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Abstract

Multi-threaded software is notoriously hard to write, rendering static analysis techniques
that scale to real-world multi-threaded programs while remaining sufficiently precise
all the more sought-after. We propose thread-modular analyses of the values of global
variables in multi-threaded programs, which we obtain as abstract interpretations
of the local trace semantics — a new thread-modular concrete semantics focussing
on the local perspectives of threads. We cast two existing non-relational analyses into
our framework, enabling a principled comparison between them — and spurring the
development of three novel, more precise, non-relational analyses. Regarding relational
analyses, we propose new analyses that once more take a local perspective in that they
track, for each mutex, relationships within clusters of globals only written when the
respective mutex is held. Surprisingly, we find that larger clusters can lead to less
precise information and thus propose to track all subclusters. For some weakly relational
domains, e.g., the widely-used octagon domain, we find that — thanks to a property we
dub 2-decomposability — the most precise result is already attained when considering
subclusters of size at most 2. To seamlessly increase the precision of any local trace–
based analysis, we propose to track further abstractions of the computational history,
which we call digests, that can be used to exclude spurious interactions between threads
and refine the analysis. We instantiate this scheme by giving digests computing thread
ids, enabling the analyses to take may-happen-in-parallel information into account
when determining read values of globals and evaluate all analyses — with and without
refinement — on a set of real-world benchmarks, both w.r.t. runtime and precision.
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Zusammenfassung

Die Entwicklung nebenläufiger Programme stellt bekanntermaßen eine große Heraus-
forderung dar, weshalb statische Analysetechniken, die auch auf Programme realistischer
Größe anwendbar sind und dabei hinreichend präzise bleiben, umso gefragter sind. Wir
entwickeln thread-modulare Analysen der Werte globaler Variablen in nebenläufigen
Programmen und stützen diese Analysen auf die Abstrakte Interpretation der Local
Trace Semantik — eine thread-modulare konkrete Semantik, die den Fokus auf die
lokalen Perspektiven der Threads legt. Wir drücken zwei bestehende nicht-relationale
Analysen in unserem Framework aus, was einen prinzipiellen Vergleich zwischen ih-
nen ermöglicht — und die Entwicklung dreier neuer, präziseren, nicht-relationalen
Analysen anregt. Was relationale Analysen betrifft, so schlagen wir neue Analysen vor,
die wiederum eine lokale Perspektive einnehmen, insofern als dass sie für jede Mutex
Beziehungen innerhalb von Clustern von globalen Variablen verwalten, welche nur
geschrieben werden, wenn die entsprechende Mutex gehalten wird. Überraschender-
weise stellen wir fest, dass größere Cluster zu weniger präzisen Informationen führen
können, und schlagen daher vor, Informationen über alle Subcluster zu verwalten. Für
einige schwach relationale Domänen, wie z. B. die weit verbreitete Octagon-Domäne,
stellen wir fest, dass — dank einer Eigenschaft, die wir als 2-Decomposability bezeichnen
— das genaueste Ergebnis bereits bei der Betrachtung von Subclustern mit einer Größe
von höchstens 2 erzielt wird. Zur nahtlosen Erhöhung der Präzision jeder auf Local
Traces basierenden Analyse schlagen wir vor, weitere Abstraktionen der Berechnung-
shistorie zu verwalten, welche wir als Digests bezeichnen und die verwendet werden
können, um unerwünschte Interaktionen zwischen Threads auszuschließen und somit
die Analyse zu verfeinern. Wir geben als Beispiel Digests für die Berechnung von
Thread Ids an, mit deren Hilfe die Analysen may-happen-in-parallel Informationen bei
der Bestimmung der für globale Variablen gelesenen Werte berücksichtigen können.
Schließlich vergleichen wir sowohl die Präzision als auch die Laufzeit aller Analysen —
mit und ohne Verfeinerung — auf einer Reihe von realen Benchmarks.
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1 Introduction

Just a few years ago, the statement that software truly permeates every aspect of our
lives would have required a well-crafted argument and might even have sparked some
pushback from those less in tune with digital technology. Now, that many of us carry
around often even several small computers in our pockets and on our wrists wherever
we go, and it is hard to find a household device of which no WiFi-enabled version
and corresponding custom app exists, this statement has become so widely accepted it
almost borders on a trope. Nevertheless, this fact has wide-reaching implications: While
a smartphone rebooting while the user is attempting to watch the latest TikTok1 videos, a
smart dishwasher running the regular program instead of the super-energy-saver option
selected on the app by its user, or a navigation program crashing before displaying the
fastest way to work given current traffic conditions, may all be best described as minor
inconveniences, similar problems in slightly different settings can have much more
dire consequences. Replace the user watching short-form video content with a trader
about to input a time-critical order, the smart dishwasher with a smart medical device
controlling an IV, and place the navigation program inside an autonomous vehicle —
now the consequences of software going wrong range from significant economic losses
to injuries and potentially even the loss of life.

It is precisely in settings where the consequences of missing a bug in a program can
be dire, where techniques that go beyond extensive testing and best practices such as
code audits and reviews, have established a strong foothold. One such technique that
has enjoyed tremendous success, e.g., in the domain of control software for airplanes, is
abstract interpretation as introduced by Cousot and Cousot [30]. Unlike other techniques
such as symbolic execution or model checking, it can be used to prove the absence of
bugs in programs, and it is possible to design analyses that always terminate. While
this, at first glance, seems to be in conflict with Rice’s theorem stating that all non-trivial
properties about programs are undecidable, it is not. The problem of undecidability
is side-stepped by overapproximating the concrete semantics of programs. If such an
overapproximation of all executions does not violate the property of interest, neither
will any concrete execution. Therefore, if the abstract interpreter claims the program
to be safe, it is safe (no false negatives). The converse is not true though: due to the
overapproximation, an abstract interpretation may flag potential bugs that do not exist in
the concrete (false positives). The perhaps most wide-spread use of abstract interpretation
is for showing the absence of certain kinds of bugs (often called runtime errors), ranging
from integer overflows to out-of-bounds accesses to arrays or null-pointer dereferences.

