and networks. The framework is extensible so that the
user can implement their custom optimization methods and objectives.

276 M. Azeem et al.

Monitizer is an open-source tool providing a freely available platform for
new monitors and easing their evaluation. It is publicly available at https://
gitlab.com/live-lab/software/monitizer.

Data Availability Statement. A reproduction package including all our results is
available at Zenodo [2].

References

1. Azeem, M., Grobelna, M., Kanav, S., Křetínský, J., Mohr, S., Rieder, S.: Moni-
tizer: Automating design and evaluation of neural network monitors. CoRR (2024).
https://arxiv.org/abs/2405.10350

2. Azeem, M., Grobelna, M., Kanav, S., Křetínský, J., Mohr, S., Rieder, S.: Repro-
duction package for article ‘monitizer: automating design and evaluation of neural
network monitors. In: Proceedings of CAV 2024, Zenodo (2024). https://doi.org/
10.5281/zenodo.10933013

3. Bai, H., Canal, G., Du, X., Kwon, J., Nowak, R.D., Li, Y.: Feed two birds with one
scone: exploiting wild data for both out-of-distribution generalization and detec-
tion. In: ICML 2023. PMLR, vol. 202, pp. 1454–1471. PMLR (2023), https://
proceedings.mlr.press/v202/bai23a.html

4. Bai, J., Lu, F., Zhang, K., et al.: ONNX: Open neural network exchange (2019).
https://github.com/onnx/onnx

5. Breitenstein, J., Termöhlen, J., Lipinski, D., Fingscheidt, T.: systematization of
corner cases for visual perception in automated driving. In: Proceedings of IV, pp.
1257–1264. IEEE (2020). https://doi.org/10.1109/IV47402.2020.9304789

6. Casadio, M., Komendantskaya, E., Daggitt, M.L., Kokke, W., Katz, G., Amir, G.,
Refaeli, I.: Neural network robustness as a verication property: a principled case
study. In: Proceedings of CAV, pp. 219–231. Springer (2022). https://doi.org/10.
1007/978-3-031-13185-1_11

7. Cheng, C., Nührenberg, G., Yasuoka, H.: Runtime monitoring neuron activation
patterns. In: Proceedings of DATE, pp. 300–303. IEEE (2019). https://doi.org/10.
23919/DATE.2019.8714971

8. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., , Vedaldi, A.: Describing textures
in the wild. In: Proceedings of CVPR (2014). https://doi.org/10.1109/CVPR.2014.
461

9. Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., Ha, D.:
Deep learning for classical japanese literature. CoRR (2018). https://doi.org/10.
48550/arXiv.1812.01718

10. Djurisic, A., Bozanic, N., Ashok, A., Liu, R.: Extremely simple activation shaping
for out-of-distribution detection. In: Proceedings of ICLR. OpenReview.net (2023).
https://openreview.net/forum?id=ndYXTEL6cZz

11. Ferreira, R.S., Arlat, J., Guiochet, J., Waeselynck, H.: Benchmarking safety mon-
itors for image classiers with machine learning. In: PRDC 2021, pp. 7–16. IEEE
(2021). https://doi.org/10.1109/PRDC53464.2021.00012

12. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural
networks. In: Proc. ICML, pp. 1321–1330. PMLR (2017). https://proceedings.mlr.
press/v70/guo17a.html

Monitizer: Automating Design and Evaluation of Neural Network Monitors 277

13. Hashemi, V., Křetínský, J., Mohr, S., Seferis, E.: Gaussian-based runtime detection
of out-of-distribution inputs for neural networks. In: Feng, L., Fisman, D. (eds.)
RV 2021. LNCS, vol. 12974, pp. 254–264. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-88494-9_14

14. Hashemi, V., Kretínský, J., Rieder, S., Schmidt, J.: Runtime monitoring for
out-of-distribution detection in object detection neural networks. In: Proc. FM.
LNCS, vol. 14000, pp. 622–634. Springer (2023). https://doi.org/10.1007/978-3-
031-27481-7_36

15. Hendrycks, D., et al.: Scaling out-of-distribution detection for real-world set-
tings. In: Proc. ICML. PMLR, vol. 162, pp. 8759–8773. PMLR (2022). https://
proceedings.mlr.press/v162/hendrycks22a.html

16. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to com-
mon corruptions and perturbations. In: ICLR. OpenReview.net (2019). https://
openreview.net/forum?id=HJz6tiCqYm

17. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassied and out-of-
distribution examples in neural networks. In: Proc. ICLR. OpenReview.net (2017).
https://openreview.net/forum?id=Hkg4TI9xl

18. Henriksen, P., Lomuscio, A.R.: Ecient neural network verication via adaptive
renement and adversarial search. In: Proceedings of ECAI. FAIA, vol. 325, pp.
2513–2520. IOS Press (2020). https://doi.org/10.3233/FAIA200385

19. Henriksson, J., et al.: Towards structured evaluation of deep neural network super-
visors. In: Proceedings of AITest, pp. 27–34. IEEE (2019). https://doi.org/10.1109/
AITest.2019.00-12

20. Henzinger, T.A., Lukina, A., Schilling, C.: Outside the box: abstraction-based mon-
itoring of neural networks. In: Proceedings of ECAI, FAIA, vol. 325, pp. 2433–2440.
IOS Press (2020). https://doi.org/10.3233/FAIA200375

21. Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., Igel, C.: Detection of trac
signs in real-world images: the german trac sign detection benchmark. In: Pro-
ceedings of IJCNN. pp. 1–8. IEEE (2013). https://doi.org/10.1109/IJCNN.2013.
6706807

22. Hsu, Y., Shen, Y., Jin, H., Kira, Z.: Generalized ODIN: detecting out-of-
distribution image without learning from out-of-distribution data. In: Proceed-
ings of CVPR, pp. 10948–10957. IEEE/CVF (2020). https://doi.org/10.1109/
CVPR42600.2020.01096

23. Huang, R., Geng, A., Li, Y.: On the importance of gradients for
detecting distributional shifts in the wild. In: NeurIPS, vol. 34, pp.
677–689 (2021), https://proceedings.neurips.cc/paper_les/paper/2021/hash/
063e26c670d07bb7c4d30e6fc69fe056-Abstract.html

24. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: a
calculus for reasoning about deep neural networks. FMSD 60(1), 87–116 (2022).
https://doi.org/10.1007/s10703-021-00363-7

25. Katz, G., et al.: The Marabou framework for verication and analysis of deep
neural networks. In: Proceedings of CAV. LNCS, vol. 11561, pp. 443–452. Springer
(2019). https://doi.org/10.1007/978-3-030-25540-4_26

26. Katz-Samuels, J., Nakhleh, J.B., Nowak, R.D., Li, Y.: Training OOD detectors in
their natural habitats. In: Proc. ICML. PMLR, vol. 162, pp. 10848–10865. PMLR
(2022). https://proceedings.mlr.press/v162/katz-samuels22a.html

27. Kirchheim, K., Filax, M., Ortmeier, F.: PyTorch-OOD: a library for out-of-
distribution detection based on PyTorch. In: CVPR Workshops 2022, pp. 4350–
4359. IEEE/CVF (2022). https://doi.org/10.1109/CVPRW56347.2022.00481

278 M. Azeem et al.

28. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images. Tech. rep., https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.
pdf

29. LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database 2
30. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unied framework for

detecting out-of-distribution samples and adversarial attacks. In: NeurIPS,
vol. 31, pp. 7167–7177 (2018). https://proceedings.neurips.cc/paper/2018/hash/
abdeb6f575ac5c6676b747bca8d09cc2-Abstract.html

31. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image
detection in neural networks. In: Proceedings of ICLR. OpenReview.net (2018).
https://openreview.net/forum?id=H1VGkIxRZ

32. Liu, W., Wang, X., Owens, J., Li, Y.: Energy-based out-of-distribution detec-
tion. NeurIPS 33, 21464–21475 (2020). https://proceedings.neurips.cc/paper_
les/paper/2020/hash/f5496252609c43eb8a3d147ab9b9c006-Abstract.html

33. Macêdo, D., Ren, T.I., Zanchettin, C., Oliveira, A.L., Ludermir, T.: Entropic
out-of-distribution detection. In: Proceedings of (IJCNN), pp. 1–8. IEEE (2021).
https://doi.org/10.1109/IJCNN52387.2021.9533899

34. Müller, M.N., Brix, C., Bak, S., Liu, C., Johnson, T.T.: The third international
verication of neural networks competition (VNN-COMP 2022): Summary and
results. CoRR (2022). https://doi.org/10.48550/arXiv.2212.10376

35. Müller, M.N., Makarchuk, G., Singh, G., Püschel, M., Vechev, M.T.: PRIMA:
general and precise neural network certication via scalable convex hull approxi-
mations. PACMPL 6(POPL), 1–33 (2022). https://doi.org/10.1145/3498704

36. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning

37. Olber, B., Radlak, K., Popowicz, A., Szczepankiewicz, M., Chachula, K.: Detection
of out-of-distribution samples using binary neuron activation patterns. In: Pro-
ceedings of CVPR, pp. 3378–3387. IEEE/CVF (2023). https://doi.org/10.1109/
CVPR52729.2023.00329

38. Pinggera, P., Ramos, S., Gehrig, S., Franke, U., Rother, C., Mester, R.: Lost and
found: detecting small road hazards for self-driving vehicles. In: Proceedings of
IROS, pp. 1099–1106. IEEE (2016). https://doi.org/10.1109/IROS.2016.7759186

39. Ren, J., Fort, S., Liu, J., Roy, A.G., Padhy, S., Lakshminarayanan, B.: A simple x
to mahalanobis distance for improving near-ood detection. CoRR (2021). https://
doi.org/10.48550/arXiv.2106.09022

40. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

41. Sun, Y., Guo, C., Li, Y.: ReAct: Out-of-distribution detection with rectied acti-
vations. In: NeurIPS. vol. 34, pp. 144–157 (2021). https://proceedings.neurips.cc/
paper/2021/hash/01894d6f048493d2cacde3c579c315a3-Abstract.html

42. Sun, Y., Li, Y.: DICE: Leveraging sparsication for out-of-distribution detection.
In: Proceeding of ECCV. LNCS, vol. 13684, pp. 691–708. Springer (2022). https://
doi.org/10.1007/978-3-031-20053-3_40

43. Sun, Y., Ming, Y., Zhu, X., Li, Y.: Out-of-distribution detection with deep nearest
neighbors. In: Proceedings of ICML, pp. 20827–20840. PMLR (2022). https://
proceedings.mlr.press/v162/sun22d

44. Tajwar, F., Kumar, A., Xie, S.M., Liang, P.: No true state-of-the-art? OOD detec-
tion methods are inconsistent across datasets. CoRR (2021). https://doi.org/10.
48550/arXiv.2109.05554

Monitizer: Automating Design and Evaluation of Neural Network Monitors 279

45. Wang, H., Li, Z., Feng, L., Zhang, W.: ViM: Out-of-distribution with virtual-logit
matching. In: Proceedings of CVPR, pp. 4921–4930. IEEE/CVF (2022). https://
doi.org/10.1109/CVPR52688.2022.00487

46. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms

47. Yang, J., et al.: OpenOOD: benchmarking generalized out-of-distribution detec-
tion. In: NeurIPS (2022). http://papers.nips.cc/paper_les/paper/2022/hash/
d201587e3a84fc4761eadc743e9b3f35-Abstract-Datasets_and_Benchmarks.html

48. Zhang, J., et al.: OpenOOD v1.5: Enhanced benchmark for out-of-distribution
detection. CoRR (2023). https://doi.org/10.48550/arXiv.2306.09301

49. Zhang, J., et al.: Out-of-distribution detection based on in-distribution data pat-
terns memorization with modern hopeld energy. In: Proceedings of ICLR (2022).
https://openreview.net/forum?id=KkazG4lgKL

50. Zhang, Z., Xiang, X.: Decoupling maxlogit for out-of-distribution detection. In:
Proceedings of CVPR, pp. 3388–3397. IEEE/CVF (2023). https://doi.org/10.
1109/CVPR52729.2023.00330

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

E. Gaussian-Based Runtime Detection of Out-of-distribution Inputs for Neural Networks

E Gaussian-Based Runtime Detection of Out-of-distribution In-
puts for Neural Networks

Reprinted by permission from Springer Nature (License Number 5702360791464): Lec-
ture Notes in Computer Science book series (LNCS,volume 12974) Gaussian-Based Run-
time Detection of Out-of-distribution Inputs for Neural Networks, Vahid Hashemi, Jan
Křet́ınský, Stefanie Mohr, and Emmanouil Seferis © 2021 Springer Nature Switzerland
AG (2021)

This paper has been published as a peer-reviewed short conference paper.

Vahid Hashemi, Jan Křet́ınský, Stefanie Mohr, and Emmanouil Seferis (2021).
Gaussian-Based Runtime Detection of Out-of-distribution Inputs for Neu-
ral Networks. In: Feng, L., Fisman, D. (eds) Runtime Verification. RV
2021. Lecture Notes in Computer Science(LNCS), vol 12974, pp. 254-264.
Springer, Cham.

DOI: https://doi.org/10.1007/978-3-030-88494-9 14

Summary

This paper introduces a lightweight and scalable method for Out-of-Distribution (OOD)
detection of Neural Networks (NNs). We use the activation values of individual neurons
across the network and model them as Gaussian distributions. Whenever a new input
falls outside the expected range, the monitor raises an alarm. We have a different
approach to previous work [HLS20] by allowing outliers and not using strict interval
abstractions.
We validate our methods against traditional approaches by performing experiments on

several standard datasets. We use different NN architectures and compare the monitor’s
performance on both In-Distribution (ID) and OOD inputs.

Contributions of the author

Composition, discussion and revision of the entire manuscript. Discussion of all results
presented in the paper. Discussion and development of the ideas, experimentation and
evaluation. Significant contributions towards the overall design of the implemented
approach.

139

https://doi.org/10.1007/978-3-030-88494-9_14

Gaussian-Based Runtime Detection
of Out-of-distribution Inputs for Neural

Networks

Vahid Hashemi2 , Jan Křet́ınský1 , Stefanie Mohr1(B) ,
and Emmanouil Seferis1,2

1 Technical University of Munich, Munich, Germany
mohr@in.tum.de

2 AUDI AG, Ettingerstr. 60, 85057 Ingolstadt, Germany

Abstract. In this short paper, we introduce a simple approach for run-
time monitoring of deep neural networks and show how to use it for
out-of-distribution detection. The approach is based on inferring Gaus-
sian models of some of the neurons and layers. Despite its simplicity, it
performs better than recently introduced approaches based on interval
abstractions which are traditionally used in verification.

1 Introduction

Learning deep neural networks (DNN) [2] has shown remarkable success in prac-
tically solving a large number of hard and previously intractable problems. How-
ever, direct applications in safety-critical domains, such as automated driving,
are hindered by the lack of practical methods to guarantee their safety, e.g.
[3,4]. This poses a serious problem for industrial adoption of DNN-based sys-
tems. Companies struggle to comply with safety regulations such as SOTIF [19],
both due to lack of techniques to demonstrate safety in the presence of DNN as
well as due to the actual lack of safety, e.g. accidents in automated cars due to
errors in DNN-based perception system used [5].

One of the key requirements is the ability to detect novel inputs [20], for
which the DNN has not been trained and thus the only responsible answer is
“don’t know”. Such inputs are also called out-of-distribution (OOD) examples
[10]. Whenever such inputs occur, an alarm should be raised announcing the
unreliability of the current output of the DNN, so that rectifying actions can
be taken. Various runtime monitors for this task have already been proposed
recently. Cheng et al. [1] monitor which subsets of neurons in a given layer
are activated for known inputs; whenever a very different subset is activated,
an alarm is raised. Henzinger et al. [16] monitor activation values of neurons
and envelop the tuples into hyper-boxes (multidimensional intervals) along the

This research was funded in part by the DFG research training group CONVEY (GRK
2428), the DFG project 383882557 - Statistical Unbounded Verification (KR 4890/2-
1), the project Audi Verifiable AI, and the BMWi funded KARLI project (grant
19A21031C).

c© Springer Nature Switzerland AG 2021
L. Feng and D. Fisman (Eds.): RV 2021, LNCS 12974, pp. 254–264, 2021.
https://doi.org/10.1007/978-3-030-88494-9_14

Gaussian-Based Runtime Detection of Out-of-distribution Inputs 255

program analysis tradition; whenever a very different tuple is observed (outside
of the boxes), an alarm is raised.

In this short paper, we propose a very light-weight and scalable approach.
Similarly to [16], we monitor the activation values. However, instead of discrete
and exact enveloping, we learn a more continuous and fuzzy representation of
the recorded experienece, namely a Gaussian model of each monitored neuron.
Whenever many neurons have sufficiently improbable activation values on the
current input, we raise an alarm. Surprisingly, our simple monitor is equally or
even more accurate than the similar state-of-the-art [16] even though we take no
correlation of the activation values of different neurons into account and instead
we monitor each of the neurons separately, in contrast to the multi-dimensional
boxes of [16].

Our Contribution can be summarized as follows:

– We present a new and simple method for OOD detection based on Gaussian
models of neuron activation values.

– We show that our method performs better than state-of-the-art techniques
for out-of-distribution (OOD) detection.

Related Work. In our work, we focus on the detection of OOD-inputs,
arguably [10] one of the major problems in AI safety.

State of the Art. A recent work by Henzinger et al. [16] is very similar to our
approach. The authors consider the neuron activations of one layer for all samples
of the training data. For each class in the dataset, they collect the activation
vectors of the class samples, and cluster them using k-Means [17]. They increase
the number of clusters successively, until the relative improvement drops below
a given threshold τ . For each cluster, they construct a box abstraction that
contains all samples of that cluster. In the end, each class in the data corresponds
to a set of boxes. Finally, during testing, they check whether the activation vector
of a new sample is contained in one of the boxes of its predicted class; if not,
they raise an alarm. This approach can be extended to more layers, by taking
the element-wise boolean AND of the layer “decisions”. That is, an input is
accepted if only if it is contained in the abstractions of all monitored layers.
While the idea of looking at the activations of neurons in a layer is similar to
our approach, the difference is in the detection of OOD samples. In contrast to
using box-abstractions, we use Gaussian models. This reflects better the actual
distribution of values of the neurons, as can be seen in Sect. 4.2.