1Substitute this for whatever app is en vogue now if you’re reading this later than 2025.
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1 Introduction

Since their advent several decades ago, multi-core processors must now be considered
more or less standard in many settings, whether in servers, mobile phones, high-end
embedded devices, or desktop computers.2 To harness the additional computational
power, also more and more software became multi-threaded — naturally leading to a
search for techniques for certifying that multi-threaded software is free of certain classes of
bugs. It was observed early on that naively applying the analysis techniques employed
for the abstract interpretation of single-threaded programs is not the method of choice:
The sheer multitude of possible interleavings, even when considering relatively modest-
sized programs, leads to an explosion of control states to distinguish. Instead, the
concept of thread-modular analysis was proposed, where one tries to analyze each thread
in isolation as much as possible, overapproximating the effects of other threads, while
hopefully remaining precise enough to establish properties of interest.

One particular style of writing concurrent software is called pthread-style (after the
Pthreads library), where threads are explicitly created and joined, and, among other
idioms, locks referred to as mutexes are used to ensure mutual exclusion for shared
resources such as global variables or the heap. In this thesis, we work on thread-modular
abstract interpretation for such programs. Our analyses aim to find information about
the values of global variables. On top of being relevant in its own right to, e.g., establish
assertions, good information about the values of global variables is indispensable for
establishing a wide range of other properties, ranging from establishing that no out-of-
bounds accesses to arrays happen to properties such as the absence of data races, e.g.,
when control-flow depends on the values of global variables.

A common theme throughout this thesis is consequently taking a local perspective
whenever possible: Instead of considering a concrete semantics where some global
observer exists that knows about all actions of all threads, we take a local perspective of
the concrete semantics where each thread is only aware of the things in its own past,
and those parts of the past of other threads that it has learned about by communication.
Whenever threads communicate, the local perspectives of the threads involved in the
communication are combined to yield a new local perspective. Many approaches to the
analysis of the values of globals have been proposed, ranging from rather simple to
quite sophisticated. We first cast two well-known approaches into a common framework,
which allows us to perform a principled comparison between them. Building on this,
we further propose novel analyses improving on either style, as well as a general
mechanism to improve the precision of analyses by taking further abstractions of the
local computational past into account. In this way, we obtain novel analyses for which
we give principled soundness proofs. As tracking relationships between program
variables has been shown to be indispensable for proving some properties of programs,
we also propose novel thread-modular relational analyses. Here, we take the local
perspective in that we do not track arbitrary relationships between globals but instead
focus only on those that are mediated by common protecting mutexes, which allows

2For instance, according to the Steam Hardware & Software Survey: November 2024 [132] fewer than 1% of
machines accessing the gaming platform had only 1 core, with the majority having 4 or more cores.
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1.1 A Primer on Complete Lattices and Scott-continuity

us to associate these invariants with the mutexes they are mediated by. We provide
an experimental evaluation comparing both runtimes and precisions of all analyses.
Having implementations in a common framework ensures these comparisons are about
the essences of the analyses and independent of incidental aspects, such as the approach
to inter-procedural analysis or the implementations of domains, one is faced with when
making a more global comparison between implementations in different frameworks.

1.1 A Primer on Complete Lattices and Scott-continuity

We have deliberately decided to not provide a lengthy introduction to abstract interpreta-
tion in this thesis. We will instead assume readers to have some level of familiarity with
abstract interpretation as would, e.g., be attained after perusing the first few chapters
of an introductory textbook [86, 102, 115]. A comprehensive overview of most of the
developments in the field, on the other hand, is provided by Cousot [29] in his abstract
interpretation textbook. In this thesis, we will instead briefly recall key notions in the
places where we use them, and provide definitions in so far as they are referenced in
later parts of this work.

In this spirit, this section serves as a quick primer on complete lattices, and recalls the
definition of Scott-continuity and some fixpoint theorems, in so far as we rely on them
later. Readers familiar with these may want to skip this section and jump to the section
on the (perhaps less standard) notion of side-effecting constraint systems right away.

Definition 1 (Complete Lattice). A set S equipped with a partial order v where any subset
S′ ⊆ S has a least upper bound (w.r.t. v) denoted by

⊔
S′ is called a complete lattice (S,v).

It is easily verified that a complete lattice also has a greatest (w.r.t. v) lower bound
for any subset S′ ⊆ S denoted by

d
S′. By convention, the least upper bound of the

entire set is denoted by > =
⊔

S whereas the least upper bound of the empty set is
denoted ⊥ =

⊔
∅ and corresponds to the greatest lower bound of S. We obtain that

∀s ∈ S : ⊥ v s v >. We denote by a t b the result of
⊔{a, b}, and similarly for u.

Example 1. The powerset 2U of some set U forms a complete lattice with v=⊆, t = ∪, u = ∩,
> = U and ⊥ = ∅.

Theorem 1 (Knaster-Tarski Fixpoint Theorem). For a complete lattice (S,v) and a monotonic
function f : S→ S, the set of all fixpoints of f forms a complete lattice w.r.t. v.

As a corollary, one obtains the existence of a least fixpoint for any monotonic f .
However, in the later proofs, we will require a stronger property, namely that the Kleene
fixpoint theorem is applicable, and thus the least solution does not only exist but is given
by the least-upper bound of the Kleene iterates. For this theorem to apply, a stronger
property than monotonicity is required, namely that the function be Scott-continuous [54].
We recap some basic definitions and propositions for Scott-continuous functions, in so far
as they are of relevance to this thesis.

3



1 Introduction

Definition 2 (Directed Subset). A directed subset of some complete lattice is a non-empty set
of lattice elements, such that each pair of elements has an upper bound in the set.

Definition 3 (Scott-Continuity). A function f : S→ T from one complete lattice into another
complete lattice is called Scott-continuous, if, for all directed subsets D,

f

( ⊔
D∈D

D

)
=

⊔
D∈D

f D

As Scott-continuity implies monotonicity, by the Knaster-Tarski fixpoint theorem, a
least fixpoint exists for each Scott-continuous function.

Theorem 2 (Kleene Fixpoint Theorem). For a Scott-continuous function f the least fixpoint
is the least-upper-bound of the ascending Kleene chain of f given by

⊥ v f ⊥ v f f ⊥ v f n⊥ v . . .

Lastly, we list some propositions about composition of Scott-continuous functions that
will be needed in later proofs.

Proposition 1. Consider a function f : S× S→ S and a complete lattice S. The following two
statements are equivalent:

(1) f is Scott-continuous on S× S.

(2) f is Scott-continuous in each argument, i.e., for all elements a ∈ S, both functions
fa0 x = f (a, x) : S→ S and fa1 x = f (x, a) : S→ S are Scott-continuous.

Proof. (1)⇒ (2) obviously holds, for (2)⇒ (1) see Lemma 2.9 in Gierz et al. [54].

Proposition 2. The composition g ◦ f of two Scott-continuous functions f : S → T and
g : T → U is itself Scott-continuous.

Proof. For D a directed subset, by Scott-continuity of f

(g ◦ f )(tD∈DD) = g( f (tD∈DD)) = g(tD∈D f (D))

Next, we show that D′ = { f D | D ∈ D} is a directed subset in T. Consider two
elements f D1 and f D2 in D′. Then f D1 t f D2 = f (D1 tD2) (by Scott-continuity of f ),
and as D is directed, we have D1 t D2 ∈ D, and thus ( f D1) t ( f D2) ∈ D′ and D′ is a
directed subset. Then, as g is Scott-continuous, we get

(g ◦ f )(tD∈DD) = g(tD∈D f (D)) = tD∈Dg( f (D)) = tD∈D(g ◦ f )(D)

Proposition 3. The set of Scott-continuous functions forms a complete lattice. Thus, given a
set F of Scott-continuous functions, the function

⊔
f∈F f is also Scott-continuous.

Proof. See Lemma 2.4 in Gierz et al. [54].

We will use complete lattices in both the concrete and abstract semantics, and use the
results about Scott-continuous functions in Chapter 6 when providing soundness proofs
of our analyses.

4



1.2 Side-Effecting Constraint Systems

1.2 Side-Effecting Constraint Systems

Side-effecting systems of constraints, as first proposed by Seidl et al. [113] and later
studied in detail by Apinis et al. [9], are a powerful framework for describing abstract
interpretation-based analyses. Among other things, they allow conveniently expressing
varying degrees of context sensitivity for interprocedural analysis [9, 43] and elegantly
handling non-local control flow [106]. In the context of this thesis, their most salient
feature is that they allow for conveniently formalizing the accumulation of flow- (as well
as context-) insensitive information during an analysis that is, in principle, flow- (as well
as context-) sensitive [113, 133, 134].

Assume that X is a set of unknowns where for each x ∈ X, Dx is a complete lattice of
possible (abstract or concrete) values of x. Let D denote the disjoint union of all sets Dx.
Let X⇒D denote the subset of all type-correct mappings of the set of mappings X→ D,
i.e., those η where η x ∈ Dx. The ordering on the individual Dx is lifted point-wise to
X⇒D. Technically, a (side-effecting) constraint takes the form x w fx where x ∈ X is the
left-hand side and the right-hand side

fx : (X⇒D)→ ((X⇒D)×Dx)

takes a mapping η : X⇒D, while returning a collection of side-effects to other unknowns
in X together with the contribution to the left-hand side. We remark that there may
be zero, one, or several constraints and thus right-hand sides for any given unknown
(left-hand side). While we in principle assume all mappings to be total, we usually
represent them by giving only those bindings that are non-⊥, and will later talk about a
constraint causing side-effects to some unknowns to mean those unknowns that appear
with a non-⊥ contribution in the first component.

Let C denote a set of such constraints. A mapping η : X⇒D is called solution of C if
for all constraints x w fx of C, it holds for (η′, d) = fx η that η w η′ and η x w d; that
is, all side-effects of the right-hand side and its contribution to the left-hand side are
accounted for by η. Assuming that all right-hand side functions are monotonic, the
system C is known to have a least solution by the Knaster-Tarski fixpoint theorem.

Example 2. Consider X = {w, x, y, z}, where Dw = Dx = Dy = Dz is the powerset lattice
2{a,b,c} ordered by ⊆ and consider the following constraints and right-hand sides:

[x] w fx fx η = (∅, {a})
[x] w f ′x f ′x η = (∅, {c} ∩ η [z])
[y] w fy fy η = ({[z] 7→ η [y]}, {b} t η [x])
[z] w fz fz η = (∅,⊥)

While fx, f ′x, and fz do not cause any side-effects, fy causes a side-effect to the unknown [z].
Consider η1 = {[w] 7→ >, [x] 7→ >, [y] 7→ >, [z] 7→ >}. While η1 is a solution of the
side-effecting constraint system, it is not the least solution: The least solution is given by
{[w] 7→ ⊥, [x] 7→ {a}, [y] 7→ {a, b}, [z] 7→ {a, b}}. We remark that in the least solution the
value for the unknown [w] that does not appear on the left-hand side of any constraint and does
not receive any side-effects is ⊥.

5



1 Introduction

Note that we enclose unknowns into [·] to clarify that we are referring to unknowns as
the set of unknowns often coincides with some other set: For example, in later chapters,
for a program point u, we refer to the corresponding unknown by [u].

We remark that in the side-effecting constraint systems considered in the rest of this
thesis, an unknown x that receives a value by side-effect will not have a right-hand side,
and thus receive all of its values only by side-effect.

To compute (least) solutions of side-effecting constraint systems, one can rely on
fixpoint solvers. Several families of solvers have either been adapted to work with
side-effects (e.g., the family of Top-Down solvers [114, 131]) or have been developed
with side-effecting constraint systems in mind in the first place — as is the case for the
SLR family of solvers [7]. Many of these solvers are implemented in the static analysis
framework Goblint, which we will also use for our experiments.

1.3 Outline

The rest of this thesis is structured as follows: Aside from providing necessary defini-
tions, e.g., of the programming language considered and the program representation,
Chapter 2 introduces the concept of local traces, which elegantly captures the semantics
of concurrent programs. These local traces serve as the reference semantics throughout
the rest of the thesis. Chapter 2 also introduces a generic framework to refine the
constraint systems according to abstractions of reaching local traces (digests). Chapter 3
characterizes the abstract domains used throughout later parts of this thesis, and in-
troduces the notion of 2-decomposability. Next, Chapter 4 details novel non-relational
(Section 4.1) and relational (Section 4.2) static analyses of the values of global variables.
Chapter 5 provides details on the implementation of these analyses in the static analyzer
Goblint, listing all the additional features covered by the implementation when com-
pared to the version presented in the previous chapter, and provides a comprehensive
evaluation both in terms of runtimes and precision of the analyses. Chapter 6 provides
principled soundness proofs for all novel analyses presented in this work. Lastly, Chap-
ter 7 puts this thesis in the larger context of existing work in the field, and Chapter 8
outlines some promising directions for future work and concludes.