OOD-Detection. Previous works have suggested, for example, using the maxi-
mum class probability or the entropy of the predicted class distribution as an
OOD indicator [11], or training a classifier to distinguish clean and perturbed
data, using ensembles of classifiers trained on random shuffles of the training
data [12]. Besides, two popular approaches closely resemble the methods of run-
time monitoring, namely ODIN [13] and the Mahalanobis-based detector [14].
ODIN first applies temperature scaling on the softmax outputs of a DNN to

256 V. Hashemi et al.

reduce the standard DNN overconfidence, and then applies a small adversarial–
like perturbation of the input. If after that the maximum class score is below
some threshold, the sample is considered to be OOD.

In contrast, the detector of [14] measures the probability density of a test sam-
ple by using a distance-based classifier. Another line of work involves generative
models for OOD detection, attempting to model the distribution of the data,
such as in [15]. By definition, OOD detection runs at test time, and thus many
proposed approaches can be viewed under this setting. Other related approaches
include using Bayesian learning methods [9], which can output prediction uncer-
tainties, DNN testing [3], which are methods attempting to find problematic
inputs, or building DNN architectures that are robust by construction, for exam-
ple using interval bound propagation, abstract interpretation, or other methods
[6–8].

2 Preliminaries

2.1 Deep Neural Networks

DNNs come in various architectures suitable for different tasks, however, at the
core, they are composed of multiple layers of computation units called neurons.
The task of a neuron is to read an input, calculate a weighted sum, apply a
function called the activation function on it and output the result, called the
activation value. We number the layers 1, 2, . . . , L where layer 1 is called the
input layer, layers 2, . . . (L − 1) are called the hidden layers and layer L is called
the output layer.

More formally, given an input �x to the DNN, we have:

�h1 = �x

�hl+1 = �φl+1(�hl) l = 2, ..., L

where φl
i(�x) defines the element-wise computation of the neurons i = 1, ..., Nl

in layer l. The details of the computation are not necessary to understand the
following work.

DNN can perform various tasks, the most usual being classification and
regression. Whereas the first type labels its input with a category from a finite
subset of classes, the second type outputs non discrete but real values. We con-
sider only classification DNNs in this work. Neuron activations are vectors of
activation values produced by neurons in some layer of a DNN. It is generally
believed that layers closer to the output encode more complex features. This
result has been supported by our results, which can be seen in Table 1. We refer
to hl

i i = 1, ..., Nl as the activation of neuron i in layer l.

3 Our Solution Approach

In this section, we discuss our approach for synthesizing an OOD detector
based on Gaussian models. In statistics, Gaussian models are used to model
the behavior of data samples. We adapt this idea to model the behavior of a
neuron by a Gaussian model.

Gaussian-Based Runtime Detection of Out-of-distribution Inputs 257

Consider a DNN as a classifier that distinguishes between {c1, ..., cNL
} = C

classes. One layer l of this DNN contains Nl neurons. For each class co ∈ C in
the training data set, we feed samples xco

j , j = 1, ...,m, into the network, and
record the activations nco

i (xj) of each neuron for i = 1, ..., Nl.
We collect those vectors �nco

i , and calculate the mean and standard deviation,
μco

i , σco
i of these values for each monitored neuron. We assume that the distribu-

tion of these values is approximately Gaussian. Thus, we expect the majority of
samples to fall within the range [μco

i −kσco
i , μco

i +kσco
i], where k is typically a value

close to 2, containing 95% of the samples. During testing, we feed a new sample
x to the DNN. We then do the following: we record the class c that our DNN pre-
dicts on x, and also retrieve the neuron activation values nc

i (x). We check if the
activations of each neuron i falls within its range for the predicted class.

More formally, we check if

∀i = 1, ..., Nl : nc
i (x) ∈ [μc

i − kσc
i , μ

c
i + kσc

i] (1)

For a better understanding, we have the intuition depicted in Fig. 1. The data in
the plot is random but shall give an idea of how the approach works. There are
two neurons that output different values, which are depicted as black dots. On
the one hand, they are shown in a 2D-plane, which is used for the abstraction of
Henzinger et al.; on the other hand, they are shown projected onto one dimension
next to the axes, for our approach. The approach of Henzinger et al. fits interval
boxes to the values that the neurons can take. The interval boxes are drawn in
blue. Our approach calculates intervals based on fitted Gaussians. The mean of
the Gaussian is depicted as a red cross next to the neuron activations. The red
line marks the interval that we consider as good for the neuron.

Fig. 1. This is an intuition of the Gaussian models on neuron activations. Black dots
mark the values of the neurons. Once, in a 2D-plane together with the blue boxes that
represent the abstraction of Henzinger et al., and once projected to one dimension only.
The red lines mark the interval [μc

i − kσc
i , μ

c
i + kσc

i] for the two neurons respectively.
Those intervals are the basis for our approach of OOD-detection. (Color figure online)

258 V. Hashemi et al.

Each neuron “votes” independently if the new sample is valid or not. Samples
within the distribution are expected to obtain a large number of votes, while
OOD samples should obtain less. Thus, we collect the votes of all neurons, and
then we compare them to a threshold; if they are below it, we consider x as an
OOD sample, otherwise we consider it as correct. In that way, we can detect
OOD inputs at runtime.

Note that this approach can also be extended to use multiple layers. For
this, we compute the votes for each of the monitored layers. If they are below
the threshold in at least one of the layers, we flag the sample as OOD.

An issue here is finding appropriate voting thresholds. For that, we use a
suitable validation set. Normally, we should not make assumptions for the OOD
data, and assume that we do not have access to them. In this case, we can use
a suitable surrogate validation set, containing another unrelated dataset, e.g.
adversarial examples or noisy images. In case we monitor more than one layer,
the voting thresholds are computed individually for each layer.

4 Experiments

In this section, we analyze the experimental results of our approach. We will
apply our approach for OOD detection to some example datasets and DNNs.
We use the setting of Henzinger et al. [16], and we compare our result with
theirs.

4.1 Datasets and Training

There are 4 datasets on which we evaluate our approach: MNIST, F-MNIST,
CIFAR-10 and GTSRB (German Traffic Sign Recognition Benchmark) [18].

– MNIST is a dataset that contains images of digits. They shall be classified
into ten classes, i.e. 0, ..., 9.

– F-MNIST consists of images of clothes, which shall also be classified into ten
categories.

– CIFAR-10 is made of images of ten distinct classes from different settings.
– GTSRB contains images of German traffic signs that can be categorized into

43 classes.

All of the four datasets are used for classification. We train two different
architectures of DNNs, NN1 and NN2, with the architectures of [16]. Those are:

– NN1: Conv(40), Max Pool, Conv(20), Max Pool, FC(320), FC(160), FC(80),
FC(40), FC(k)

– NN2: BN(Conv(40)), Max Pool, BN(Conv(20)), Max Pool, FC(240), FC(84),
FC(k)

Here, FC is a fully connected layer, Conv is a convolutional layer, MaxPool is
2 × 2 max pooling, and BN is batch normalization. The activation function is
always the RELU. NN1 was trained 10 epochs for MNIST, and 30 for F-MNIST,
while NN2 was trained 200 epochs for CIFAR-10 and 10 for GTSRB. A learning

Gaussian-Based Runtime Detection of Out-of-distribution Inputs 259

rate of 10−3 and batch size 100 were used during training. NN1 is used for
MNIST and F-MNIST, while NN2 is used for CIFAR-10 and GTSRB.

The evaluation is performed on two measures: the detection rate (DTERR)
and the false alarm rate (FAR). The detection rate counts how many samples
were correctly marked as OOD out of all OOD inputs. The false alarm rate (also
known as Type-1-error) counts how many samples were marked as OOD but are
not OOD, out of all marked inputs.

4.2 Gaussian Assumption

In this work, we used Gaussian distributions in order to approximate the output
of each neuron. To verify that this is a valid assumption, we show in the following
the distribution of values of the neurons.

We pick each dataset and select one random neuron from one of the monitored
layers. Then, we plot the histogram of that neuron’s output. We also show the
Gaussian distribution we would expect to have, according to the measured μ
and σ (Fig. 2).

(a) MNIST layer 0 (b) MNIST layer 1 (c) MNIST layer 2

(d) F-MNIST layer 0 (e) F-MNIST layer 1 (f) F-MNIST layer 2

(g) CIFAR layer 0 (h) CIFAR layer 1 (i) CIFAR layer 2

(j) GTSRB layer 0 (k) GTSRB layer 1 (l) GTSRB layer 2

Fig. 2. Histogram of neuron outputs, along with the Gaussian distribution with the
sample mean and variance.

260 V. Hashemi et al.

We see that there are some small differences. For some neurons, the Gaus-
sian assumption is very accurate, e.g. f, h, k, and l. For some other cases the
histograms indicate a slightly different behavior, e.g. a, d, e, g, i. However, in
general they show that the neuron’s outputs follow more a Gaussian behavior
than a uniformly distributed one. It seems especially that the problem is rather
that the parameters μ and σ do not exactly fit the true underlying Gaussian. One
could think of calculating the parameters differently, or even using other models
in future. Overall, the assumption that the neuron’s outputs are Gaussian-like
seems to be true.

4.3 Evaluation Steps

Following the setting of Henzinger et al., we perform the following steps for each
dataset: we train the DNN for the first k classes of the dataset, and consider
the rest as OOD. This results, for example, in a DNN that was only trained on
the digits from 0 to 5. Digits from 6 to 9 are considered as OOD. Having now
constructed the networks and datasets in this way, we can apply our approach,
and compare the results with the ones of Henzinger et al.. We monitor all linear
hidden layers of the DNNs for both approaches. We use the interval [μ−2σ, μ+2σ]
for each neuron and class label, while for Henzinger’s approach, we use the
parameters mentioned in their paper. Note that the monitor of Henzinger et
al. outputs boolean values (e.g. x is inside or outside of the boxes), while ours
outputs numerical scores (e.g. number of “votes” for an input x). In order to
be able to compare the two approaches, we have to select a threshold for our
approach, in order to convert its output to a boolean value (e.g. votes(x) < τ ⇒
OOD).

For this, we set the threshold at a quantile of the in-distribution data, so
that the FAR is similar to the one of [16]. For example, for a quantile q = 50%,
we set the voting threshold in a way that 50% of the known in-distribution data
pass through. Having set the FARs on a similar level, we can then compare the
detected errors of the approaches.

In the case where we monitor more than one layer, we use the same quantile
q in every one of them, and then combine votes as described before, i.e. x is
accepted if the votes of each layer are above the corresponding threshold. Having
a different quantile threshold for every layer improves performance, but might
also be prone to overfitting. Note also that the threshold q is not the same across
experiments: in each run, we modify it in order to match the FAR of [16] on that
particular experiment. The results are shown in Fig. 3.

Each of the datasets has its own plot, where we have in red the values that
the approach of [16] achieves, and in blue the values of our approach. For both of
them, we measure the detection rate (DTERR) shown as a solid line in the left
plot, and the false alarm rate (FAR) shown as a dashed line in the right plot.
We see that the performance of our approach is mostly comparable or better
than [16]. Especially, on CIFAR, our approach clearly outperforms the approach
of Henzinger et al. in terms of the detection rate.

Gaussian-Based Runtime Detection of Out-of-distribution Inputs 261

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. Comparison between the approaches of Henzinger et al. and ours, for the cases
of MNIST, F-MNIST, CIFAR, and GTSRB datasets. Here, DTERR and FAR are
shown in separate diagrams. The number of classes on which the network was trained
is depicted on the x axis.

262 V. Hashemi et al.

Overall, our approach seems promising and shows already good results. How-
ever, we also have to indicate some problems with both approaches, namely the
occasional low detection rate or high false alarm rates. This is problematic for
industrial applications, and shows us the difficulties involved, and the need for
stronger approaches.

4.4 Parameter Study

In this section, we perform a study on the parameters of our approach. For
simplicity, we focused on the MNIST dataset. The DNN in this case was thus
NN1 with a total of eight layers. We want to particularly investigate the effects
of the number of layers.

Table 1. Results on different layers, and different combination of layers. The evaluation
is performed on the detection rate and the false alarm rate. Layers closer to the output
layer show a higher detection rate than layers earlier in the DNN. The combination of
several layers only results in a small improvement compared to the usage of only one
layer.

At first, we look at different layers in the DNN. The fifth layer seems to
contain less important information in comparison to layer six, seven, and eight.
When we only monitor layer five, the DTERR is almost 20% lower as for the
other layers, while the FAR does not change significantly. We can thus verify
the intuition that the features of the later layers in a DNN are more meaningful.
If we combine the voting of several layers, we can see that the detection rate is
slightly increased. Especially, the bad DTERR of 44% by only using layer five
can be drastically improved by adding the knowledge of layer six, namely to 70%;
while the FAR even decreases slightly. The combination of other layers can still
increase the DTERR up to 80.0%, however, it comes with a slightly higher false
alarm rate. Thus, for a more light-weight approach, it could be recommended to
stick with fewer layers. Additionally, there may also be another different voting
system for several layers, e.g. incorporate a weighted voting system for the layers
and granting later layers more influence on the result.

Gaussian-Based Runtime Detection of Out-of-distribution Inputs 263

5 Outlook

A natural next step would be to use additional information given by the cor-
relation between the neurons. So far, we only considered the Gaussians of each
neuron independently.

Instead, we can consider a subset of neurons nk ∈ S and fit a joint Gaussian
distribution N(μS , ΣS) on them. This subset can be an entire layer, where we
fit a Gaussian distribution on the entire vector of layer activations, but it can
also be a smaller subset of neurons. This offers the advantage of reduced com-
putations, and an easier estimation of the covariance matrix (which is hard in
high dimensions). The approach is flexible, and allows us to consider arbitrary
subsets of neurons with varying sizes. Predictions can then be combined again
by voting. For multidimensional Gaussian distributions, a simple threshold with
μ and σ is no longer possible. Instead, one can use the Mahanalobis distance,
M2(x) = (x−μ)T Σ−1(x−μ), which is a notion of distance from the distribution
center. A suitable threshold for M(x) is then to be calculated.

Besides, for a subset of neurons, a more precise model that can be used
is a mixture of Gaussians. This might be more accurate since the Gaussian
distributions as above are only imprecise approximations of the true distribution,
while in contrast, Gaussian mixture models can approximate any probability
distribution to any precision.

6 Conclusion

In this work, we considered the problem of runtime monitoring of DNNs, which
forms an important step towards applying deep learning to safety-critical sys-
tems. Specifically, we focused on the sub-problem of OOD detection, and devel-
oped a lightweight detection method based on Gaussian models of neuron acti-
vation values. This can be extended in various ways as described before, and
gives more accurate results than the recent work of Henzinger et al. [16]. Inter-
estingly, the results suggest that reflecting correlation of the activation values
(as in [16]) is less important than handling outliers through voting on learnt
models (as here). Actually, the rigid and complete coverage by the boxes does
not seem as adequate as the learnt approximations.

While we showed already a good efficiency on OOD inputs, the industrial
requirements suggest that further improvements are necessary to reach real-
world applicability. Our preliminary results invite further investigation along
these directions. In particular, runtime monitoring by more complex probabilistic
models, such as Gaussian mixtures, or using DNN-based probability estimation
methods such as Normalizing Flows seem very promising.

References

1. Cheng, C.-H., Nührenberg, G., Yasuoka, H.: Runtime monitoring neuron activation
patterns. DATE (2019). https://arxiv.org/abs/1809.06573

264 V. Hashemi et al.

2. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016).
https://www.deeplearningbook.org/

3. Huang, X., et al.: A survey of safety and trustworthiness of deep neural networks.
CoRR (2018). https://arxiv.org/abs/1812.08342

4. Ortega, P., Maini, V.: Building safe artificial intelligence: specification,
robustness, and assurance. Deep Mind blog (2018). https://medium.com/
@deepmindsafetyresearch/building-safe-artificial-intelligence-52f5f75058f1

5. Wikipedia: List of self-driving car fatalities. Wikipedia article (2018). https://en.
wikipedia.org/wiki/List-of-self-driving-car-fatalities

6. Wong, E., Kolter, Z.: Provable defenses against adversarial examples via the convex
outer adversarial polytope. In: ICML (2018). https://arxiv.org/abs/1711.00851

7. Gowal, S., et al.: On the effectiveness of interval bound propagation for training
verifiably robust models. In: NIPS (2018). https://arxiv.org/abs/1810.12715

8. Mirman, M., Gehr, T., Vechev, M.: Differentiable abstract interpretation for prov-
ably robust neural networks. In: ICML (2018). https://files.sri.inf.ethz.ch/website/
papers/icml18-diffai.pdf

9. McAllister, R., et al.: Concrete problems for autonomous vehicle safety: advantages
of bayesian deep learning. In: IJCAI (2017). https://www.ijcai.org/Proceedings/
2017/661

10. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Con-
crete problems in AI safety. CoRR (2016). https://arxiv.org/abs/1606.06565

11. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-
distribution examples in neural networks. In: ICLR (2017). https://arxiv.org/abs/
1610.02136

12. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive
uncertainty estimation using deep ensembles. In: NIPS (2017). https://arxiv.org/
abs/1612.01474

13. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image
detection in neural networks. In: ICLR (2018). https://arxiv.org/abs/1706.02690

14. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-
distribution samples and adversarial attacks. In: NIPS (2018). https://arxiv.org/
abs/1807.03888

15. Ren, J., et al.: Likelihood ratios for out-of-distribution detection. In: NeurIPS
(2019). https://arxiv.org/abs/1906.02845

16. Henzinger, T.A., Lukina, A., Schilling, C.: Outside the box: abstraction-based mon-
itoring of neural networks. In: ECAI (2020). https://arxiv.org/abs/1911.09032

17. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2006)

18. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The German traffic sign recog-
nition benchmark: a multi-class classification competition. In: Proceedings of the
IEEE International Joint Conference on Neural Networks, pp. 1453–1460 (2011)

19. ISO/PAS 21448. Road vehicles - Safety of the intended functionality. https://www.
iso.org/obp/ui/#iso:std:70939:en

20. Pimentel, M.A.F., Clifton, D.A., Clifton, L.A., Tarassenko, L.: A review of novelty
detection. Signal Process. 99, 215–249 (2014)

F. Predicting stream water temperature with artificial neural networks based on open-access data

F Predicting stream water temperature with artificial neural net-
works based on open-access data

Licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropri ate
credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.