We remark that, at the back of the thesis, there is a list of all symbols along with a
short definition that readers may find helpful to refer to when trying to recall the precise
meaning of some symbol.
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2 A Local Trace Semantics

The perhaps classical semantics to describe the behavior of multi-threaded programs is
some flavor of interleaving semantics — at least for the sequentially consistent case [75],
with which this thesis is also concerned. It considers all ways in which the actions taken
by different threads may interleave. There, states may be given by maps from thread ids
to local configurations of the corresponding threads and another component containing
information on resources shared between threads [42]. A trace may then consist of a
sequence of such states interleaved with pairs denoting which thread took what action.
In this way, all the actions appearing in such a trace are totally ordered w.r.t. each other.
This is the case even for actions taken by different threads that are independent of each
other, e.g., actions only working on local variables of individual threads.

The key idea behind the local trace semantics, then, is to avoid detailed reasoning
based on interleavings and instead, describe the program behavior based on the local
perspectives of the threads of the program: Each thread should only know about the
operations it has performed itself and those parts of the history of other threads that it
has learned about by communicating with them (via having executed a pair of observing
and observable actions). When executing such actions, the perspectives of different
threads are combined — provided they are compatible — to yield a new perspective.

Example 3. Consider for illustration, e.g., the program in Fig. 2.1 and the control-flow graphs
of its thread templates given in Fig. 2.2. A graphical representation of some of its local traces
is given in Fig. 2.3. Each local trace records for each thread the sequence of configurations it
has reached, as well as additional dependencies between these configurations. In this example,
one of the types of additional dependencies is→c which is the create order and goes from the
configuration preceding a thread create action to the first configuration of the newly created
thread, as seen, e.g., in the trace (c) where it connects the configuration of the main thread before
the call to create to the first configuration of thread t1. The other type of additional dependency
is→mg , the mutex order for the mutex mg that relates lock and unlock operations of this mutex
with each other. An edge→mg from (the configuration following) initMT to a lock operation as
seen in three of the local traces denotes that this lock is the first lock of the mutex in this execution.
In the figure, the last configuration of the ego thread in each of the local traces is highlighted.
As remarked before, each thread only knows its own history and the part of the history of other
threads it has learned about by communicating. For example, in the local traces (b) and (d), the
main thread does not know whether the other thread has executed its local action y = 1 yet.
It only learns that this has happened through communication with the other thread — in this
example by acquiring the mutex mg — at which point that action by the other becomes part of
the local perspective of the main thread, as shown in local trace (e).

7



2 A Local Trace Semantics

main :
initMT;
x = create(t1);
lock(m g);
g = 1;
unlock(m g);
return;

t1 :
y = 1;
lock(m g);
g = 2;
unlock(m g);
return;

Figure 2.1: A simple toy program with local variables x and y and global variable g.

The rest of this chapter is structured as follows: Section 2.1 provides some key
definitions, while Section 2.2 introduces the local trace semantics and gives two fixpoint
characterizations (one global and one local) that are then shown to be equivalent.
Section 2.3 introduces digests which are abstractions of the history used to split unknowns
and shows a constraint system refined with digests to be equivalent to the original
system. Section 2.4 then describes the set of actions used for our core subset of a
C-like imperative language, whereas Section 2.5 describes the concrete formalism for
local traces we employ, and Section 2.6 gives some examples of local traces using this
formalism. Section 2.7 then gives some example digests that are tailored to the set of
actions considered here and are abstractions of the locking history. Section 2.8 proposes
a digest that amounts to computing thread ids for dynamically created threads. This
digest is of a particular form where it can be computed based on the current thread
and its creation history only, making it applicable in a wider setting. Section 2.9 finally
characterizes this notion of ego-lane digest.

When compared to the description of the local trace semantics in our earlier work [107]
we consider additional actions here, provide more detailed proofs about the different
formulations of local traces and also provide the notion of digests for refining analyses
already at the level of the concrete semantics and give refined analyses directly, instead
of describing refinement as a wrapper around analyses. Also, the notion of ego-lane
digests is original to this thesis.

2.1 Definitions

While we will later consider a core subset of an imperative, C-like, programming lan-
guage, for now, we remain generic in the specific actions supported by the programming
language and only fix some essential things such as the distinction between local and
global variables. In this way, proofs can be conducted at a higher level of abstraction
and the obtained results do not just apply for one particular instantiation of the local
trace semantics with actions, but for many such instantiations.

Let us consider two finite, disjoint sets X and G of local and global variables, respec-
tively. Let Vars = X ∪ G denote the union of these sets, i.e., all variables appearing
in the program. The understanding here is that each thread has its own copy of local
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2.1 Definitions

u0

main:

u1

u2

u3

u4

u5

u6

initMT;

x = create(t1);

lock(mg);

g = 1;

unlock(mg);

return;

u7

t1:

u8

u9

u10

u11

u12

y = 1

lock(mg);

g = 2;

unlock(mg);

return;

Figure 2.2: CFGs for the thread templates from Fig. 2.1.

initMT

(a)

initMT x=create(t1)

(b)

initMT

→c

y = 1 lock(mg) g = 2 unlock(mg)
→mg

(c)

initMT x=create(t1) lock(mg)

→mg

(d)

initMT x=create(t1) lock(mg)

→c

y = 1 lock(mg) g = 2 unlock(mg)
→mg

→mg

(e)

Figure 2.3: Some local traces of the program from Fig. 2.1.
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2 A Local Trace Semantics

variables, whereas global variables are shared between all threads. Variables may be
of built-in type to compute with, i.e., of type int,1 or have type thread id. We denote
the set of values of type int by Vint, the set of values of type thread id by Vtid, and their
disjoint union by V . The values of type thread id can be copied between variables of
appropriate type, be compared with other thread ids for equality, or be passed to actions
designated as taking thread ids. We implicitly assume that all programs are well-typed,
i.e., a variable either always holds thread ids or int values. We assume that there is
one particular local variable self ∈ X holding the thread id of the current thread. This
variable is assigned to at the start of the main thread and when starting a new thread.
We assume these assignments happen implicitly, and omit them from the programs. At
the start of program execution, we assume that global variables have the value 0 for
global variables of type int, and the value 0tid for global variables of type thread id. For
convenience, we will use 0 to denote both initial values.

Local variables, on the other hand, may initially have any value. A local program state
thus is a (type-correct) mapping σ : X⇒V where σ self ∈ Vtid. Let Σ denote the set of all
local program states.

Let Act and N denote some set of actions and the set of program points respectively.
Each of the finitely many thread templates (from which threads may be dynamically
created once, several times, or never) is then represented by

• some (finite) control-flow graph (CFG) where each edge e ∈ E is of the form
(u, act, u′) for program points u and u′ and an action act, where there is at most
one edge between any two program points u and u′; as well as

• a program point within the control-flow graph where execution is meant to start.
We require that a path from the node corresponding to this program point to all
other program points in the CFG exists.2

W.l.o.g., we assume the control-flow graphs belonging to different thread templates to
be disjoint.3 We can, therefore, identify a thread template with the program point where
its execution starts, and do so in the following. We assume there is a special thread
template main starting at program point u0, which is where we assume execution starts
at the beginning of the program. Furthermore, we assume that only one instance of this
thread is created at runtime and that the first action taken by this thread is always some
special action initMT ∈ Act that is used to initialize the multi-threaded environment
and appears in each program exactly once. Lastly, we assume that the program point u0

has no incoming edges, i.e., initMT is statically known to be executed at most once. We
often give examples as programs from a C-like language, employing control structures

1For simplicity, we consider programs operating on mathematical integers here and thus do not concern
ourselves with issues such as overflows.

2Note that this does not imply that every program point is reachable in program executions, but only that
there are no nodes in the CFG that are not connected to the start point.

3As there are only finitely many thread templates, whenever this is not the case, we may duplicate shared
parts of the control-flow graphs to obtain disjointness.
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2.2 Local Traces

such as if and while and giving the names of program points — where required —
using the syntax C-like languages use for labels. The translation to a control-flow graph
is straightforward for all of our examples and thus not explicitly given.

2.2 Local Traces

As hinted at in the introduction, we identify some actions as observable by other threads
when executing corresponding observing actions (see Table 2.1). The intuition is that a
thread learns about operations performed by the thread executing an observable action,
when it executes a corresponding observing action. We partition the set of actions into

• those that create a new thread (creating),

• those that are observable,

• those that are observing,

• those that are local, i.e., neither of the above.

where a helper function τAct : Act → {creating, observable, observing, local} can be used
to determine the type of a given action. For convenience, we denote the set of all
creating actions by Actcreating = {act | act ∈ Act, τAct act = creating}, and accordingly
for Actobservable as well as for Actobserving and Actlocal.

For now, we do not specify which observable, observing, and local actions there are.
However, we require initMT ∈ Actobservable and fix the set of creating actions to be of the
form x = create(u); where x ∈ X is a local variable receiving the thread id of the newly
created thread, and u ∈ N defines the thread template for the newly created thread
(identified by its first program point).

Apart from that, instantiating this general scheme to concrete sets of actions, and
detailing the associated consistency requirements is deferred to Section 2.4. Similarly,
we do not fix a concrete formalism and representation for local traces here, and instead
describe their properties at a high level of abstraction. A concrete formalism which
describes local traces as graphs and fleshes out all the details is supplied in Section 2.5.

Table 2.1: Observable and observing actions and which concurrency primitive they relate
to. The primitives targeted by this thesis are in bold font.

Observable Action Observing Action Programming Concept

unlock(a) lock(a) Mutex, Monitor, ...
return x′=join(x′) Thread Returning / Joining

g = x/x = g g = x/x = g Writing/Reading a global variable
signal(c) wait(c) Condition Variables

send(chan,v) x = receive(chan) Channel-Based Concurrency, Sockets, ...
set_value get Futures / Promises
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2 A Local Trace Semantics

Let T denote the set of local traces. A local trace should be understood as the local
perspective of a particular thread, the ego thread, on the global execution of the system.
Each local trace t ∈ T ends in some program point u having attained some local program
state σ. This pair (u, σ) can be extracted from a local trace t via the function

sink : T → N × Σ

We remark that, by construction, the thread id contained in σ self is the id of the ego
thread. For convenience, we also define functions id : T → Vtid and loc : T → N
to return the thread id and the program point of the unique sink node, respectively.
Furthermore, we abbreviate getting the value of a local variable x from the sink node of
a local trace t by t(x), i.e., t(x) = v for sink t = (u, σ) and σ x = v.

We assume that there is some set init of initial local traces, i.e., local traces in which
exactly one thread is started, namely one derived from the template main. Thus, in
particular,

t ∈ init =⇒ loc t = u0 ∧ id t = i0 (2.1)

for the start point u0 for the thread template main where i0 ∈ Vtid is the thread id of the
initial thread. Typically, this set init will contain local traces for all possible combinations
of values of locals (other than self), as we usually assume that locals may have any value
at program start.

For every local trace where the ego thread has already made at least one step, there
is a last action in Act executed by the ego thread. It can be extracted by the function
last : T → Act ∪ {⊥}. For local traces in init or local traces where the ego thread has
just been started, last returns ⊥.

W.l.o.g., we assume that every program point u has at most one outgoing edge, along
which a new thread is created. We further assume that the new thread receives as
its initial configuration the configuration of the creating thread — with the exception
that the variable self receives a fresh thread id. Accordingly, we require a function
new : N → T → 2T so that new u1 t either returns the empty set, namely, when the
creation of a thread which starts at u1 is not possible for t, or a set {t1} for a single trace
t1 if such thread creation is possible. In the latter case,

last(t1) = ⊥ sink(t1) = (u1, σ1) (2.2)

where for sink(t) = (u, σ), σ1 = σ ⊕ {self 7→ ν(t)} for some function ν : T → Vtid
providing us with a fresh thread id. As thread ids are unique for a given creation history
in T , one may, e.g., identify the set Vtid with T and let ν be the identity function. We
remark that from the informal description above, the following requirement follows

t′ ∈ new u1 t =⇒ ∃u′ ∈ N , x ∈ X : (loc t, x = create(u1), u′) ∈ E (2.3)

For each edge e = (u, act, v), we also require an operation JeKT : T k → 2T where
the arity k is 2 for actions that are observing, and 1 for actions which are not. The
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returned set of local traces is either empty (i.e., the operation is undefined for the given
arguments), singleton (the operation is defined and deterministic), or a larger set (the
operation is non-deterministic, e.g., when reading unknown input from a user). For
edges with actions that are not observing, this function extends a local trace (provided
as the first argument) by executing the corresponding action. For observing actions, the
second argument is a further local trace ending in a corresponding observable action,
which is additionally incorporated into the local trace, provided both local traces are
consistent with the action taken and each other. Such consistency requirements may,
e.g., demand that both local traces can be incorporated into a joint computation history.
As the formal definition depends on the set of considered actions as well as the details
of the representation of local traces, it is deferred to Section 2.5. Instead, we illustrate
the notion with an example here.