This paper has been published as a peer-reviewed journal paper.

Konstantina Drainas, Lisa Kaule, Stefanie Mohr, Bhumika Uniyal, Romy
Wild, and Jürgen Geist: Predicting stream water temperature with artificial
neural networks based on open-access data. In: Hydrological Processes 2023:
Volume 37, Issue 10.

DOI: https://doi.org/10.1002/hyp.14991

Summary

This work presents Neural Networks (NNs) for predicting stream water temperatures.
We build a model that forecasts water temperature at various time scales, hourly and
daily. Our models demonstrate high accuracy and better performance than some ex-
isting traditional methods. We show that NNs can handle non-linearity and complex
hydrological variables, which significantly influence water temperature, much better.
Our findings suggest that NNs are a good environmental management and monitoring

tool, offering a promising approach for water resource professionals to predict stream
temperatures under changing climatic conditions. This capability is particularly crucial
for preserving aquatic ecosystems sensitive to temperature fluctuations. Additionally, we
show that using precise, high-quality input data is essential since this improves predictive
accuracy.
Finally, we show that our analysis methods from Publication (B) help inspect NNs

and show that it is important to treat them carefully.

Contributions of the author

Composition and revision of the manuscript. Discussion and development of the ideas,
and evaluation of the analysis methods.

151

https://doi.org/10.1002/hyp.14991

R E S E A R CH A R T I C L E

Predicting stream water temperature with artificial neural
networks based on open-access data

Konstantina Drainas1 | Lisa Kaule2 | Stefanie Mohr3 | Bhumika Uniyal4 |

Romy Wild1 | Juergen Geist1

1Aquatic Systems Biology, TUM School of Life

Sciences, Technical University of Munich,

Freising, Germany

2Department of Hydrology, Bayreuth Center

of Ecology and Environmental Research

(BayCEER), University of Bayreuth, Bayreuth,

Germany

3Foundations of Software Reliability and

Theoretical Computer Science, TUM School of

Computation, Information and Technology,

Garching, Germany

4Professorship of Ecological Services,

Bayreuth Center of Ecology and

Environmental Research (BayCEER), University

of Bayreuth, Bayreuth, Germany

Correspondence

Juergen Geist, Aquatic Systems Biology, TUM

School of Life Sciences, Technical University

of Munich, Freising, Germany.

Email: geist@tum.de

Funding information

Bayerisches Staatsministerium für

Wissenschaft und Kunst; Deutsche

Forschungsgemeinschaft, Grant/Award

Number: GRK 2428

Abstract

Predictions of stream water temperature are an important tool for assessing potential

impacts of climate warming on aquatic ecosystems and for prioritizing targeted adap-

tation and mitigation measures. Since predictions require reliable baseline data, we

assessed whether open-access data can serve as a suitable resource for accurate and

reliable water temperature prediction using artificial neural networks (ANNs). For this

purpose, we trained and tested ANNs in 16 small (≤1m3

s) headwater streams of major

types located in Bavaria, Germany. Between four and eight different combinations of

input parameters were trained and tested for each stream ANN, based on data avail-

ability. These were air temperature (mean, minimum and maximum), day of the year,

discharge, water level and sunshine duration per day. We found that the input combi-

nation with the highest accuracy (lowest RMSE) was stream-specific, suggesting that

the optimal input combination cannot be generalized across streams. Using a reason-

able, but random, input combination resulted in an increase in error (RMSE) of up to

>100% compared to the stream-specific optimal combination. Hence, we conclude

that the accuracy of water temperature prediction strongly depends on the availabil-

ity of open-access input data. We also found that environmental parameters such as

hydrological characteristics and the proportion of land use in the 5m riparian strip

and the entire catchment are important drivers, affecting the accuracy and reliability

of ANNs. ANNs' prediction accuracy was strongly negatively related to river length,

total catchment area and water level. High proportions of semi-natural and forested

land cover correlated with a higher accuracy, while open-canopy land use types such

as grassland were negatively associated with ANN accuracy. In conclusion, open-

access data were found to be suitable for accurate and reliable predictions of water

temperature using ANNs. However, we recommend incorporating stream-specific

environmental information and tailor the combination of input parameters to individ-

ual streams in order to obtain optimal results.

K E YWORD S

artificial neural networks, climate change, machine learning, open-access data, prediction,
stream habitat quality, thermal stress, water temperature modelling

Received: 22 February 2023 Revised: 24 August 2023 Accepted: 28 August 2023

DOI: 10.1002/hyp.14991

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2023 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.

Hydrological Processes. 2023;37:e14991. wileyonlinelibrary.com/journal/hyp 1 of 37

https://doi.org/10.1002/hyp.14991

1 | INTRODUCTION

With rising atmospheric temperatures, climate change affects stream

water temperatures due to the well-established relationship between air

and water temperature (Crisp & Howson, 1982; Kothandaraman &

Evans, 1972; Mohseni & Stefan, 1999; Webb et al., 2003). This is of par-

ticular relevance in small headwater streams, where the relatively low

mean stream depth is highly influenced by surface energy fluxes (Leach

et al., 2023), which are correlated with air temperature (e.g. solar radia-

tion). Moreover, headwater areas govern processes further downstream

and their coldwater spots provide important refugia for coldwater-

dependent species in light of climatic change (Kuhn et al., 2021). Stream

water temperature is naturally regulated by various drivers: meteorologi-

cal (air temperature and net radiation), hydro(geo)logical (discharge and

groundwater inflow), hydromorphological (stream width and depth), and

vegetational, the latter determining shading and evapotranspiration.

There are a number of anthropogenic activities that influence variables

such as discharge and flow variation, the proportion of surfaces ren-

dered impervious by urbanization, changes in ice cover, and thermal pol-

lution, which can additionally affect the water's thermal properties and

natural temperature regimes on a large spatial scale (Caldwell

et al., 2015; Nelson & Palmer, 2007). As one of the most common forms

of anthropogenic disturbance to ecosystems, land use plays a key role in

water temperature regulation, for example due to the partitioning of

precipitation into infiltration and surface runoff, which affects water

regimes on a (sub-)catchment scale.

Since temperature is the most crucial determinant of abiotic and

biotic processes, further anticipated changes in stream water temper-

ature due to global warming and other human impacts are expected

to have substantial effects on aquatic ecosystems (Smith, 1981). This

not only includes a decreased saturation concentration of oxygen trig-

gered by global warming (Piatka et al., 2021), but also changes in vis-

cosity, vapour pressure, density, and surface tension (Caissie, 2006).

Additionally, temperature controls a wide range of biological pro-

cesses, such as the decomposition rate of organic matter, species

composition in aquatic communities, biotic interactions, and energy

transfer in aquatic food webs (Woodward et al., 2010). The rapid pace

of global warming (IPCC, 2022) creates a need for more detailed pre-

dictions of future water temperatures in streams. These are urgently

required to enable an assessment of the potential impacts of climate

warming on the abiotic stream environment and the consequences for

biological communities. An understanding of this is also key to target-

ing and prioritizing mitigation and adaptation measures.

The importance of predicting stream water temperatures is reflected

by the variety of approaches that have already been tested. As stated in

Rabi et al. (2015), water temperature prediction models can generally be

divided into two major categories: deterministic and statistical. Statistical

models are in turn differentiated into parametric and non-parametric ones

(for definitions, see e.g. Rabi et al. (2015) or Benyahya et al. (2007)). The

availability of data for deterministic models, such as SHADE (Chen

et al., 1998) or CEQUEAU (St-Hilaire et al., 2000), is problematic, as many

variables are required for catchment and thermal representations, along

with complete time series for discharge and meteorological parameters.

While parametric statistical models have much lower data requirements

and are simple to use, their structure is specified from the start and hence

not flexibly adjustable to the data (Benyahya et al., 2007). This limitation

can lead to incorrect water temperature predictions when using linear

regression, a technique often applied to describe the relationship between

air and water temperature (Ahmadi-Nedushan et al., 2007; Crisp &

Howson, 1982; Harvey et al., 2011; Krider et al., 2013; Rabi et al., 2015;

Smith, 1981; Webb et al., 2003). At elevated and low air temperatures,

physical effects lead to non-linearity (Mohseni & Stefan, 1999), which is

beyond the limits of linear regression analysis.

In attempting to deal with the above challenges, the non-parametric

statistical approach of Artificial Neural Networks (ANNs) is increasingly

popular and has displayed equal or even higher accuracy (as evident

from RMSE) than the majority of deterministic and parametric statistical

models (Chenard & Caissie, 2008; Feigl et al., 2021; Hadzima-Nyarko

et al., 2014; Pilgrim et al., 1998; Piotrowski et al., 2015; Rabi

et al., 2015; Zhu et al., 2019,b,c). To the best of our knowledge, the

smallest and hence best RMSE values reported for water temperature

prediction using ANNs ranged between 0.46�C (Zhu, Heddam, Nyarko,

et al., 2019) and 1.58�C (Hadzima-Nyarko et al., 2014). In the following,

we refer to this “state of the art” range as “sota-range”.
Besides performance, a major benefit of using ANNs compared to

deterministic models are the lower data requirements. While deter-

ministic models require large amounts of data for predictions of water

temperature, ANNs have already displayed good results with compa-

rably limited information. It is currently unknown which input parame-

ters produce optimal results, and so their selection varies in different

studies. While air temperature is a key input parameter, its format var-

ies greatly, as do the additional input parameters, particularly those

concerning the temporal resolution of the data. Several studies used

only daily mean air temperatures or once-a-day-measurements (Graf

et al., 2019; Hadzima-Nyarko et al., 2014; Qiu et al., 2020; Rabi

et al., 2015; Zhu et al., 2019,b), while others are based on daily mean,

minimum and maximum air temperatures (Chenard & Caissie, 2008;

Feigl et al., 2021; Piotrowski et al., 2015). Most studies used discharge

or water level (Chenard & Caissie, 2008; Feigl et al., 2021; Qiu

et al., 2020; Zhu et al., 2019,b,c) and/or the day of the year as an addi-

tional input (Chenard & Caissie, 2008; Feigl et al., 2021; Hadzima-

Nyarko et al., 2014; Qiu et al., 2020; Zhu et al., 2019,b,c), while only

one study additionally used global radiation (Feigl et al., 2021) and

one the declination of the sun (Piotrowski et al., 2015).

Various measures can be obtained to determine the quality of a

prediction, the most prominent one being accuracy. Accuracy is an indi-

cator of how exactly an ANN predicts the output in the context of train-

ing and testing. However, climate change and natural variability involve

data variations that ANNs might not be sufficiently capable of learning,

since data obtained for training and testing cannot be used to represent

future climatic developments. It is therefore not sufficient to rely solely

on accuracy to determine the suitability of an ANN for its task. For clas-

sification networks, there are several methods available that provide

more insight into the behaviour of ANNs (for examples, see Bach

et al., 2015; Baehrens et al., 2010; Erhan et al., 2009; Huang et al.,

2020; Simonyan et al., 2013; and Sundararajan et al., 2017). However,

the prediction of water temperature is not a classification but a regres-

sion problem. In the field of regression problems, Mohr et al. (2021), to

2 of 37 DRAINAS ET AL.

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

the best of our knowledge, were the first to develop a methodology,

able to give insight into the behaviour of regression models and to mea-

sure their behaviour not only on the basis of accuracy calculations but

also as a means of examining reliability. Consequently, we included

these methods in our study to enable a more holistic picture of water

temperature ANN performance.

While determining accuracy and reliability is important for under-

standing how much trust can be placed in a prediction, these mea-

sures do not fully explain the disturbances found in the predictions.

Variations in environmental conditions and the land use form sur-

rounding streams are highly relevant for explaining the behaviour of

ANNs, how they are influenced by environmental factors, and which

conditions allow for a reasonable use of ANNs for predicting water

temperature.

Hence, in this study, we address whether it is possible to train

accurate and reliable ANNs based on open-access data for small

(≤1m3

s) headwater streams in Bavaria, Germany. Additionally, we

address whether an optimal combination of input parameters exists

and whether these combinations are unique for each stream or can be

generalized across streams. To confine the range of environmental

conditions in which ANNs can be optimally applied, we studied how

environmental parameters such as stream length, hydrological charac-

teristics and proportion of land use types affect ANN accuracy. We

hypothesized that open-access data suffices to predict water temper-

ature in small headwater streams with an RMSE in the sota-range. We

also hypothesized that the accuracy and reliability of ANNs are influ-

enced by both the input combinations and the environmental parame-

ters of the streams, which would make the optimal input combination

stream-specific.

2 | MATERIALS AND METHODS

2.1 | Study sites

For this study, we investigated 16 streams in major eco-regions of dif-

ferent geological origins throughout Bavaria, Germany. Figure 1

shows the locations of the gauging stations by Gewaesserkundlicher

Dienst Bayern (abbr. GkD) for each stream. Figures 2 and 3 depict

water temperature time series that were available for each of the

16 gauging stations. We selected streams with a mean annual dis-

charge of ≤ 1m3

s , based on open-access data from GkD. Using this cri-

terion, we were able to focus on headwater streams, which are of

special interest since they also govern processes further downstream.

2.2 | Measures of model performance

To assess the ANNs' performance, we used three different accuracy

metrics as described in the following and three newly developed reli-

ability metrics from Mohr et al. (2021) as described in Appendix A.3.

Our aim was to prioritize the used accuracy metrics according to their

expressive power regarding the reliability of ANNs. Therefore, we

conducted correlation analysis (see description in Section 2.6.2) to

identify connections between accuracy and reliability metrics. In the

following, we describe the three used accuracy metrics and define

them in Formulas 1, 2, and 3.

RMSE: According to Moriasi et al. (2007), the root mean square

error (for RMSE, see Formula 1) is an error index commonly used in

the context of model evaluation. A value of 0 indicates a perfect fit.

We chose this metric since it is regularly used in the context of

water temperature predictions with ANNs and is intuitively well

understandable.

R: The Pearson's product–moment correlation coefficient (for R,

see Formula 2) describes the degree of collinearity between predicted

and observed data (Rabi et al., 2015). It ranges from �1 to 1, where

0 indicates no linear relationship and �1 or 1 indicate a linear relation-

ship. In this study, we aimed for a positive correlation between the

observed and predicted values that is, values close to +1.

As the RMSE, this metric is regularly used in the context of water

temperature prediction with ANNs but in the contrary does not show

the mean error, but the degree of collinearity.

PBIAS: According to Gupta et al. (1999) as cited in Moriasi et al.

(2007), the Percent bias (PBIAS, see Formula 3) shows whether the

predictions are, on average, over- or underestimated. A value of 0 indi-

cates a perfect fit, while positive values indicate underestimation and

negative ones indicate overestimation.

This metric is uncommon in the field of water temperature predic-

tion with ANNs but opens up a new perspective, since the direction

of prediction inaccuracies (over- or underestimation) is displayed. On

the contrary, the other two metrics concentrate, in general, on the

amount of difference between observation and prediction.

RMSE¼
ffi

1
n

X

n

i¼1

Oi�Pið Þ2
v

u

u

t , ð1Þ

R¼

P

n

i¼1
Oi�O
� �

Pi�P
� �

ffi

P

n

i¼1
Oi�O
� �2Pn

i¼1
Pi�P
� �2

s , ð2Þ

PBIAS¼

P

n

i¼1
Oi�Pið Þ�100

P

n

i¼1
Oið Þ

: ð3Þ

To define the evaluation metrics, we followed the notation by

Rabi et al. (2015), where Pi is the ith predicted water temperature

value, Oi is the ith observed water temperature value, P is the average

of Pi , O is the average of Oi and n is the size of the dataset.

2.3 | Input

The data basis for the ANNs consisted of open-access data supplied

by the GkD and Germany's National Meteorological Service (DWD).

The data used for each stream consisted of the daily mean water tem-

peratures (�C), daily discharges (Q, m3/s) and daily mean water levels

DRAINAS ET AL. 3 of 37

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

(L, cm), as obtained from each of the GkD gauging stations. Addition-

ally, the daily minimum, maximum and mean air temperatures (T, �C)

and the daily sunshine durations (S, defined by DWD as duration of

direct solar radiation at a given location) were derived from the two

closest DWD gauging stations for each stream. All data sets carried a

time stamp, which we recalculated to obtain the day of year (D) as

a continuous number. To improve the learning of our ANNs, we

employed data normalization, which is a common technique used in

machine learning (Han et al., 2011).

We trained and tested all ANNs by inputting data taken from four

consecutive days, with the predicted fourth day's daily mean water

temperature as the output. This amount of days was found to lead to

F IGURE 1 Location of GkD gauging stations throughout Bavaria, Germany.

4 of 37 DRAINAS ET AL.

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

a better accuracy compared to ANNs with the input of 1, 2, 3, or

5 consecutive days at a case study in the Bavarian headwater catch-

ment Mähringsbach (Drainas, 2020).

Since not all data were measured continuously, we chose

time periods for each stream during which all the input

parameters were available (except for Scheine and Soellbach, for

which no sunshine data was available). The data used for each

stream, the DWD stations used for each GkD gauging station,

and the distances between them are presented in Appendix A.4

in Table A2.