Example 4. Consider again the example program from Fig. 2.1, the corresponding CFGs in
Fig. 2.2, and some of its local traces in Fig. 2.3. Here, applying J(u1, x = create(t1), u2)KT to
the local trace (a) yields the single local trace (b). Applying J(u2, lock(mg), u3)KT to the local
trace (b) and the local trace (a) yields the single local trace (d), applying it to (b) and (c) yields
the single local trace (e). On the other hand, applying J(u2, lock(mg), u3)KT to (b) and (e) yields
an empty set of local traces, as these two local traces are not consistent — among other reasons
because the ego thread in (b) would learn about its own future from (e).

2.2.1 Global Constraint System

The set of all local traces for a given program can then be computed as the least solution
to the following constraint system with the single unknown [T], which takes values
from 2T with the order given by ⊆. We give the constraint system as a side-effecting
constraint system right away. However, no side-effects are used here, and the system
thus is equivalent to an ordinary constraint system.

[T] ⊇ fun _→ (∅, init)
[T] ⊇ fun η → (∅, new u1 η [T]), (u1 ∈ N )

[T] ⊇ fun η → (∅, JeKT (η [T], . . . , η [T])), (e ∈ E)
(2.4)

For clarity of presentation, we here (and subsequently) abbreviate the longish formula⋃{ f (t0, . . . , tk−1) | t0 ∈ T0, . . . , tk−1 ∈ Tk−1} for functions f : T k → 2T and subsets
T0, . . . , Tk−1 ⊆ T by f̄ (T0, . . . , Tk−1). Where the type is clear from the context, we also
refer to this lifted version by f instead of by f̄ .

The constraint system (2.4) globally collects all local traces into [T]. This happens
by, starting from the initial set init of local traces, successively adding the local traces
resulting from applying the right-hand side for each edge of the program (as well as the
function new) to all (combinations of) local traces discovered in the previous iterations.

Proposition 4. The constraint system (2.4) that globally collects all local traces has a least
solution.
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2 A Local Trace Semantics

Proof. We observe that the powerset of local traces forms a complete lattice — as does
the powerset of any set. Further, as all right-hand sides are defined point-wise, they are
monotonic. Thus, by the fixpoint theorem of Knaster-Tarski (recalled as Theorem 1), the
system has a unique least solution.

This unique solution serves as the definition of all (valid) local traces (relative to the
definitions of the functions JeKT and new) and, thus, as our reference trace semantics.
However, in the later proofs, we require a stronger property, namely that the Kleene
fixpoint theorem (as recalled in Theorem 2) is applicable, and thus the least solution
is given by the least-upper bound of the Kleene iterates. The Kleene fixpoint theorem
applies to functions that are Scott-continuous (as recalled in Definition 3).

Proposition 5. The lifted functions (fun _→ init) : 2T → 2T , J(u, act, u′)KT : 2T → 2T for
act 6∈ Actobserving and J(u, act, u′)KT : (2T × 2T ) → 2T for observing actions, as well as the
function new u1 : 2T → 2T are Scott-continuous.

Proof. The function always returning init is constant and thus trivially Scott-continuous.
For non-observing actions along an edge e, and some directed set D, we verify:

JeKT (
⋃

D∈D D) =
⋃

t∈(⋃D∈D)JeKT t =
⋃

D∈D
⋃

t∈DJeKT t =
⋃

D∈D JeKT D

The same argument holds for right-hand sides new u1 . For observable actions, we show
that the function is Scott-continuous for each of its arguments. W.l.o.g., consider fixing
the first argument to some set T.

JeKT (T)(
⋃

D∈D D) =
⋃

t0∈T
⋃

t1∈(
⋃

D∈D)JeKT t0 t1 =
⋃

D∈D
⋃

t1∈D
⋃

t0∈TJeKT t0 t1

=
⋃

D∈D JeKT T D

The proof for the second argument proceeds accordingly, and thus — by Proposition 1 —
it follows that the function JēKT for observing actions also is Scott-continuous.

Proposition 6. The right-hand side function of constraint system (2.4) over the powerset lattice
of local traces 2T is Scott-continuous.

Proof. We observe that a mapping that maps the only unknown [T] to an element in the
powerset of local traces can equivalently be considered just an element of this powerset.
Then, we combine all constraints f from (2.4) into one function F =

⊔
f∈F f given by

F X =
⊔

u1∈N (new u1 X) t
(⊔

(u,act,v)∈E ,act 6∈Actobservable
J(u, act, v)KT X

)
t
(⊔

(u,act,v)∈E ,act∈Actobservable
(J(u, act, v)KT ◦ dup) X

)
t (fun _→ init)

With the observation that the function dup(x) = (x, x) : T → T × T is Scott-continuous,
F is the least upper bound of (compositions of) functions that are Scott-continuous
(Proposition 5), F is also Scott-continuous by Propositions 2 and 3.

Proposition 7. The least solution of the constraint system (2.4) is obtained as the least-upper
bound of all Kleene iterates.

Proof. Follows from Kleene’s fixpoint theorem (Theorem 2) as the right-hand side
function is Scott-continuous and the powerset of local traces forms a complete lattice.
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2.2.2 Localized Constraint System

As a first step towards a constraint system more amenable to abstraction with the end
goal of constructing an abstract interpretation, we first provide a localized constraint
system for local traces. The idea is to have not just one unknown, but several unknowns,
corresponding to program points and observable actions. At the unknowns corresponding
to program points all local traces ending in the respective program point are stored,
whereas all local traces in which the last action is observable are additionally stored at
the unknown corresponding to this observable action. These unknowns do not have
right-hand sides of their own but instead receive all of their values by side-effects. More
formally, the set of unknowns here is given by {[u] | u ∈ N}∪{[act] | act ∈ Actobservable}.
The constraint system is then given by

[u0] ⊇ fun _→ (∅, init)
[u′] ⊇ J(u, act, u′)KLT ((u, act, u′) ∈ E) (2.5)

where the right-hand sides J·KLT are defined in terms of the original right-hand sides
J·KT , distinguishing between the different types of actions. We will now give such
right-hand sides, employing an OCaml-like syntax, which we will also use in the rest of
this thesis.