F IGURE 2 Water temperature time series (I). (a) Abens. (b) Attel. (c) Aubach. (d) Aurach. (e) Bernauer Ache. (f) Grosse Ohe. (g) Illach. (h) Kirnach.

DRAINAS ET AL. 5 of 37

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

To test the suitability of the different input parameters, we

trained and tested ANNs with all possible combinations of input

parameters for each stream. However, we rejected any combination

with no air temperature or date (Mohseni & Stefan, 1999; Zhu,

Nyarko, Hadzima-Nyarko, et al., 2019). We used the following com-

binations (names indicate the input parameters as abbreviated

above): DT, DTS, DTQ, DTL, DTQS, DTLQ, DTLS and allinputs

(DTQLS).

F IGURE 3 Water temperature time series (II). (a) Kleine Vils, (b) Otterbach. (c) Prien. (d) Scheine. (e) Soellbach. (f) Sulzbach. (g) Wiesent.
(h) Wolnzach.

6 of 37 DRAINAS ET AL.

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

2.4 | The modelling approach: Artificial Neural
Networks

ANNs are a machine learning approach that is inspired by biological

nervous systems (da Silva et al., 2017). They can create output infor-

mation (in this study water temperature) based on given input

information (in this study different input combinations). To do so, they

need to learn the relationship between in- and output, for which

they need to be trained. Hereby the ANNs have access to the input as

well as to the output data and iteratively learn to predict the output

based on the input. After the training, the ANNs' ability to predict the

output is tested by only presenting the input and comparing the pre-

dicted output to the actual output information. In this study, this com-

parison was conducted by calculating the RMSE.

For the distribution into training and testing phase, the given dataset

needs to be divided into a training and a testing dataset. In this study,

this was done randomly in a ratio of 90% (training) to 10% (testing) as it

is default for an established library (see Appendix A.2 for details).

For this study, we trained and tested nine ANNs for each of the

14 waterbodies, for which all input parameters were available. Addi-

tionally, we trained four ANNs for Scheine and four for Soellbach

(no sunshine duration available), resulting in a total of 136 ANNs. The

ANNs were determined by using search methods from the scikit-learn

Python package (Pedregosa et al., 2011) (for a description of the

search methods, see Appendix A.1). Optimization was based on

the calculated root mean square error (RMSE), which we also

employed in this work as an accuracy metric (see Formula 1).

2.5 | Examination of environmental parameters

To determine the influence of the environmental parameters on the pre-

diction accuracy of ANNs, we examined the environmental parameters

of two different spatial scales for which an influence can be expected.

For that, we used ArcGIS software to create riparian strips upstream of

the 16 catchment outlets flanking 5 m left and right (measured from the

middle of the stream) of the entire stream length (in the following

referred to as “5 m riparian strip”). This width was chosen to capture

the direct impact of the landuse on the stream, e.g. in the form of shad-

ing. We obtained the stream geometry and catchment spatial maps as

input data from the Bavarian Environmental Agency (LfU) and used it to

extract various catchment characteristics. Once we had extracted the

spatial area of the riparian strips, we intersected the Corine Land Cover

(CLC) map (European Union, 2021) with shape files representing the

riparian strip and whole catchment area (in the following referred to as

“entire catchment resolution”) to integrate land use information. The

CLC map comprises an inventory of land cover in 44 classes. CLC uses a

minimum mapping unit (MMU) of 25 ha for areal phenomena and a min-

imum width of 100 m for linear phenomena. The MMU for mapping

CLC status layers is 25 ha. This means that no objects of less than 25 ha

can be present in the database; they are generalized into a neighbouring

feature, resulting in >25 ha polygons. Additionally, the minimum map-

ping width (MMW) of linear elements is 100 m, which means that no

objects (e.g., roads, rivers) of less than 100 m width are present in the

database.

2.6 | Statistical data analysis

2.6.1 | Environmental dataset

To determine which environmental and land use variables were linked

to ANN accuracy and reliability, we assembled an environmental data

set which describes the features of the assessed streams on two spa-

tial scales: the entire catchment and the 5 m riparian zone of the

stream banks. The data set included the following environmental

F IGURE 4 distLM-Eval-Eval-plot.
Resemblance: D1 Euclidian distance.
Strong correlation of RMSE and R
along dbRDA axis 1, discrimination of
streams by PBIAS on dbRDA axis
2. Input parameters: D, day of the
year; T, air temperature; Q,
discharge; L, water level; S, sunshine
duration; DTQLS, allinputs; R; PBIAS,

evaluation metrics as defined in
Formulas 1, 2, 3.

DRAINAS ET AL. 7 of 37

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

parameters for the entire catchment resolution: total length of all trib-

utaries merging into the final river branch (total river length); the

length of the longest river branch of the catchment (longest river

length); proportion of land use type in the catchment (agriculture, for-

est, grassland, semi-natural land use, urban and water surfaces); total

catchment size; hydrologic parameters calculated over the entire mea-

surement time span, namely mean water level (MW), highest

measured water level (HW), lowest measured water level (NW), mean

discharge (MQ) and highest measured discharge (HQ); the number of

tributaries (tributaries); the number of days for which data was used

(DOD); the number of input data points per output data point (IPO);

the distance between the GkD station and the closest DWD station

(Dist1) and between the GkD station and the second closest DWD

station (Dist2).

Regarding the resolution of the 5 m riparian strip, only the land

use variables were provided, along with the total riparian strip area.

In Appendix A.4, the description and results of a principal compo-

nent analysis (PCA) are presented, showing the distribution of the

16 stream sites along the different environmental gradients captured

in our environmental dataset.

2.6.2 | Correlation analysis

To determine connections between the prediction accuracy and the

environmental parameters, we conducted correlation analysis. For this,

we used the calculated accuracy metrics (RMSE, R and PBIAS) for each

input combination and each waterbody, once for the entire catchment

and once for the 5 m riparian strip resolution. First, we used the

Shapiro–Wilk test to examine whether our datasets were normally dis-

tributed. We then tested the distribution both for each input combina-

tion separately and for each environmental parameter. We then

conducted tests to examine the correlation between each input combi-

nation and each environmental parameter. If both datasets were nor-

mally distributed, we used Pearson product moment correlation.

Otherwise, if one or both of the datasets was not normally distributed,

we used Spearman rank-order correlation. To visualize the rho and corr

values, we created heatmaps. We conducted all steps of the correla-

tion analysis with RStudio (RStudio Team, 2022; Warnes et al., 2020).

Additionally, we conducted correlation analysis to find connec-

tions between reliability and accuracy to assess which accuracy metric

is most suitable for displaying the reliability of an ANN's predictions.

Details are described in Appendix A.5.

2.6.3 | Distance-based linear model

As a multivariate approach, we used distance based Linear Model

(DistLM), which is based on a procedure called “distance based redun-

dancy analysis” (dbRDA) (Legendre & Anderson, 1999) and imple-

ments a routine that analyses and models the relationship between a

multivariate resemblance matrix and a set of given predictor variables.

DistLM is applied as a multivariate multiple regression that models the

explanatory significance of the environmental predictor variables via

partitioning of variation that facilitates permutation-based significance

testing. In our case, we first used the resemblance matrix of the

RMSE, R, and PBIAS values of all calculated ANN input combinations

and the same data as predictors, to reduce dimensionality. We chose

this combination of data, to investigate which of the accuracy metrics

and ANN input combinations explained most of the between-stream

variability and to identify any redundancy in the three accuracy met-

rics (Eval-predict). In a subsequent approach, we used the same

resemblance matrix but the environmental data set as predictor vari-

ables to determine the environmental variables that explain most of

the observed variations in the multivariate data set of accuracy met-

rics of different ANNs (Enviro-predict). For both approaches, we used

the DistLM function and redundancy analysis plots (dbRDA-plots) and

chose the step-wise method and Adjusted R2 for model comparison in

PRIMER v7 & PERMANOVA+ (Anderson et al., 2008).

3 | RESULTS

3.1 | Measures of model performance

To prioritize the use of the three different accuracy metrics applied in

this study, we evaluated which of them is most suitable to also display

the reliability of an ANN. Therefore, we conducted correlation analy-

sis between the accuracy and the reliability metrics (for detailed

results see Appendix B.2), which resulted in significant correlations

between two of the reliability metrics and the RMSE and one signifi-

cant correlation between reliability metrics and R and PBIAS each.

3.2 | Selection of ANNs and input parameters

The comparison of prediction accuracy of randomly searched ANNs

(see RandomizedSearch in Appendix A.1) for all different input combi-

nations (see Tables A3, A4, A5, and A6) showed that the optimal input

combination was different for each of the tested streams (see

Table 1).

The most frequently used combination of input parameters was

DTL (38% of all streams), followed by DTLQ (25% of all streams), allin-

puts (21%, if sunshine duration was available), DTQS (14%, if sunshine

duration was available) and DTQ (6% of all streams) (Table 2 top). The

combinations DT, DTS and DTLS were not selected as input combina-

tions with the greatest predictive power in any of the streams. Conse-

quently, the share of individual input parameters in the composition

of ANNs was as follows: day of the year and air temperature were

identified as input parameters in 100% of all streams, water level was

identified in 81% of all streams, discharge was identified in 63% of all

streams, and sunshine duration was identified in 36% of the streams

for which sunshine duration was available (Table 2 bottom). Using the

most accurate input combination for each stream based on the RMSE,

the RMSE values ranged between 0.373�C (Aubach) and 1.667�C

(Otterbach), R values ranged between 0.997 (Aubach) and 0.958

(Otterbach), and PBIAS values ranged between �0.767% (Kirnach)

and 0.112% (Prien). Comparing the input combinations with the

8 of 37 DRAINAS ET AL.

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

highest accuracy according to the RMSE from each stream, with the

combinations of lowest accuracy, the error increased on average by

41% when a random input combination was used, compared to the

optimal combination, with a minimum of 5% (Otterbach) and a maxi-

mum of 102% (Scheine).

Given the number of ANNs and the accuracy metrics, a DistLM

(Eval-predict) was calculated to determine which of the accuracy met-

rics and ANN input combinations explained the majority of the

between-stream variability and to identify redundancy in accuracy

metrics. The RMSE and R values were strongly correlated along

dbRDA axis 1, implying that the accuracy of calculated ANNs was

very similarly reflected by these two metrics (Figure 4). Both allinputs-

ANNs of RMSE and R individually explained 58% of the total variabil-

ity in the dataset according to marginal testing, and the sequential

tests furthermore confirmed that the information of R and RMSE of

allinputs-ANNs was redundant, as only one of them was included in

the best-solution set of variables. However, the PBIAS values calcu-

lated on the basis of multiple input combinations were responsible for

approximately 35% of the remaining variability in the data set and dis-

tinctly discriminated streams on dbRDA axis 2, hence showing that

PBIAS provides information that cannot be substituted by the other

two used accuracy metrics, and even streams with high accuracy mea-

sures, as shown by the small RMSE or high R values, can be subject to

under- or overestimation in temperature predictions (Figure 4).

3.3 | ANN accuracy metrics

To determine connections between environmental parameters and

ANNs' accuracy, we conducted correlation analyses in the spatial

scales of entire catchment as well as 5 m riparian strip resolution.

3.3.1 | Entire catchment

With regard to the entire catchment resolution, we observed the most

statistically significant associations between accuracy metrics and

environmental parameters for RMSE (34), followed by R (16) and

PBIAS (6).

For RMSE (see Figure 5a), we detected significantly positive cor-

relations between all ANN input combinations and total river length

as well as between all ANN input combinations and the hydrologic

parameters MW and HW. Additionally, four ANN input combinations

correlated significantly positively with NW (DT, DTL, DTQ and DTLQ),

three ANN input combinations correlated significantly positively with

the longest river (DT, DTQ and DTLQ), and three ANN input combina-

tions correlated significantly positively with Dist1 (DTQ, DTQS,

DTLS). The R of all input combinations was significantly negatively

related to total river length and longest river length (Figure 6a). PBIAS

correlated significantly positively with total catchment area (DTLS)

and Dist1 (DT) and significantly negatively with DOD (DTLS and DTS)

and semi-natural land use (DTS) (Figure 7a).

3.3.2 | 5 m riparian strip

Significant associations between accuracy metrics and environmental

parameters in the 5 m riparian strip were most numerous for RMSE

(26), followed by R (21) and PBIAS (2). The RMSE values of all ANN

input combinations, with the exception of DTLS and DTS, were signif-

icantly positively correlated with total riparian strip area (Figure 5b).

Also, grassland was significantly positively associated with all ANN

input combinations except allinputs and DTQS. Semi-natural land use,

in contrast was significantly negatively correlated with RMSE values

TABLE 1 Evaluation of the most suitable ANN for each waterbody, as determined by RandomizedSearch.

Stream Inputs RMSE R PBIAS

Prien DTQS 0.733 0.969 0.112

Attel allinputs 0.453 0.995 0.004

Aubach DTLQ 0.373 0.997 0.033

Soellbach DTL 0.419 0.993 �0.090

Bernauer Ache DTLQ 0.586 0.988 �0.315

Kleine Vils DTL 0.535 0.997 �0.105

Illach allinputs 0.503 0.994 �0.136

Otterbach DTLQ 1.667 0.958 �0.248

Wiesent DTQS 0.623 0.985 0.158

Sulzbach DTLQ 0.736 0.990 �0.286

Abens allinputs 0.468 0.995 �0.084

Aurach DTL 1.301 0.969 �0.113

Scheine DTQ 0.920 0.980 �0.676

Grosse Ohe DTL 0.483 0.994 �0.344

Kirnach DTL 1.104 0.979 �0.767

Wolnzach DTL 0.476 0.988 �0.048

Note: Column titles: Stream, name of examined stream; Inputs, input combination used; RMSE, R, PBIAS, evaluation metrics as defined in Formulas 1,2,3.

Abbreviations: D, day of the year; DTQLS, allinputs; L, water level; Q, discharge; S, sunshine duration; T, air temperature.

DRAINAS ET AL. 9 of 37

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

in DTLS, allinputs and DTQS. Also, the proportion of forest and water

surface in the riparian-strip area correlated negatively with RMSE

values.

Similarly, R values were significantly negatively related to the

total riparian strip area (all ANN combinations except DTS and DTLS),

negatively related to grassland (Figure 6b) and positively related to

semi-natural land use.

For PBIAS values (see Figure 7b), we only observed a significant

negative relationship with semi-natural land use (DT and DTS).

3.4 | Multivariate analysis of environmental
predictors of ANN accuracy metrics

To investigate which of the accuracy metrics and ANN input combina-

tions explained most of the between-stream variability and to identify

any redundancy in the three accuracy metrics, we conducted a

DistLM. We found that the 14 variables depicted in Figure 8

explained a total variation of R2 ¼0:99601, AdjustedR2 ¼0:94014.

60.5% of the 2-D configuration of the 12 streams was explained by

dbRDA axis 1 and 19.05% by dbRDA axis 2.

The DistLM's marginal tests indicated a significant relationship

between the multivariate configuration of the streams, based on the

three accuracy metrics (RMSE, R, PBIAS) with total river length

(prop = 0.35, p<0:01), longest river length (prop=0.28, p<0:01) and

Dist1 (prop=0.20, p<0:05). Total river length correlated with the

negative space of dbRDA axis 1, indicating that decreasing accuracy

in terms of RMSE and R (see Figure 8) was significantly correlated

with the total length of tributary streams. The streams exemplifying

this relationship were the Otterbach in the most negative space of

dbRDA axis 1, with a total river length of 41.43 km, contrasting the

Aubach with a total river length of 7.91 km, in the upper positive

space of dbRDA axis 1. On dbRDA axis 2, streams were mainly sep-

arated along a gradient of the parameters: longest river length,

Dist1, catchment area as well as proportions of grassland, semi-

natural land use and HW. Thus, when relating these findings to the

underlying configuration of accuracy metrics, environmental param-

eters on dbRDA axis 2 were positively associated with overestima-

tion (longest river length, Dist1, catchment area) or underestimation

(grassland, semi-natural land use and HW) of water temperature

prediction by ANNs.

4 | DISCUSSION

In line with our hypothesis, our results suggest that the accuracy and

reliability of ANNs' predictions for single streams are highly depen-

dent on input combination and environmental parameters. To under-

stand how environmental parameters affect ANNs' accuracy and

reliability, we analysed a broad range of environmental predictors,

showing that river length and water levels, the size of the catchment

and open-canopy land use types were particularly negatively associ-

ated with ANN accuracy in the streams we tested.

4.1 | Measures of model performance

To prioritize the use of the accuracy metrics RMSE, R, and PBIAS for

the evaluation of ANNs, we examined correlations between these

metrics and reliability metrics as established in Mohr et al. (2021). We

found, that not all accuracy metrics correlated significantly with all

reliability metrics, confirming the finding of Mohr et al. (2021), that

the use of accuracy metrics alone is insufficient and should be supple-

mented by reliability metrics.

TABLE 2 Top: Frequency of input combinations used for the best ANNs as depicted in Table 1. Bottom: Frequency of input parameters used
in input combinations in Top.

Input combination Frequency Percentage

DTL 6 of 16 38

DTLQ 4 of 16 25

allinputs 3 of 14 21

DTQS 2 of 14 14

DTQ 1 of 16 6

DT 0 of 16 0

DTLS 0 of 14 0

DTS 0 of 14 0

Input Parameter Frequency Percentage

Day of the year (D) 16 of 16 100

Air temperature (T) 16 of 16 100

Water level (L) 13 of 16 81

Discharge (Q) 10 of 16 63

Sunshine duration (S) 5 of 14 36

Note: Sunshine duration was only available for 14 streams.

10 of 37 DRAINAS ET AL.

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

Still, we can conclude that as accuracy metric, the RMSE was the

most suitable one to reflect the reliability of an ANN, due to two sig-

nificant correlations with reliability metrics as opposed to one signifi-

cant correlation for R and PBIAS each. We also observed that the

RMSE had a greater resolution and hence contributed more significant

relationships with environmental parameters than R, probably because

it had a higher potential to reflect the high-resolution dynamics of

hydrologic parameters. This further confirmed the plausibility of its

F IGURE 5 (a) RMSE entire catchment; (b) RMSE 5 m riparian strip. Increasing intensity of red colour indicates increasing correlation (positive
as well as negative). Significance is marked with *p < 0.05 and **p < 0.01. Input parameters (x-axis): D, day of the year; T, air temperature;
Q, discharge; L, water level; S, sunshine duration; DTQLS, allinputs. Environmental parameters (y-axis): as described in Section 2.6.

DRAINAS ET AL. 11 of 37

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

frequent use for measuring the accuracy of water temperature predic-

tion with ANNs (Ahmadi-Nedushan et al., 2007; Caissie et al., 1998;

Chenard & Caissie, 2008; Cho & Lee, 2012; Feigl et al., 2021; Graf

et al., 2019; Hadzima-Nyarko et al., 2014; Qiu et al., 2020; Quan

et al., 2020; Rabi et al., 2015; Rahmani et al., 2020; Rehana, 2019; St-

Hilaire et al., 2000; Zhu, Nyarko, Hadzima-Nyarko, et al., 2019).

We additionally employed PBIAS as an accuracy metric, which is

unusual for water temperature prediction with ANNs. Although we

saw advantages of including the PBIAS due to the different aspects of

model performance it highlights, in this study we were not able to find

any general significant correlations between the assessed environ-

mental parameters and the PBIAS. This might be because the PBIAS

F IGURE 6 (a) R entire catchment; (b) R 5 m riparian strip. Increasing intensity of red colour indicates increasing correlation (positive as well as
negative). Significance is marked with *p < 0.05 and **p < 0.01. Input parameters (x-axis): D, day of the year; DTQLS, allinputs; L, water level;
Q, discharge; S, sunshine duration; T, air temperature; Environmental parameters (y-axis): as described in Section 2.6.

12 of 37 DRAINAS ET AL.

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

in general reflects variation in two directions, but in our study the

direction of estimation (over- or underestimation) did not necessarily

correlate with the examined environmental parameters in only one

direction. The overestimation was pronounced for Kirnach, a stream

with a very high proportion of grassland (72.58%) and a very low pro-

portion of semi-natural land cover (0.01%). In contrast, underestima-

tion of water temperature was pronounced for Aurach, a long stream

with a large catchment. These findings were also confirmed by the

F IGURE 7 (a) PBIAS entire catchment; (b) PBIAS 5 m riparian strip. Increasing intensity of red colour indicates increasing correlation (positive
as well as negative). Significance is marked with *p < 0.05 and **p < 0.01. Input parameters (x-axis): D, day of the year; DTQLS, allinputs; L, water
level; Q, discharge; S, sunshine duration; T, air temperature; Environmental parameters (y-axis): As described in Section 2.6.

DRAINAS ET AL. 13 of 37

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

DistLM analysis of environmental predictors of evaluation metrics, in

which PBIAS/overestimation was associated with high proportions of

grassland, particularly in the 5 m riparian strip. Consequently, it would

be advisable to carefully check for both over- and underestimation of

water temperature prediction, particularly in catchments with high

proportions of open-canopy landscape.

4.2 | Input parameters

The most striking finding of this study was that the input combi-

nation with the highest accuracy was a stream-specific set of

input parameters, suggesting that the optimal input combination

cannot be generalized across streams. As important asset, this

study used a systematic procedure of training and testing ANNs

with different sets of input parameters, which provided us with

the opportunity to compare ANN accuracies within single

streams. While other studies like Feigl et al. (2021) previously

identified that the input combination has an effect on ANN per-

formance in general, our finding, that the optimal input combina-

tion is stream-specific, adds an important new insight to this field,

which can help to make stream water temperature predictions

more accurate in the future. As we were able to show, the error

in the prediction (RMSE) could increase to > 100% in a single

stream if a random input combination was used instead of the optimal

input combination. Even when using the allinputs combination, the

error increased by up to 34%, indicating that allinputs might be more

accurate than a random input combination, but still not as accurate as

if the combination was determined systematically. This result is in line

with the “explosion” of Myth #7 in Maier et al. (2023), where it is

stated that an increase in the number of input variables does not nec-

essarily improve model performance, but that these variables need to

be selected carefully. Clearly, the search for the optimal input combi-

nation is time consuming compared to a fixed procedure using a set of

pre-defined input variables. Hence, for supporting the application

of ANNs based on our results, we provide a flow chart to facilitate

decision-making along the process of water temperature prediction

with ANNs (see Figure 9).

Comparing the RMSE values from Table 1 to previous studies that

predicted water temperatures with ANNs (sota-range 0.46�C to

1.58�C), only one stream (Otterbach, RMSE = 1.667�C) had an RMSE

slightly higher than the sota-range. Further, 12 streams had an RMSE

within the sota-range and three streams had RMSE values even lower

than the sota-range, namely Attel (RMSE = 0.453�C), Aubach

(RMSE = 0.373�C), and Soellbach (RMSE = 0.419�C). To the best of

our knowledge, the RMSE values of Attel, Aubach and Soellbach were

the smallest ever reported for stream water temperature prediction

using ANNs.

F IGURE 8 distLM-Eval-Enviro-plot, Resemblance: D1 Euclidian distance, Correlation between total river length and negative space of dbRDA

axis 1, discrimination of streams by longest river length, Dist1, catchment area, proportions of grassland and semi-natural land use, and HW along
dbRDA axis 2. Environmental parameters: Total river length: Sum of lengths of all contributing rivers; Longest river length: Length of the longest
contributing river; Land use: agriculture, forest, grassland, semi-natural, urban, water; Catchment: Catchment size of all contributing catchments;
Area: Total buffer area; MW: Mean water level; HW: Highest measured water level; NW: Lowest measured water level; MQ: Mean discharge;
HQ: Highest measured discharge; Tributaries: Number of tributaries; DOD: Number of days for which data was used; IPO: Number of input data
points per output data point; Dist1: Distance between GkD station and DWD station 1; Dist2: Distance between GkD station and DWD station
2. Resolution: entire: Entire catchment; 5 m 5 m riparian strip.

14 of 37 DRAINAS ET AL.

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

F IGURE 9 Flow chart with recommendations on stream-specific artificial neural network-development.

DRAINAS ET AL. 15 of 37

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

Based on Zhu, Nyarko, Hadzima-Nyarko, et al. (2019), we

expected a minor role of discharge in explaining temperature, since

they state that discharge plays a minor role in stream water tempera-

ture prediction compared to the day of the year and that discharge's

importance increases for high-altitude catchments. Still, in all of the

streams of our study, the most accurate ANNs all had water level

and/or discharge as inputs. Unfortunately, Zhu, Nyarko, Hadzima-

Nyarko, et al. (2019) did not consider water level, which hinders direct

comparison with our results. Nevertheless, based on our results, we

suggest using at least one hydrologic input parameter for water tem-

perature prediction with ANNs, while we cannot generalize the rec-

ommendation to a specific hydrologic parameter, since this is highly

stream specific. Still, we conclude that no unique optimal input combi-

nation exists for each stream.

4.3 | Environmental influences on water
temperature prediction

Given the high specificity of input combinations we determined for

individual streams, it was a key interest of this study to identify

stream environmental conditions that govern the accuracy of ANNs.

In light of climate change, such knowledge is also highly relevant for

deducing mitigation and management strategies in streams related to

securing high oxygen concentrations (Piatka et al., 2021), endangered

fish populations (Wild et al., 2023), and temperature refuges (Kuhn

et al., 2021; Mejia et al., 2023). In contrast to existing approaches,

which mainly consider hyperparameter tuning and dataset length, the

associations between environmental parameters and ANN accuracy

allow a more mechanistic and realistic assessment of model applicabil-

ity at individual stream sites, as demonstrated for our datasets. Sev-

eral significant correlations between environmental parameters and

prediction accuracy of ANNs were identified, suggesting key influ-

ences of catchment hydrological variables.

Specifically, the accuracy of ANNs (RMSE and R) was strongly

related to total river and longest river length, total catchment area,

and the hydrological parameters MW, HW, and NW, indicating a

decrease in ANN accuracy with increasing river length, catchment

size, and water level.

Since stream water temperatures are defined by complex and

dynamic physico-chemical, hydrologic and atmospheric processes

and not solely based on air temperature (Caissie, 2006; Leach

et al., 2023), a possible explanation for the strong negative relation-

ship between ANN accuracy and river length and catchment area

could be the increase of air-temperature-unrelated complex influ-

ences along the flow path of streams. Beginning at the spring, the

water has a specific temperature, depending on its origin and the dis-

tance to its spring. As the stream water passes through the landscape,

energy exchange is influenced by advective fluxes like evaporation or

longitudinal changes in advection and radiation due to changes in veg-

etation (Coats & Jackson, 2020; Leach et al., 2023). Energy is added

by river bank and bed friction, and contact with the atmosphere

increases, as do the radiative fluxes (Dan Moore et al., 2005; Kuhn

et al., 2021; Webb et al., 2008). Hence, with increasing river length,

the potential number of complex influences increases and thus, the

accuracy of the water temperature predictions decreases. This is

especially pronounced for models like ANNs, which do not receive

additional information on catchment-size related variables but have to

learn in the context of local input parameters, measured at the gaug-

ing station.

As with river length and catchment size, higher levels of HW, NW

and MW were associated with a lower prediction accuracy (RMSE) of

ANNs. The relationship between extreme water levels (HW) and ANN

accuracy is due to difficulties in predicting the temperatures of water

sources entering the stream along its flowpath (e.g. groundwater,

hyporheic water, precipitation, anthropogenic water influxes

(Nelson & Palmer, 2007; Webb et al., 2008). During spates and

high-water events, these water sources contribute different

relative quantities to total water volume, and temperature mixing dur-

ing high water events is then presumably more difficult for ANNs to

predict. Additionally, it has been shown that air-water temperature

relationships are stronger and more sensitive for flows below median

levels (Webb et al., 2003), likely because high water levels lead to a

lower water-atmosphere interaction of the surface area compared to

total water volume, influencing radiation influx and sensible heat

transfer. As a result, depending on surrounding atmospheric tempera-

tures, energy fluxes are often easier to predict for smaller water vol-

umes, which explains the higher prediction accuracy for lower MW

and NW values of streams. Hence, the connection between increasing

water levels, in particular the HW values and decreasing accuracy in

water temperature prediction by ANNs, seems plausible and should

be considered when predicting water temperatures in streams during

periods of high water.

We found that the land use types semi-natural, forest and water

bodies had a positive effect on ANN accuracy. Further, our results

showed that high proportions of grassland in the 5 m riparian strip

(but not on the entire catchment resolution) correlated with decreas-

ing accuracy (RMSE) in water temperature prediction.

The land use surrounding a stream has a strong influence on its

temperature regime and humidity, which controls the water-

atmosphere interaction (Webb & Zhang, 1997). It can be assumed that

high proportions of grassland facilitated heat-induced evaporation,

which can lead to cooling effects especially during high temperature

phases (Ouellet & Caissie, 2023), inducing a paradoxical relationship

between air temperature (increasing) and water temperature (decreas-

ing). In low temperature phases, this effect is not induced, resulting in

an inconsistent relationship between air and water temperature,

hence potentially reducing the accuracy of water temperature predic-

tions based on air temperature data.

In general, open-canopy land use such as grassland involves

higher levels of radiation and heat fluxes due to a lack of shading and

temperature buffering through a micro-climate of complex riparian

vegetation. As solar radiation is the most important component of

heat transfer in streams (Webb & Zhang, 1997, 1999), accounting for

16 of 37 DRAINAS ET AL.

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

70% of non-advective heat fluxes in a stream (Webb et al., 2008),

open-canopy land use forms are associated with higher air tempera-

tures and lower humidity, which can in turn result in more pro-

nounced temperature extremes and drought conditions in streams.

For example, Rutherford et al. (2004) and Ebersole et al. (2003) attrib-

uted a maximum temperature decrease of 4�C downstream of shaded

areas to the effect of riparian vegetation. In a simulation study, Wond-

zell et al. (2019) determined that shading through a mature forest can

account for a decrease of water temperature of 8�C. Johnson (2004)

quantified the net energy transfer in July in a stream in Oregon. Non-

shaded, the water temperature gained 580 W/m2, but fully shaded,

the stream's water lost 149 W/m2. Hoess et al. (2022) found that

shading by coniferous vegetation could even compensate for a tem-

perature increase caused by pond effluents. Also, without shading,

conduction between water and heated alluvial substrates is an often

underestimated process influencing stream water temperatures, par-

ticularly under forest harvest scenarios (Brown, 1969; Johnson &

Jones, 2000). Hence, riparian shading appears to be of paramount

importance for controlling and regulating stream water temperatures.

Our findings further demonstrated that for the prediction of water

temperatures using an air-water-temperature relationship, the land

use in the proximate riparian surroundings (in our case the 5 m ripar-

ian strip) seemed more important than the catchment's global land

use. Also, Kail et al. (2021) found that large trees in the 10 m riparian

strip are a better predictor of water temperature than the width of

riparian strips (in their case 30 m), due to the presence of large trees

that provided direct shade for the streams and hence cooled the

stream water highly effectively. As we showed that prediction accu-

racy (RMSE) was higher in streams with higher proportions of forest

and semi-natural land use (5 m riparian strip) and semi-natural land

use and water body area (entire catchment), it can be assumed that

riparian shade stabilizes water temperatures, hence facilitating more

accurate prediction, as water temperatures are likely more linearly

and consistently related to atmospheric temperatures. Also the pro-

portion of water bodies is likely related to prediction accuracy, due to

their temperature-buffering properties in the catchment. Our results

imply that larger proportions of open-canopy land use forms and the

associated higher radiation and low levels of shading can lead to high

levels of temperature variability, potentially hampering ANN accuracy

and reliability. Consequently, we advise greater caution when using

ANNs for streams in open-canopy landscapes.

5 | CONCLUSIONS

We conclude the following for water temperature prediction in

streams with ANNs, based on open-access data:

1. It is possible to use open-access data for water temperature pre-

dictions within the sota-range.

a. The use of open-access data, however, comes with the problem

that there is only a limited number of parameters. Hence, the

choice of streams for which the water temperature is to be

predicted is crucial for the accuracy and reliability of the

predictions.

b. For an optimal outcome, all available input parameters should

be tested for their suitability (see recommendations in

Figure 9).

2. If water temperature is to be predicted for a specific stream, it

might not be sufficient to use open-access data, especially if the

stream is characterized by specific environmental parameters,

which reduce the accuracy and reliability of water temperature

prediction.

3. If the ANN is intended to predict water temperature for a future

or past time with different climatic conditions compared to present

ones, not only the accuracy but also the reliability of the ANN

should be considered in the choice of architecture and input

parameters (see recommendations in Figure 9). If it is not possible

to test reliability, the RMSE is a good (but not in itself sufficient)

predictor of ANN reliability and should hence be used.

Our findings highlight that water temperature predictions are

more accurate and reliable in headwater streams closer to their

source, especially if adjacent land use comprises forests and natural

riparian vegetation that lack anthropogenic influences. The finding

that ANN prediction accuracy is distinctly compromised by distur-

bances in the riparian cover, which commonly accumulate along a

river's course, leads us to conclude that the lower ANN accuracy

reflects the increasing disturbances in the air-water-temperature

relationship. We propose that measures of ANN accuracy, as a proxy

for an inconsistent air-water-temperature relationship, could even

be used to indicate a functional and resilient water temperature

regime in headwater streams. Given the importance of small head-

water streams and spring ecosystems as refuges and highly special-

ized environments that feature a broad width of unique and

sensitive species requiring special protection (Cantonati et al., 2012;

Richardson, 2019), ANN accuracy measures could serve as an indica-

tive tool to identify, evaluate and monitor headwater streams with

regard to their temperature integrity and to support decision making

regarding where and how to best protect these unique environ-

ments. Further, this research highlights that anthropogenic and, spe-

cifically, land-use-derived disturbances along stream ecosystems

affect stream water temperatures and will consequently exacerbate

the climate-change-associated warming of stream water. We have

therefore added highly relevant information to the use of ANNs to

predict stream water temperatures. In combination with climate

change projections, ANNs could prove to be a cost-efficient and

invaluable resource for decision makers to use when assessing future

developments in stream water temperatures, aiding the evaluation

and prioritization of restoration, renaturation and adaptation mea-

sures in streams.

ACKNOWLEDGEMENTS

This work was supported by the Bavarian State Ministry of Science

and the Arts in the AquaKlif project within the Bavarian Climate

Research Network (bayklif) and by the DFG Research Training Group

DRAINAS ET AL. 17 of 37

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

on Continuous Verification of Cyber-Physical Systems (GRK 2428).

We thank Jan Křetínský and Maximilian Weininger from the Chair for

Foundations of Software Reliability and Theoretical Computer Science

(Technical University of Munich) for the valuable discussions on

model assessment as well as the Proofreading Service of the TUM

Graduate School for a final cross-check of the manuscript. Open

Access funding enabled and organized by Projekt DEAL.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the

corresponding author upon reasonable request.

ORCID

Konstantina Drainas https://orcid.org/0000-0001-6771-2123

Lisa Kaule https://orcid.org/0000-0002-5881-7561

Stefanie Mohr https://orcid.org/0000-0002-8630-3218

Bhumika Uniyal https://orcid.org/0000-0002-3841-8184

Romy Wild https://orcid.org/0000-0002-4814-6215

Juergen Geist https://orcid.org/0000-0001-7698-3443

REFERENCES

Ahmadi-Nedushan, B., St-Hilaire, A., Ouarda, T. B. M. J., Bilodeau, L.,

Robichaud, �E., Thiémonge, N., & Bobée, B. (2007). Predicting river

water temperatures using stochastic models: Case study of the Moisie

River (Québec, Canada). Hydrological Processes, 21(1), 21–34.
Anderson, M. J., Gorley, R., & Clarke, K. (2008). PERMANOVA+ for

PRIMER: Guide to software and statistical methods. PRIMER-E.