Recall that, in order to deal with thread creation, the set Act provides the actions
x = create(u1); for u1 ∈ N the first program point in the thread template used to create
the thread, and x ∈ X a local variable which is meant to receive the thread id of the
created thread. For creating actions, the right-hand side is given by

J(u, x = create(u1), u′)KLT η = let T = J(u, x = create(u1), u′)KT (η [u]) in
({[u1] 7→ new u1 (η [u])}, T)

Thus, on top of computing the local trace reaching the subsequent program point, the
local trace of the newly started thread is computed and side-effected to the unknown
corresponding to the program point where this new thread starts.

For local actions act, the right-hand side consists of computing the local trace reaching
the endpoint of the control-flow edge by applying J(u, act, u′)KT , thus

J(u, act, u′)KLT η = (∅, J(u, act, u′)KT (η [u]))

Before turning to the right-hand sides for edges corresponding to observable and
observing actions, we first introduce a function observes : Act→ 2Act that describes for
each observing action the set of observable actions that it may observe. Thus, if an action x
is in the set returned by observes y, it means that the observing action y may observe the
observable action x.

For an observable action act, then, on top of computing the local trace for the control
flow successor, the set of such traces is side-effected to an unknown [act] collecting all
local traces with last action act. Thus,

J(u, act, u′)KLT η = let T = J(u, act, u′)KT (η [u]) in
({[act] 7→ T}, T)
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2 A Local Trace Semantics

(1) J(u, act, u′)KT has type T × T → 2T for act observing, T → 2T for other actions

(2) t ∈ J(u, act, u′)KT (t0, . . . , tk−1) =⇒ loc(t0) = u, last(t) = act and loc(t) = u′

(3) t ∈ J(u, act, u′)KT (t0, t1) =⇒ last(t1) ∈ observes(act)

Figure 2.4: Requirements on J·KT , where requirements (2) and (3) are needed for the
localized constraint system to be correct.

Conversely, for an observing action act, the unknowns for corresponding observable
actions need to be considered in order for them to be incorporated.

J(u, act, u′)KLT η =

∅,
⋃

act′∈
observes act

J(u, act, u′)KT (η [u], η [act′])


Thus, in this constraint system, J·KT is not applied blindly to all possible combinations

of local traces but instead some insights into the characteristics of local traces for which
JeKT for some given edge e may yield a non-empty set are exploited to only apply JeKT
in those cases. These conditions are outlined in Fig. 2.4, where condition (2) states
that J(u, act, u′)KT only is defined for traces ending in u, and condition (3) states that
executing an observing action only yields a new local trace if the local trace supplied as
the second argument actually ends in a corresponding observable action.

We next relate this localized constraint system to the running example considered
throughout this section.

Example 5. Consider again the program from Fig. 2.1, some of its local traces (Fig. 2.3), and
a solution η of the localized constraint system. Then, each local trace from the figure is part
of the set of local traces associated with the unknown corresponding to its sink node. For
example, (a) ∈ η [u1] and (b) ∈ η [u2]. Considering unlock(mg) and initMT to be observable,
and lock(mg) to be observing of both, the local trace (a) is additionally stored at the unknown
[initMT], and the local trace (c) is additionally stored at the unknown [unlock(mg)]. When
constructing the successors for the local traces associated with the unknown [u2], i.e., prolonging
those local traces with the effect of executing the action lock(mg), the unknowns [initMT] and
[unlock(mg)] are consulted, as these actions are in the set observes(lock(mg)). Combining the
local trace (b) stored at [u2] with the local trace (a) stored at [initMT] yields the local trace (d).
Conversely, combining (b) with (c) stored at the unknown [unlock(mg)], yields the local trace
(e). Thus, both (d) and (e), are in η [u3].

To relate solutions of the constraint systems (2.4) and (2.5) to each other, we first need
to establish that (2.5) has a least solution and that it can be attained as the least upper
bound of the Kleene iterates.
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We first observe that, for any set of unknowns X, the set of all maps X → 2T

forms a complete lattice with least element ⊥ = {x 7→ ∅ | x ∈ X}, greatest element
> = {x 7→ T | x ∈ X}, and the least upper bound defined point-wise.

Consider a family of functions π[x] : (X→ 2T )→ 2T , which for an unknown [x] ∈ X
extracts its value from a map. This function is Scott-continuous. We alternatively denote
this function applied to a mapping η for an unknown [x] by η [x]. Also, consider a family
of functions flat[x] : ((X → 2T )× 2T ) → (X → 2T ), which for an unknown [x] ∈ X is
given by flat[x](S, V) = S ∪ {[x] 7→ V} with the ∪ on maps defined point-wise and ∅
bindings omitted for clarity. This function is also Scott-continuous.

Proposition 8. The right-hand side function of constraint system (2.5) over the lattice given
above is Scott-continuous.

Proof. We first re-write the right-hand sides and collect all of them in one constraint.

F η = fun _→ flat[u0](∅, init) t⊔(u,act,u′)∈E
(
flat[u′] (J(u, act, u′)KLT η)

)
As shown before, the least upper bound of Scott-continuous functions is Scott-continuous.
As the function containing init is once more constant, it also is Scott-continuous. It thus
remains to show that flat[u′] (J(u, act, u′)KLT η) is Scott-continuous for all possible types
of edges. As flat[x] is Scott-continuous for all x ∈ X, it thus suffices to study whether
the individual J·KLT are. For thread creation, local actions, and observable actions, this
follows directly from their definition, and the Scott-continuity of J·KT , new, and π[x] for
[x] ∈ X. The same holds for observing actions, with the observation that

J(u, act, u′)KLT η = (∅,
⋃

act′∈observes actJ(u, act, u′)KT (η [u], η [act′]))
=

⋃
act′∈observes act (∅, J(u, act, u′)KT (η [u], η [act′]))

Then, F is given as the least upper bound of (compositions of) functions that are
Scott-continuous, and is thus also Scott-continuous.