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., &

Samek, W. (2015). On pixel-wise explanations for non-linear classifier

decisions by layer-wise relevance propagation. PLoS One, 10(7),

e0130140.

Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., &

Müller, K.-R. (2010). How to explain individual classification decisions.

The Journal of Machine Learning Research, 11, 1803–1831.
Benyahya, L., Caissie, D., St-Hilaire, A., Ouarda, T. B., & Bobée, B. (2007).

A review of statistical water temperature models. Canadian Water

Resources Journal, 32(3), 179–192.
Brown, G. W. (1969). Predicting temperatures of small streams. Water

Resources Research, 5(1), 68–75.
Caissie, D. (2006). The thermal regime of rivers: A review. Freshwater Biol-

ogy, 51(8), 1389–1406.
Caissie, D., El-Jabi, N., & St-Hilaire, A. (1998). Stochastic modelling of

water temperatures in a small stream using air to water relations.

Canadian Journal of Civil Engineering, 25(2), 250–260.
Caldwell, P., Segura, C., Gull Laird, S., Sun, G., McNulty, S. G.,

Sandercock, M., Boggs, J., & Vose, J. M. (2015). Short-term stream

water temperature observations permit rapid assessment of potential

climate change impacts. Hydrological Processes, 29(9), 2196–2211.
Cantonati, M., Füreder, L., Gerecke, R., Jüttner, I., & Cox, E. J. (2012). Cre-

nic habitats, hotspots for freshwater biodiversity conservation:

Toward an understanding of their ecology. Freshwater Science, 31(2),

463–480.
Chen, Y. D., Carsel, R. F., McCutcheon, S. C., & Nutter, W. L. (1998).

Stream temperature simulation of forested riparian areas:

I. Watershed-scale model development. Journal of Environmental Engi-

neering, 124(4), 304–315.
Chenard, J.-F., & Caissie, D. (2008). Stream temperature modelling using

artificial neural networks: Application on catamaran brook, New

Brunswick, Canada. Hydrological Processes, 22(17), 3361–3372.

Cho, H.-Y., & Lee, K.-H. (2012). Development of an air–water temperature

relationship model to predict Climate-induced future water tempera-

ture in estuaries. Journal of Environmental Engineering, 138(5), 570–577.
Coats, W. A., & Jackson, C. R. (2020). Riparian canopy openings on moun-

tain streams: Landscape controls upon temperature increases within

openings and cooling downstream. Hydrological Processes, 34(8),

1966–1980.
Crisp, D. T., & Howson, G. (1982). Effect of air temperature upon mean

water temperature in streams in the north Pennines and English Lake

District. Freshwater Biology, 12(4), 359–367.
da Silva, I. N., Hernane Spatti, D., Andrade Flauzino, R., Liboni, L. H. B., &

dos Reis Alves, S. F. (2017). Artificial neural networks. Springer Interna-

tional Publishing.

Dan Moore, R., Spittlehouse, D., & Story, A. (2005). Riparian microclimate

and stream temperature response to forest harvesting: A review 1.

JAWRA Journal of the American Water Resources Association, 41(4),

813–834.
Drainas, K. (2020). Prediction of stream water and hyporheic temperature

in the context of local climate change: A case study at the bavarian

mähringsbach, fichtel mountains. [Unpublisahed Master's thesis],

Technical University of Munich.

Ebersole, J. L., Liss, W. J., & Frissell, C. A. (2003). Cold water patches in

warm streams: Physicochemical characteristics and the influence of

shading 1. JAWRA Journal of the American Water Resources Association,

39(2), 355–368.
Erhan, D., Bengio, Y., Courville, A., & Vincent, P. (2009). Visualizing higher-

layer features of a deep network. University of Montreal, 1341(3), 1.

European Union. (2021). Copernicus Land Monitoring Service 2021.

European Environment Agency (EEA).

Feigl, M., Lebiedzinski, K., Herrnegger, M., & Schulz, K. (2021). Machine-

learning methods for stream water temperature prediction. Hydrology

and Earth System Sciences, 25(5), 2951–2977.
Graf, R., Zhu, S., & Sivakumar, B. (2019). Forecasting river water tempera-

ture time series using a wavelet–neural network hybrid modelling

approach. Journal of Hydrology, 578, 124115.

Gupta, H. V., Sorooshian, S., & Yapo, P. O. (1999). Status of automatic cali-

bration for hydrologic models: Comparison with multilevel expert

calibration. Journal of Hydrologic Engineering, 4(2), 135–143.
Hadzima-Nyarko, M., Rabi, A., & Šperac, M. (2014). Implementation of

artificial neural networks in modeling the water-air temperature rela-

tionship of the river Drava. Water Resources Management, 28(5),

1379–1394.
Han, J., Pei, J., & Kamber, M. (2011). Data mining: Concepts and techniques.

Elsevier.

Harvey, R., Lye, L., Khan, A., & Paterson, R. (2011). The influence of air

temperature on water temperature and the concentration of dissolved

oxygen in Newfoundland Rivers. Canadian Water Resources Journal,

36(2), 171–192.
Hoess, R., Generali, K. A., Kuhn, J., & Geist, J. (2022). Impact of fish ponds

on stream hydrology and temperature regime in the context of fresh-

water pearl mussel conservation. Watermark, 14(16), 2490.

Huang, X., Kroening, D., Ruan, W., Sharp, J., Sun, Y., Thamo, E., Wu, M., &

Yi, X. (2020). A survey of safety and trustworthiness of deep neural

networks: Verification, testing, adversarial attack and defence, and

interpretability? Computer Science Review, 37, 100270.

IPCC. (2022). Climate change 2022: Impacts, adaptation and vulnerability.

Contribution of working group II to the sixth assessment report of the

intergovernmental panel on Climate change. In H.-O. Pörtner, D. C.

Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M.

Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, & B. Rama (Eds.).

Cambridge University Press.

Johnson, S. L. (2004). Factors influencing stream temperatures in small

streams: Substrate effects and a shading experiment. Canadian Journal

of Fisheries and Aquatic Sciences, 61(6), 913–923.

18 of 37 DRAINAS ET AL.

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

Johnson, S. L., & Jones, J. A. (2000). Stream temperature responses to for-

est harvest and debris flows in western cascades, Oregon. Canadian

Journal of Fisheries and Aquatic Sciences, 57(S2), 30–39.
Kail, J., Palt, M., Lorenz, A., & Hering, D. (2021). Woody buffer effects on

water temperature: The role of spatial configuration and daily temper-

ature fluctuations. Hydrological Processes, 35(1), e14008.

Kothandaraman, V. and Evans, R. L. (1972). Use of air-water relationships

for predicting water temperature. Illinois State Water Survey.

Krider, L. A., Magner, J. A., Perry, J., Vondracek, B., & Ferrington, L. C.

(2013). Air-water temperature relationships in the trout streams of

southeastern Minnesota's carbonate-sandstone landscape. JAWRA

Journal of the American Water Resources Association, 49(4), 896–907.
Kuhn, J., Casas-Mulet, R., Pander, J., & Geist, J. (2021). Assessing stream ther-

mal heterogeneity and cold-water patches from UAV-based imagery: A

matter of classification methods and metrics. Remote Sensing, 13(7), 1379.

Leach, J. A., Kelleher, C., Kurylyk, B. L., Moore, R. D., & Neilson, B. T.

(2023). A primer on stream temperature processes. Wiley Interdisciplin-

ary Reviews Water, 10, e1643.

Legendre, P., & Anderson, M. J. (1999). Distance-based redundancy analy-

sis: Testing multispecies responses in multifactorial ecological experi-

ments. Ecological Monographs, 69(1), 1–24.
Maier, H. R., Galelli, S., Razavi, S., Castelletti, A., Rizzoli, A.,

Athanasiadis, I. N., Sànchez-Marrè, M., Acutis, M., Wu, W., &

Humphrey, G. B. (2023). Exploding the myths: An introduction to arti-

ficial neural networks for prediction and forecasting. Environmental

Modelling & Software, 167, 105776.

Mejia, F. H., Ouellet, V., Briggs, M. A., Carlson, S. M., Casas-Mulet, R.,

Chapman, M., Collins, M. J., Dugdale, S. J., Ebersole, J. L.,

Frechette, D. M., Fullerton, A. H., Gillis, C. A., Johnson, Z. C.,

Kelleher, C., Kurylyk, B. L., Lave, R., Letcher, B. H., Myrvold, K. M.,

Nadeau, T. L., … Torgersen, C. E. (2023). Closing the gap between sci-

ence and management of cold-water refuges in rivers and streams.

Global Change Biology, 29, 5482–5508.
Mohr, S., Drainas, K., & Geist, J. (2021). Assessment of neural networks for

stream-water-temperature prediction. In 20th IEEE international con-

ference on machine learning and applications (ICMLA). IEEE.

Mohseni, O., & Stefan, H. G. (1999). Stream temperature/air temperature

relationship: A physical interpretation. Journal of Hydrology, 218(3–4),
128–141. PII: S0022169499000347.

Moriasi, D. N., Arnold, J. G., van Liew, M. W., Bingner, R. L.,

Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for

systematic quantification of accuracy in watershed simulations. Trans-

actions of the ASABE, 50(3), 885–900.
Nelson, K. C., & Palmer, M. A. (2007). Stream temperature surges under

urbanization and Climate change: Data, models, and responses. JAWRA

Journal of the American Water Resources Association, 43(2), 440–452.
Ouellet, V., & Caissie, D. (2023). Towards a better understanding of the

evaporative cooling of rivers: Case study for the little Southwest Mira-

michi river (New Brunswick, Canada). Canadian Water Resources

Journal/Revue Canadienne Des Ressources Hydriques, 48, 1–17.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,

Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,

Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., &

Duchesnay, E. (2011). Scikit-learn: Machine learning in python. Journal

of Machine Learning Research, 12, 2825–2830.
Piatka, D. R., Wild, R., Hartmann, J., Kaule, R., Kaule, L., Gilfedder, B.,

Peiffer, S., Geist, J., Beierkuhnlein, C., & Barth, J. A. (2021). Transfer

and transformations of oxygen in rivers as catchment reflectors of

continental landscapes: A review. Earth-Science Reviews, 220, 103729.

Pilgrim, J. M., Fang, X., & Stefan, H. G. (1998). Stream temperature COR-

RELATIONS with air temperatures IN Minnesota: Implications for CLI-

MATE warming. JAWRA Journal of the American Water Resources

Association, 34(5), 1109–1121.
Piotrowski, A. P., Napiorkowski, M. J., Napiorkowski, J. J., & Osuch, M.

(2015). Comparing various artificial neural network types for water

temperature prediction in rivers. Journal of Hydrology, 529,

302–315.
Qiu, R., Wang, Y., Wang, D., Qiu, W., Wu, J., & Tao, Y. (2020). Water tem-

perature forecasting based on modified artificial neural network

methods: Two cases of the Yangtze River. The Science of the Total Envi-

ronment, 737, 139729.

Quan, Q., Hao, Z., Xifeng, H., & Jingchun, L. (2020). Research on water

temperature prediction based on improved support vector regression.

Neural Computing and Applications, 34, 1–10.
Rabi, A., Hadzima-Nyarko, M., & Šperac, M. (2015). Modelling river tem-

perature from air temperature: Case of the river Drava (Croatia).

Hydrological Sciences Journal, 60(9), 1490–1507.
Rahmani, F., Lawson, K., Ouyang, W., Appling, A., Oliver, S., & Shen, C.

(2020). Exploring the exceptional performance of a deep learning

stream temperature model and the value of streamflow data. Environ-

mental Research Letters, 16(2), 024025.

Rehana, S. (2019). River water temperature modelling under Climate

change using support vector regression. In S. K. Singh (Ed.), Hydrol-

ogy in a changing world, Springer Water Series (pp. 171–183).
Springer.

Richardson, J. (2019). Biological diversity in headwater streams. Water-

mark, 11(2), 366.

RStudio Team. (2022). RStudio: Integrated development environment for R.

RStudio PBC.

Rutherford, J. C., Marsh, N. A., Davies, P. M., & Bunn, S. E. (2004). Effects

of patchy shade on stream water temperature: How quickly do small

streams heat and cool? Marine and Freshwater Research, 55(8),

737–748.
Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep inside convolu-

tional networks: Visualising image classification models and saliency

maps. arXiv preprint arXiv:1312.6034.

Smith, K. (1981). The prediction of river water temperatures / Prédiction

des températures des eaux de rivière. Hydrological Sciences Bulletin,

26(1), 19–32.
St-Hilaire, A., Morin, G., El-Jabi, N., & Caissie, D. (2000). Water tempera-

ture modelling in a small forested stream: Implication of forest canopy

and soil temperature. Canadian Journal of Civil Engineering, 27(6),

1095–1108.
Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic attribution for deep

networks. In International conference on machine learning (pp. 3319–
3328). PMLR.

Warnes, G. R., Bolker, B., Bonebakker, L., Gentleman, R., Huber, W.,

Liaw, A., Lumley, T., Maechler, M., Magnusson, A., Moeller, S.,

Schwartz, M., & Venables, B. (2020). gplots: Various R Programming

Tools for Plotting Data. R package version 3.1.1.

Webb, B., & Zhang, Y. (1997). Spatial and seasonal variability in the compo-

nents of the river heat budget. Hydrological Processes, 11(1), 79–101.
Webb, B., & Zhang, Y. (1999). Water temperatures and heat budgets

in dorset chalk water courses. Hydrological Processes, 13(3), 309–321.
Webb, B. W., Clack, P. D., & Walling, D. E. (2003). Water-air temperature

relationships in a Devon river system and the role of flow. Hydrological

Processes, 17(15), 3069–3084.
Webb, B. W., Hannah, D. M., Moore, R. D., Brown, L. E., & Nobilis, F.

(2008). Recent advances in stream and river temperature research.

Hydrological Processes: An International Journal, 22(7), 902–918.
Wild, R., Nagel, C., & Geist, J. (2023). Climate change effects on hatching

success and embryonic development of fish: Assessing multiple stressor

responses in a large-scale mesocosm study (164834). Science of The

Total Environment.

Wondzell, S. M., Diabat, M., & Haggerty, R. (2019). What matters most:

Are future stream temperatures more sensitive to changing air tem-

peratures, discharge, or riparian vegetation? JAWRA Journal of the

American Water Resources Association, 55(1), 116–132.
Woodward, G., Perkins, D. M., & Brown, L. E. (2010). Climate change and

freshwater ecosystems: Impacts across multiple levels of organization.

DRAINAS ET AL. 19 of 37

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

Philosophical Transactions of the Royal Society of London. Series B: Bio-

logical Sciences, 365(1549), 2093–2106.
Zhu, S., Heddam, S., Nyarko, E. K., Hadzima-Nyarko, M., Piccolroaz, S., &

Wu, S. (2019). Modeling daily water temperature for rivers: Compari-

son between adaptive neuro-fuzzy inference systems and artificial

neural networks models. Environmental Science and Pollution Research,

26(1), 402–420.
Zhu, S., Heddam, S., Wu, S., Dai, J., & Jia, B. (2019). Extreme learning

machine-based prediction of daily water temperature for rivers. Envi-

ronmental Earth Sciences, 78(6), 1–17.
Zhu, S., Nyarko, E. K., Hadzima-Nyarko, M., Heddam, S., & Wu, S. (2019).

Assessing the performance of a suite of machine learning models for

daily river water temperature prediction. PeerJ, 7, e7065.

Zurada, J. M., Malinowski, A., & Cloete, I. (1994). Sensitivity analysis for

minimization of input data dimension for feedforward neural network.

In Proceedings of IEEE international symposium on circuits and systems,

ISCAS…94 (Vol. 6, pp. 447–450). IEEE.

How to cite this article: Drainas, K., Kaule, L., Mohr, S., Uniyal,

B., Wild, R., & Geist, J. (2023). Predicting stream water

temperature with artificial neural networks based on

open-access data. Hydrological Processes, 37(10), e14991.

https://doi.org/10.1002/hyp.14991

APPENDIX

A | Additional information on Materials and Methods

A.1 | Searching algorithms Scikit-learn

Our results were obtained using RandomizedSearch, which, given dif-

ferent options, optimized the architecture and hyperparameter combi-

nation of the ANNs for each individual input combination and

waterbody.

RandomizedSearch certainly delivers a lower search quality

than GridSearch, since it only determines local optima, unlike

GridSearch, which delivers global optima. Still, as the ANN accu-

racy in our study demonstrated no weakness, in contrast to the

results in the literature, we can support the use of Randomized-

Search, since it requires considerably less computing power and

time. It is important to note, however, that even better results

for the RMSE might be obtained with GridSearch and so it may

be worth investing more time if fewer streams and less data

needs to be processed or the time and capacity investment does

not play a relevant role.

Difference between RandomizedSearch and GridSearch: While in

RandomizedSearch, random sets of hyperparameters are used and

tested, GridSearch tests all possible hyperparameter combinations

systematically. The process can be accelerated by preselecting hyper-

parameters to reduce the total number of hyperparameter combina-

tions. Of course, this again reduces the power of the search. In

conclusion we suggest not using GridSearch if time and/or computing

power are limited (see Figure 9).

A.2 | Results of RandomizedSearch

Using scikit-learn's RandomizedSearch, we determined an ANN with

the hyperparameter combination leading to the lowest RMSE, for

each waterbody and input combination. The RMSE values for all

ANNs determined by RandomizedSearch are presented in Figure A1,

according to waterbody. Figure A2 shows the same information but

sorted by input combination. In Tables A3, A4, A5, and A6, these

results are sorted by waterbody. The tables show which input combi-

nation for each stream reached what accuracy measures based on

which hyperparameter combination. The abbreviations stand for the

hyperparameters as indicated in the table below.

These combinations were attained by preselecting values for each

hyperparameter based on prior experience. As stated above, preselec-

tion can reduce the power of the search, so we recommend including

as many values as possible.

A.3 | Reliability of ANNs

Since common accuracy metrics only consider the differences

between observed and predicted values, they are not suitable for

assessing the reliability of the ANN, especially when it comes to

changes in the database as expected for climate change scenarios.

Hence, we also applied the reliability methodology as established in

Mohr et al. (2021) on ANNs with the allinputs input combination, as

determined by GridSearch.

A.3.1. | Perturbation analysis

Due to climate change, input variables will change in the future,

e.g. air temperatures will rise. Since the training and testing datasets

are retrieved from the past and cannot display future developments

properly, a thorough analysis regarding changes in the input data is

Abbr. Solver Maximum iterations Learning rate Learning Layers Activation function

loc lbfgs 100 000 0.0001 adaptive 5,20 logistic

rec lbfgs 100 000 0.0001 constant 80,20,5 relu

tac lbfgs 100 000 0.001 adaptive 80,10,5 tanh

werec adam 100 000 0.01 constant 160,80,10 relu

wtac adam 100 000 0.0001 adaptive 20 160,40 tanh

wtac2 lbfgs 100 000 0.0001 invscaling 80,10 tanh

20 of 37 DRAINAS ET AL.

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

essential for the assessment of a model's reliability. In this study, we

applied perturbation analysis to simulate changes in the input vari-

ables. For that, we perturbed every input value except the date by

0.01 (normalized) and evaluated the changes in the mean output. This

reliability method is similar to accuracy metrics (comparison of

observed vs. predicted data) but differs in that the input is changed.

A.3.2. | MinMax analysis

To consider how reasonable an ANN works regarding its predictions,

it is useful to know the range of prediction values that the ANN can

display. Therefore, we used MinMax analysis, where we chose ran-

dom input values between 0 and 1 (normalized) to identify the opera-

tional range of each ANN. We optimized the initially chosen input and

repeated the method 10 times for each ANN for the minimum

and 10 times for the maximum value, respectively.

A.3.3. | Impact analysis

While the reaction of the ANN to perturbations and its operational

range already give a good overview of its reliability, the so-called

Impact Analysis, which is a method similar to sensitivity analysis

(Zurada et al., 1994), can be used to determine which input the ANN

is sensitive to, or, more specifically in our case, can be used to mea-

sure the importance of each input feature by determining its contribu-

tion to the water temperature calculation. With this information, it

can be assessed whether single input parameters are weighted unrea-

sonably high or low and hence predictions of future scenarios might

not be reliable.

A.4 | Principal component analysis

To assess the environmental variables used to distinguish between

the 16 assessed streams, we applied a principal component analysis

(PCA) based on the normalized environmental variables that we com-

piled in the environmental dataset. The PCA and all subsequent multi-

variate analyses were calculated with the statistical software PRIMER

v7 & PERMANOVA+ (Anderson et al., 2008).

A.5 | Correlation analysis

A.5.1. | Reliability metrics

As described for the accuracy metrics above, we also conducted a cor-

relation analysis of the reliability metrics. To do this, we correlated all

the environmental parameters of both resolutions (entire catchment

F IGURE A1 RMSE values for all input combinations per waterbody.

DRAINAS ET AL. 21 of 37

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

F IGURE A2 RMSE values for all streams per input combination. Input parameters: D, day of the year; DTQLS, allinputs; L, Water level,
Q, discharge; S, sunshine duration; T, air temperature.

TABLE A1 Environmental parameter
for distLM I.

Stream Catchment Longest river length MW HW NW MQ HQ

Prien 52.82 15.15 0.24 220 3 1.70 128.00

Attel 66.14 11.01 0.28 188 10 1.00 24.70

Aubach 13.74 7.91 0.31 197 12 0.40 31.70

Söllbach 24.12 13.15 0.19 173 6 1.08 44.10

Bernauer Ache 36.53 8.80 0.48 215 29 0.80 37.10

Kleine Vils 43.25 9.55 0.51 229 25 0.97 55.90

Illach 25.09 19.99 0.50 225 34 0.79 24.90

Otterbach 91.74 22.79 0.89 235 70 0.83 32.10

Wiesent 135.38 14.46 1.34 195 110 1.05 6.88

Sulzbach 34.69 7.18 1.21 315 103 0.26 12.10

Abens 144.49 19.48 0.33 299 20 0.91 43.60

Aurach 123.59 28.20 1.37 278 110 0.66 20.20

Scheine 63.81 12.22 1.40 316 117 0.41 24.30

Große Ohe 18.70 5.15 0.44 165 19 0.60 23.80

Kirnach 25.31 21.15 0.35 223 10 0.77 49.50

Wolnzach 75.99 13.25 0.21 88 17 0.40 2.90

Note: Catchment, size of catchment (km2); HQ, highest water discharge over entire period (m3/s); HW,

highest water level over entire period (cm); Longest river length, length of longest contributing river (km);

MQ, mean water discharge over entire period (m3/s); MW, mean water level over total period (m); NW,

lowest water level over total period (cm); Stream, name of examined stream.

22 of 37 DRAINAS ET AL.

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

and 5 m riparian strip) with the mean perturbation values as well as

with the results of the MinMax analysis that is, the minimum possible

values and the maximum possible values for the ANN with the allin-

puts combination for each stream.

A.5.2. | Accuracy versus reliability metrics

Finally, we conducted a correlation analysis between the accuracy

metrics RMSE, R, and PBIAS and the reliability metrics mean perturba-

tion, minimum of MinMax analysis and maximum of MinMax analysis,

to determine whether and to what extent the accuracy and reliability

metrics agree with and/or complement each other.

B | Additional information on Results

B.1. | Assessment of ANNs

Impact analysis: The mean importance, as an indicator of the con-

tribution of individual parameters for water temperature predic-

tion, showed that the impact of individual input parameters

strongly varied among streams (Figure B1). Calculating the mean

over all streams, we observed that the water level of the current

day (L) was the most important, with a value of 14%, followed by

the mean air temperature of the closest DWD station of the cur-

rent day (mean_St1), with a value of 11%. The greatest individual

importance value of 35% was determined for the mean air tempera-

ture of the closest DWD station for the current day (mean_St1) at

Grosse Ohe, for the water level of the current day (L) at Prien, and for

the water level 3 days before the current day (L:3) at Sulzbach. On the

other hand, we observed that for all streams, the sunshine duration (S)

for the current and the previous days had no impact (0%), contradict-

ing the findings of the accuracy metrics, in which some streams

displayed the highest accuracy when S was included as input

parameter.

MinMax analysis: MinMax analysis was applied to define the spe-

cific limits of water temperature prediction for each stream. For this

analysis, values between 0 and 1 (normalized) were randomly recom-

bined to identify the ANN's minimum and maximum water tempera-

ture predictions for each stream. The results of the MinMax analysis

were in line with the above results, showing that the maximum and

minimum range of the calculated values varied strongly depending on

the stream's specifics.

Observed water temperature minima (0.34 ± 1.10�C) and

maxima (19.55 ± 2.50�C) in the dataset differed from calculated

minima (�11.96 ± 12.06�C) and maxima (74.05 ± 27.34�C). The

mean delta (observed values minus calculated value) for the mini-

mum values was 12.30 ± 11.88�C, with a maximum delta of

40.64�C (Sulzbach) and a minimum of 0.09�C (Kleine Vils). The

mean delta for the maximum values was �54.50 ± 26.23�C with a

maximum of �10.67�C (Wiesent) and a minimum of �106.89�C

(Kirnach) (see Figure B2).

TABLE A2 Environmental parameter
for distLM II.

Stream Gauging station DOD IPO Stations Distances (km)

Abens Mainburg 3782 32 02410 j 05404 19.69 j 27.67
Attel Assling 1821 40 01103 j 04261 12.12 j 15.73
Aubach Au 2593 40 04261 j 03679 14.53 j 24.45
Aurach Rothaurach 883 40 04280 j 03668 4.56 j 29.13
BernauerAche Bernau 4815 40 00856 j 05941 13.90 j 17.13
GrosseOhe Taferlruck 4169 40 05800 j 01832 16.23 j 28.12
Illach Engen 1904 32 00125 j 15555 12.17 j 28.56
Kirnach Unterthingau 1012 40 15 555 j 02559 12.73 j 14.15
KleineVils Dietelskirchen 4355 40 13 710 j 03366 10.76 j 26.78
Otterbach Hammermuehle 8742 40 04104 j 04559 10.99 j 30.10
Prien Aschau 3505 40 05941 j 04261 15.84 j 18.01
Scheine Scheinfeld 996 36 01107 j 05149 21.55 j 21.82
Soellbach BadWiessee 2162 36 02319 j 03679 20.06 j 33.67
Sulzbach Koesfeld 4381 40 00867 j 07428 3.25 j 15.31
Wiesent Hollfeld 2379 40 00320 j 00282 16.76 j 27.33
Wolnzach Wolnzach 817 32 02410 j 05404 13.56 j 22.86

Abbreviations: Distances (km), distances between GkD gauging station and DWD station; DOD, number

indicating how many days served as data basis for training and testing; Gauging station, name of GkD

gauging station from which water temperature, discharge and water level were obtained; IPO, maximum

number of input values per output value; Stations, DWD stations from which air temperature data was

used, bold indicates that sunshine duration was available (value from closer station preferred if possible);

if no station is indicated in bold, no sunshine duration was available; Stream: name of stream

investigated.

DRAINAS ET AL. 23 of 37

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

TABLE A3 Results of randomized
search for Prien, Attel, Aubach and
Soellbach, for explanations see
Section A.2.

Waterbody Inputs Hyperparameter RMSE R PBIAS NSE

Prien allinputs rec 0.738 0.969 �0.111 0.938

Prien DT loc 0.940 0.949 �0.042 0.900

Prien DTQ loc 0.816 0.962 0.411 0.924

Prien DTQS rec 0.733 0.969 0.112 0.939

Prien DTL rec 0.737 0.969 0.237 0.938

Prien DTLQ wtac2 0.824 0.962 0.290 0.923

Prien DTLS rec 0.747 0.968 0.074 0.937

Prien DTS werec 0.962 0.946 �0.345 0.895

Mean 0.812 0.962 0.078 0.924

SD 0.087 0.009 0.227 0.017

Var 0.008 0.000 0.051 0.000

Attel allinputs rec 0.453 0.995 0.004 0.991

Attel DT loc 0.596 0.992 0.071 0.984

Attel DTQ tac 0.498 0.994 0.103 0.989

Attel DTQS rec 0.547 0.993 0.000 0.986

Attel DTL rec 0.464 0.995 0.108 0.990

Attel DTLQ tac 0.462 0.995 �0.127 0.990

Attel DTLS rec 0.546 0.993 0.158 0.986

Attel DTS tac 0.862 0.984 0.110 0.966

mean 0.554 0.993 0.053 0.985

SD 0.126 0.004 0.085 0.008

Var 0.016 0.000 0.007 0.000

Aubach allinputs rec 0.412 0.996 0.256 0.992

Aubach DT rec 0.415 0.996 0.314 0.992

Aubach DTQ tac 0.413 0.996 0.282 0.992

Aubach DTQS tac 0.443 0.995 0.272 0.991

Aubach DTL tac 0.385 0.997 0.163 0.993

Aubach DTLQ tac 0.373 0.997 0.033 0.994

Aubach DTLS loc 0.559 0.993 �0.066 0.986

Aubach DTS tac 0.416 0.996 0.424 0.992

mean 0.427 0.996 0.210 0.991

SD 0.054 0.001 0.149 0.002

Var 0.003 0.000 0.022 0.000

Soellbach DT rec 0.533 0.989 �0.183 0.977

Soellbach DTQ tac 0.437 0.992 �0.003 0.985

Soellbach DTL wtac2 0.419 0.993 �0.090 0.986

Soellbach DTLQ rec 0.433 0.992 �0.093 0.985

Mean 0.455 0.992 �0.079 0.983

SD 0.045 0.002 0.072 0.003

Var 0.002 0.000 0.005 0.000

24 of 37 DRAINAS ET AL.

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

TABLE A4 Results of randomized
search for Bernauer Ache, Kleine Vils,
Illach and Otterbach, for explanations see
Section A.2.

Waterbody Inputs Hyperparameter RMSE R PBIAS NSE

Bernauer Ache allinputs loc 0.616 0.986 �0.350 0.973

Bernauer Ache DT tac 0.784 0.978 �0.731 0.956

Bernauer Ache DTQ tac 0.637 0.986 �0.378 0.971

Bernauer Ache DTQS rec 0.641 0.985 �0.310 0.971

Bernauer Ache DTL loc 0.634 0.986 �0.458 0.971

Bernauer Ache DTLQ tac 0.586 0.988 �0.315 0.976

Bernauer Ache DTLS rec 0.653 0.985 �0.562 0.970

Bernauer Ache DTS loc 0.787 0.978 �0.570 0.956

mean 0.667 0.984 �0.459 0.968

SD 0.071 0.004 0.140 0.007

Var 0.005 0.000 0.020 0.000

Kleine Vils allinputs loc 0.555 0.997 0.152 0.993

Kleine Vils DT tac 0.632 0.996 �0.077 0.991

Kleine Vils DTQ rec 0.555 0.997 �0.025 0.993

Kleine Vils DTQS rec 0.564 0.997 �0.081 0.993

Kleine Vils DTL tac 0.535 0.997 �0.105 0.994

Kleine Vils DTLQ tac 0.552 0.997 �0.126 0.993

Kleine Vils DTLS tac 0.572 0.997 �0.131 0.993

Kleine Vils DTS tac 0.640 0.996 �0.178 0.991

mean 0.576 0.996 �0.071 0.993

SD 0.036 0.000 0.094 0.001

Var 0.001 0.000 0.009 0.000

Illach allinputs loc 0.503 0.994 �0.136 0.989

Illach DT loc 0.721 0.988 �0.559 0.977

Illach DTQ rec 0.592 0.992 �0.659 0.984

Illach DTQS rec 0.633 0.991 �0.470 0.982

Illach DTL tac 0.567 0.993 �0.026 0.986

Illach DTLQ rec 0.622 0.991 �0.091 0.983

Illach DTLS rec 0.560 0.993 �0.310 0.986

Illach DTS rec 0.737 0.988 �0.967 0.976

mean 0.617 0.991 �0.402 0.983

SD 0.075 0.002 0.302 0.004

Var 0.006 0.000 0.091 0.000

Otterbach allinputs rec 1.693 0.957 �0.254 0.915

Otterbach DT rec 1.704 0.956 �0.295 0.914

Otterbach DTQ werec 1.730 0.955 �1.134 0.912

Otterbach DTQS werec 1.713 0.956 �0.889 0.913

Otterbach DTL rec 1.700 0.956 �0.160 0.915

Otterbach DTLQ rec 1.667 0.958 �0.248 0.918

Otterbach DTLS werec 1.714 0.956 0.069 0.913

Otterbach DTS werec 1.747 0.954 0.369 0.910

mean 1.708 0.956 �0.318 0.914

SD 0.023 0.001 0.454 0.002

Var 0.001 0.000 0.206 0.000

DRAINAS ET AL. 25 of 37

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

TABLE A5 Results of randomized
search for Wiesent, Sulzbach, Abens and
Aurach, for explanations see Section A.2.

Waterbody Inputs Hyperparameter RMSE R PBIAS NSE

Wiesent allinputs rec 0.626 0.985 �0.060 0.970

Wiesent DT rec 0.798 0.976 0.076 0.951

Wiesent DTQ tac 0.637 0.985 0.077 0.969

Wiesent DTQS rec 0.623 0.985 0.158 0.970

Wiesent DTL tac 0.633 0.985 0.297 0.969

Wiesent DTLQ tac 0.625 0.985 0.153 0.970

Wiesent DTLS rec 0.624 0.985 �0.003 0.970

Wiesent DTS rec 0.778 0.977 �0.249 0.954

mean 0.668 0.983 0.056 0.965

SD 0.070 0.004 0.154 0.008

Var 0.005 0.000 0.024 0.000

Sulzbach allinputs rec 0.774 0.989 �0.176 0.978

Sulzbach DT rec 0.861 0.986 �0.380 0.972

Sulzbach DTQ rec 0.776 0.989 �0.309 0.977

Sulzbach DTQS tac 0.861 0.986 �0.424 0.972

Sulzbach DTL tac 0.770 0.989 �0.320 0.978

Sulzbach DTLQ tac 0.736 0.990 �0.286 0.980

Sulzbach DTLS rec 0.766 0.989 �0.310 0.978

Sulzbach DTS loc 0.863 0.986 �0.380 0.972

mean 0.801 0.988 �0.323 0.976

SD 0.049 0.001 0.071 0.003

Var 0.002 0.000 0.005 0.000

Abens allinputs tac 0.468 0.995 �0.084 0.990

Abens DT loc 0.670 0.990 0.081 0.980

Abens DTQ wtac2 0.512 0.994 0.094 0.988

Abens DTQS rec 0.496 0.994 �0.040 0.989

Abens DTL wtac2 0.474 0.995 0.135 0.990

Abens DTLQ rec 0.585 0.992 �0.045 0.984

Abens DTLS tac 0.471 0.995 �0.046 0.990

Abens DTS rec 0.623 0.991 0.045 0.982

mean 0.537 0.993 0.017 0.987

SD 0.073 0.002 0.076 0.004

Var 0.005 0.000 0.006 0.000

Aurach allinputs rec 1.464 0.961 0.507 0.924

Aurach DT rec 1.388 0.965 �0.082 0.931

Aurach DTQ rec 1.549 0.957 1.075 0.914

Aurach DTQS rec 1.756 0.944 0.877 0.890

Aurach DTL rec 1.301 0.969 �0.113 0.940

Aurach DTLQ rec 1.436 0.963 0.498 0.926

Aurach DTLS rec 1.609 0.954 0.912 0.908

Aurach DTS rec 1.355 0.967 0.632 0.934

mean 1.482 0.960 0.538 0.921

SD 0.140 0.008 0.413 0.015

Var 0.019 0.000 0.170 0.000

26 of 37 DRAINAS ET AL.

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

TABLE A6 Results of randomized
search for Scheine, Grosse Ohe, Kirnach
and Wolnzach, for explanations see
Section A.2.

Waterbody Inputs Hyperparameter RMSE R PBIAS NSE

Scheine DT rec 1.449 0.949 0.948 0.900

Scheine DTQ rec 0.920 0.980 �0.676 0.960

Scheine DTL rec 0.947 0.978 �0.078 0.957

Scheine DTLQ rec 1.857 0.921 �1.687 0.836

mean 1.193 0.964 �0.191 0.927

SD 0.328 0.020 0.816 0.042

Var 0.108 0.000 0.666 0.002

Grosse Ohe allinputs rec 0.506 0.993 �0.440 0.987

Grosse Ohe DT tac 0.607 0.990 �0.603 0.981

Grosse Ohe DTQ wtac2 0.488 0.994 �0.517 0.988

Grosse Ohe DTQS loc 0.509 0.993 �0.561 0.986

Grosse Ohe DTL tac 0.483 0.994 �0.344 0.988

Grosse Ohe DTLQ tac 0.508 0.993 �0.297 0.987

Grosse Ohe DTLS rec 0.508 0.993 �0.309 0.986

Grosse Ohe DTS loc 0.566 0.992 �0.651 0.983

mean 0.522 0.993 �0.465 0.986

SD 0.040 0.001 0.129 0.002

Var 0.002 0.000 0.017 0.000

Kirnach allinputs rec 1.479 0.964 �1.794 0.926

Kirnach DT rec 1.348 0.969 0.074 0.939

Kirnach DTQ rec 1.453 0.964 �0.792 0.929

Kirnach DTQS rec 1.378 0.968 �1.317 0.936

Kirnach DTL rec 1.104 0.979 �0.767 0.959

Kirnach DTLQ loc 1.188 0.976 �1.093 0.952

Kirnach DTLS rec 1.273 0.972 �0.184 0.945

Kirnach DTS werec 1.755 0.947 �0.482 0.896

mean 1.372 0.967 �0.794 0.935

SD 0.187 0.009 0.569 0.018

Var 0.035 0.000 0.323 0.000

Wolnzach allinputs rec 0.528 0.985 0.426 0.970

Wolnzach DT rec 0.554 0.983 0.182 0.967

Wolnzach DTQ loc 0.508 0.987 0.659 0.972

Wolnzach DTQS rec 0.638 0.979 0.066 0.956

Wolnzach DTL rec 0.476 0.988 �0.048 0.976

Wolnzach DTLQ rec 0.558 0.983 0.005 0.966

Wolnzach DTLS rec 0.596 0.981 0.778 0.962

Wolnzach DTS rec 0.543 0.984 0.305 0.968

mean 0.550 0.984 0.297 0.967

SD 0.047 0.003 0.285 0.006

Var 0.002 0.000 0.081 0.000

DRAINAS ET AL. 27 of 37

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

Perturbation analysis: We applied perturbation analysis to test the

degree to which the ANNs' predictions changed when historical input

data varied by 0.01 (normalized). The mean perturbation value over all

streams was 2.620 ± 2.109�C, with the highest mean perturbation

observed in Otterbach (9.981�C) and the lowest in Wolnzach (0.985�C).

B.2. | Relationship between accuracy and reliability metrics

Correlation analysis (see Table B1) resulted in one highly significant

correlation between RMSE and mean perturbation (ρ¼0:853,

p<0:001) and three significant correlations: between R and mean per-

turbation (ρ¼�0:599, p<0:05), between RMSE and MinMax-max

(ρ¼0:538, p<0:05) and between PBIAS and MinMax-max

(ρ¼�0:582, p<0:05). There were no significant correlations between

any of the accuracy metrics and MinMax-Min.

B.3. | Environmental characteristics of sites

The PCA of environmental conditions across the streams (Figure B3)

showed that the 16 sites were broadly distributed along multiple envi-

ronmental gradients. The first PC axis, covering 26.8% of the observed

variation (Eigenvalue = 6.44), structured streams primarily according to

the proportion of natural and forested vegetation and water bodies in

their surroundings. It exemplifies that the streams Grosse Ohe, Soell-

bach and Bernauer Ache feature a higher share of natural vegetation

than such streams as the Scheine, Kleine Vils or Sulzbach. Also hydro-

logical features of the streams investigated, such as NW and HW, were

reflected by PC1, with streams in the negative space of PC1 tending to

have higher mean and high water levels than those in the positive space.

The second PC axis, making up 16.6% of the observed variation in the

data set (Eigenvalue = 3.98), grouped streams largely according to the

proportion of agricultural and urban land use (with a high share, for

example, along Sulzbach andWolnzach and a low share in Kirnach, Prien

and Illach), while the proportion of grassland in the surroundings and

the total length of the river upstream from the sampling site grouped

streams in the opposite direction. Detailed proportions of land use are

depicted in Table C1. Further information on environmental parameters

is depicted in Tables A1 and A2.

B.4. | Environmental predictors of ANN reliability metrics

Regarding the overall catchment resolution (Table B2 top), we deter-

mined a significantly positive correlation between mean perturbation

F IGURE B1 Impact analysis for all input parameters in each stream. Inputs on x-axis indexed as below. Whiskers mark 95% confidence
intervals and bars mark mean importance for each input. St indicates the station from which air temperature was received (St1 = DWD station
closest to GkD gauging station, St2 = DWD station second-closest to GkD gauging station). The “addendum.No” indicates how many days prior
to D the data is from (0.1 = the day before D, 0.2 = 2 days before D, 0.3 = 3 days before D). Input values: D, day of the year; L, water level; max,
maximum air temperature; mean, mean air temperature; min, minimum air temperature; Q, discharge; S, sunshine duration.

28 of 37 DRAINAS ET AL.

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

and HW (r¼0:67, p<0:01) as well as a significantly negative relation-

ship between the minimum values of the MinMax analysis and DOD

(r¼�0:60, p<0:05) and between the maximum values of the MinMax

analysis and semi-natural (r¼�0:55, p<0:05). For the 5m riparian

strip resolution (see Table B2 bottom), there was a significantly posi-

tive correlation between mean perturbation and grassland (r¼0:52,

p<0:05) as well as between the minimum values of the MinMax anal-

ysis and grassland (r¼0:50, p< 0:05).

C. | Additional information on the Discussion

C.1. | Accuracy and reliability

Not all accuracy vs. reliability metrics correlated significantly. This

confirmed the finding of Mohr et al. (2021), that the use of accuracy

metrics alone is not sufficient and must be supplemented with reli-

ability metrics. Still, we can conclude that as accuracy metric, the

RMSE is the most suitable one of those we used to reflect the reli-

ability of an ANN. We are able to conclude this thanks to the signifi-

cant correlations both to mean perturbation and to the maximum

values obtained in the MinMax analysis, while only one significant

correlation was demonstrated for R and PBIAS, respectively. We

also observed that the RMSE had a greater resolution and hence

contributed more significant relationships with environmental

parameters than R, probably because it had a higher potential to

reflect the high-resolution dynamics of hydrologic parameters. This

further increased the benefit of the RMSE and confirms the plausi-

bility of its frequent use for measuring the accuracy of water tem-

perature prediction with ANNs (Ahmadi-Nedushan et al., 2007;

Caissie et al., 1998; Chenard & Caissie, 2008; Cho & Lee, 2012;

Feigl et al., 2021; Graf et al., 2019; Hadzima-Nyarko et al., 2014;

Qiu et al., 2020; Quan et al., 2020; Rabi et al., 2015; Rahmani

et al., 2020; Rehana, 2019; St-Hilaire et al., 2000; Zhu, Nyarko,

Hadzima-Nyarko, et al., 2019).

In this study, we additionally employed PBIAS as an accuracy

metric, which is unusual for water temperature prediction with

ANNs. Although we see advantages in combining different accuracy

metrics and including the PBIAS due to the different aspects of

model performance it highlights, in this study we were not able to

find any general correlations between the environmental parameters

F IGURE B2 Comparison of calculated and observed minimum and maximum values for all waterbodies. Calculated values were determined
by MinMax analysis, observed values were retrieved from the datasets.

TABLE B1 Correlations between evaluation and assessment metrics.

RMSE R PBIAS

Mean perturbation 0.853*** �0.600* �0.185

MinMax_min �0.053 0.157 �0.091

MinMax_max 0.538* �0.213 �0.582*

*p < 0.05; **p < 0.01; ***p < 0.001.

DRAINAS ET AL. 29 of 37

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

F IGURE B3 Principal component
analysis plot, all stream sites broadly
distributed along multiple environmental
gradients. Streams structured by PC axis
1 mainly according to the proportion of
natural and forested vegetation and
waterbodies in their surroundings, as well
as by NW and HW. Structure by PC axis
2 mainly according to proportion of

agricultural and urban land use.

TABLE B2 Correlation analysis of environmental parameters versus robustness measures, entire catchment and 5 m riparian strip.

Perturbation Min Max

Entire catchment

Total river length 0.406 �0.141 0.191

Longest river length 0.344 0.238 0.413

Agriculture 0.020 0.065 �0.128

Forest 0.003 0.000 �0.178

Grassland 0.456 0.026 0.426

Semi-natural �0.328 �0.081 �0.546*

Urban 0.068 0.135 �0.074

Water �0.140 0.084 �0.028

Catchment 0.044 0.221 �0.326

MW 0.421 �0.259 0.459

HW 0.671** �0.191 0.495

NW 0.250 �0.225 0.268

MQ �0.041 0.321 �0.289

HQ 0.279 0.115 0.147

DOD 0.038 �0.588* �0.171

IPO �0.050 �0.442 �0.070

Dist1 0.397 0.265 0.408

Dist2 0.121 0.024 0.283

Tributaries 0.324 �0.112 0.094

5 m riparian strip

Total river length 0.406 �0.141 0.191

Longest river length 0.344 0.238 0.203

Agriculture 0.037 0.197 �0.009

30 of 37 DRAINAS ET AL.

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

and the PBIAS. This might be because the PBIAS reflects variation in

two directions, but the direction of estimation (over- or underestima-

tion) does not necessarily correlate with an environmental parameter

in only one direction. Even though the PBIAS showed no consistent

trends in the correlation analysis with either environmental parame-

ters or reliability metrics, the significant correlation between the

PBIAS and the maximum values of the MinMax analysis showed that

with increasing MinMax-max values, the ANNs tended to overesti-

mate water temperature. This overestimation was pronounced for

Kirnach, a stream with a very high proportion of grassland (72.58%)

and a very low proportion of semi-natural land cover (0.01%). In con-

trast, underestimation of water temperature was pronounced for

Aurach, a long stream with a large catchment. These findings were

also confirmed by the DistLM analysis of environmental predictors of

evaluation metrics, in which PBIAS/overestimation was associated

with high proportions of grassland, particularly in the 5 m riparian

strip. Consequently, it would be advisable to carefully check for both

over- and underestimation of the water temperature prediction, par-

ticularly in catchments with high proportions of open-canopy land-

scape (Figures C1–C6).

TABLE B2 (Continued)

Perturbation Min Max

Forest �0.421 �0.026 �0.309

Grassland 0.521* 0.001 0.498*

Semi-natural �0.365 �0.091 �0.220

Urban �0.162 0.110 �0.415

Water �0.140 0.084 �0.028

Area 0.341 �0.074 0.097

Abbreviations: Agriculture, forest, grassland, semi-natural, urban, water: land use; Area, total area of riparian strip; Area, total buffer area; Catchment, Total

size of all contributing catchments; D, Day of the year; Dist1, distance between GkD station and DWD station 1; Dist2, distance between GkD station and

DWD station 2; DOD, number of days for which data was used; DTQLS, allinputs; HQ, highest measured discharge; HW, highest measured water level;

IPO, number of input data points per output data point; L, water level; Longest river length, the length of the longest contributing river; Max, maximum

determined by MinMax-analysis; Min, minimum determined by MinMax-analysis; MQ, mean discharge; MW, mean water level; NW, lowest measured

water level; Perturbation, mean perturbation determined by perturbation analysis; Q, discharge; S, sunshine duration; T, air temperature; Total river length,

sum of lengths of all contributing rivers; Tributaries, number of tributaries.

*p < 0.05; **p < 0.01; ***p < 0.001.

DRAINAS ET AL. 31 of 37

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

TABLE C1 Land use in entire catchment and in 5 m riparian strip.

Stream Total river length Agriculture Forest Grassland Semi-natural Urban Water

Prien 15.15 x 70.91 12.03 14.98 2.09 x

Attel 11.01 21.03 30.81 37.74 1.04 9.38 x

Aubach 7.91 x 34.30 63.92 x 1.79 x

Soellbach 13.15 x 77.92 1.62 18.58 1.83 0.05

Bernauer Ache 8.80 0.08 46.55 23.23 25.37 4.77 x

Kleine Vils 9.55 72.68 18.43 6.01 x 2.88 x

Illach 19.99 x 33.04 61.96 3.32 1.68 x

Otterbach 41.43 23.89 41.12 33.17 0.31 1.52 x

Wiesent 26.13 56.25 37.62 3.27 0.71 2.15 x

Sulzbach 13.89 75.33 11.55 10.12 x 2.99 x

Abens 19.48 62.78 21.59 8.45 0.81 6.38 x

Aurach 28.20 40.06 44.56 10.26 x 5.12 x

Scheine 12.22 38.62 41.44 17.04 x 2.89 x

Große Ohe 11.95 x 69.22 x 30.78 x x

Kirnach 39.51 x 23.91 72.58 0.01 3.50 x

Wolnzach 13.25 62.06 24.52 7.47 1.43 4.51 x

Stream Mean river length Agriculture Forest Grassland Semi-natural Urban Water

Prien 15.15 x 25.06 66.77 x 8.18 x

Attel 11.01 24.65 45.09 x 8.75 21.51 x

Aubach 7.91 x 58.12 34.00 x 7.88 x

Soellbach 13.15 x 73.06 1.81 12.62 11.33 1.17

Bernauer Ache 8.80 x 57.02 19.18 6.68 17.12 x

Kleine Vils 9.55 41.76 2.14 52.30 x 3.79 x

Illach 19.99 x 33.26 54.14 12.60 x

Otterbach 13.81 14.44 44.64 44.72 x 3.05 x

Wiesent 13.07 8.07 62.19 17.77 6.49 8.74 x

Sulzbach 6.95 67.38 x 21.31 x 11.31 x

Abens 19.48 32.37 6.86 44.65 x 16.12 x

Aurach 28.20 16.67 45.02 29.06 x 9.25 x

Scheine 12.22 24.94 11.21 55.46 x 8.39 x

Große Ohe 3.98 x 73.46 x 26.54 x x

Kirnach 19.75 x 21.32 70.58 x 8.1 x

Wolnzach 13.25 39.14 32.86 8.16 x 19.84 x

Note: Top: land use in entire catchment. Bottom: land use in 5 m riparian strip for whole river.

Abbreviations: Agriculture, forest, grassland, semi-natural, urban, water: Proportion of land use in percent, for 5 m riparian strip as mean over all arms;

Mean river length: (for 5 m riparian strips) If stream contained more than one arm, this is the mean of the lengths of the arms in km; Stream, name of

stream investigated; Total river length, sum of lengths of all contributing rivers in km.

32 of 37 DRAINAS ET AL.

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

F IGURE C1 Cumulative barplot illustrating the shares of land use in the 5 m riparian strip.

F IGURE C2 Cumulative barplot illustrating the shares of land use in the entire catchment.

DRAINAS ET AL. 33 of 37

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

F IGURE C3 Catchments (a) Abens, (b) Attel, (c) Aubach, and (d) Aurach.

34 of 37 DRAINAS ET AL.

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

F IGURE C4 Catchments (a) Bernauer Ache, (b) Grosse Ohe, (c) Illach, and (d) Kirnach.

DRAINAS ET AL. 35 of 37

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

F IGURE C5 Catchments (a) Kleine Vils, (b) Otterbach, (c) Prien, and (d) Scheine.

36 of 37 DRAINAS ET AL.

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

F IGURE C6 Catchments (a) Soellbach, (b) Sulzbach, (c) Wiesent, and (d) Wolnzach.

DRAINAS ET AL. 37 of 37

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14991 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

F. Predicting stream water temperature with artificial neural networks based on open-access data

189

	Introduction
	Contributions of this Thesis
	Publication Summary
	Outline

	Preliminaries
	Neural Networks
	Partially Observable Markov Decision Proccesses

	Neural Network Abstraction
	State of the Art
	Contribution
	Framework
	Error Bound
	Refinement
	Experimental Results

	Future Work

	Neural Network Monitoring
	State of the Art
	Conribution: Gaussian Monitoring
	Approach
	Experimental Results

	Contribution: Monitizer
	Framework Description
	Evaluation

	Future Work

	Use Case - River Temperature Prediction
	State of the Art
	Contribution
	Water Temperature Prediction
	Model Analysis
	Statistical and Hydrological Evaluation

	Future Work

	POMDP Strategy Representation via Automata Learning
	State of the Art
	Contribution
	Automaton Learning
	Heuristics
	Experiments

	Future Work

	Conclusion
	Publications
	Syntactic vs Semantic Linear Abstraction and Refinement of Neural Networks
	Assessment of Neural Networks for Stream-Water-Temperature Prediction
	Learning Explainable and Better Performing Representations of POMDP Strategies
	Monitizer: Automating Design and Evaluation of Neural Network Monitors
	Gaussian-Based Runtime Detection of Out-of-distribution Inputs for Neural Networks
	Predicting stream water temperature with artificial neural networks based on open-access data