Proposition 9. The constraint system (2.5) has a least solution which is obtained as the least-
upper bound of all Kleene iterates.

Next, we relate the least solutions of constraint systems (2.4) and (2.5) to each other to
show the completeness of the localized constraint system.

Theorem 3. Let η denote the least solution of the global constraint system (2.4), and η̄ denote
the least solution of the localized constraint system (2.5). Then, provided all right-hand sides
J·KT fulfill the conditions (1) to (3) from Fig. 2.4,

1. η̄ [u] = {t ∈ η [T] | loc(t) = u} for all u ∈ N ;

2. η̄ [act] = {t ∈ η [T] | last(t) = act} for all act ∈ Actobservable.

17



2 A Local Trace Semantics

Proof. The proof is by fixpoint induction. Here — to simplify the proof — we consider
the contributions of the constraints one at a time. This can be seen as an instance
of a chaotic fixpoint iteration rather than Kleene iteration in that, when considering
the contributions of one constraint, we already take the contributions of all previous
constraints into account. This is justified by the equivalence between Kleene iteration
and chaotic iteration for Scott-continuous right-hand sides over complete lattices [29, 31].
Consider then the i-th approximation ηi to the least solution of (2.4) as well as the i-the
approximation η̄i to the least solution of (2.5).
Let us call property (1) that

η̄i [u] = {t ∈ ηi [T] | loc t = u} (u ∈ N )

η̄i [act] = {t ∈ ηi [T] | last t = act} (act ∈ Actobservable)

For i = 0, the value of all unknowns in both constraint systems is equal to ∅, and
property (1) holds.

First, we consider the constraints corresponding to initialization. The constraint in the
localized constraint system is given by

[u0] ⊇ fun _→ (∅, init)

The constraint in the global system is given by

[T] ⊇ fun _→ (∅, init)

Let us denote by (ηi+1 [T])⊕ the new contribution to [T] and by (η̄i+1 [u0])⊕ the new
contribution to [u0].

{t ∈ (ηi+1 [T])⊕ | loc t = u0} = {t ∈ init | loc t = u0}
= init (by (2.1))
= (η̄i+1 [u0])⊕

Since neither constraint system causes any side-effects here, by induction hypothesis, if
property (1) holds for the i-th approximations, and these constraints are considered, it
also holds for the (i + 1)-th approximation.

Next, for a constraint corresponding to an edge (u, act, u′) ∈ E with a local action act.
The constraint in the localized constraint system is then given by

[u′] ⊇ J(u, act, u′)KLT

with
J(u, act, u′)KLT η = (∅, J(u, act, u′)KT (η [u]))

As act is local, by Prop (1) from Fig. 2.4, the constraint in the global system is given by

[T] ⊇ fun η → (∅, J(u, act, u′)KT (η [T]))
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2.2 Local Traces

Let us denote by (ηi+1 [T])⊕ the new contribution to [T] and by (η̄i+1 [u′])⊕ the new
contribution to [u′]. Then, by induction hypothesis and totality of loc,

(ηi+1 [T])⊕ = J(u, act, u′)KT (ηi [T]) = J(u, act, u′)KT (
⋃

u′′∈N η̄i [u′′])

Thus,

(ηi+1 [T])⊕ = J(u, act, u′)KT (
⋃

u′′∈N η̄i [u′′])
= J(u, act, u′)KT (η̄i [u]) (Prop (2) from Fig. 2.4)
= (η̄i+1 [u′])⊕

Furthermore, all resulting local traces end in u′, as

(ηi+1 [T])⊕

= {t ∈ (ηi+1 [T])⊕ | loc t = u′} ∪ {t ∈ (ηi+1 [T])⊕ | loc t 6= u′}
= {t ∈ (ηi+1 [T])⊕ | loc t = u′} ∪ {t ∈ J(u, act, u′)KT (ηi [T]) | loc t 6= u′}
= {t ∈ (ηi+1 [T])⊕ | loc t = u′} (Prop (2) from Fig. 2.4)

Since neither constraint system causes any side-effects here, by induction hypothesis, if
property (1) holds for the i-th approximations, and these constraints are considered, it
also holds for the (i + 1)-th approximation.

Next, we consider a constraint corresponding to an edge (u, act, u′) ∈ E for an observ-
able action act. The constraint in the localized constraint system is given by

[u′] ⊇ J(u, act, u′)KLT

with
J(u, act, u′)KLT η = let T = J(u, act, u′)KT (η [u]) in

({[act] 7→ T)}, T)

As act is observable, by Prop (1) from Fig. 2.4, the constraint in the global system is
given by

[T] ⊇ fun η → (∅, J(u, act, u′)KT (η [T]))

Let us denote by (ηi+1 [T])⊕ the new contribution to [T] and by (η̄i+1 [u′])⊕ and
(η̄i+1 [act])⊕ the new contributions to [u′] and [act], respectively. For the contribu-
tion to the left-hand side, the same argument applies as in the case of a local action. We
thus consider the side-effects caused by the localized constraint system. First, once more
by induction hypothesis and totality of loc,

(ηi+1 [T])⊕ = J(u, act, u′)KT (ηi [T]) = J(u, act, u′)KT (
⋃

u′′∈N η̄i [u′′])

Thus,

{t ∈ (ηi+1 [T])⊕ | last t = act}
= {t ∈ J(u, act, u′)KT (

⋃
u′′∈N η̄i [u′′]) | last t = act}

= {t ∈ J(u, act, u′)KT (η̄i [u]) | last t = act} (Prop (2) from Fig. 2.4)
= J(u, act, u′)KT (η̄i [u]) (Prop (2) from Fig. 2.4)
= (η̄i+1 [act])⊕
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2 A Local Trace Semantics

We remark that these equalities make use of the fact that J·KT for sets of local traces is
defined point-wise. Furthermore, all resulting local traces have last action in act, as

(ηi+1 [T])⊕

= {t ∈ (ηi+1 [T])⊕ | last t = act} ∪ {t ∈ (ηi+1 [T])⊕ | last t 6= act}
= {t ∈ (ηi+1 [T])⊕ | last t = act} ∪ {t ∈ J(u, act, u′)KT (ηi [T]) | last t 6= act}
= {t ∈ (ηi+1 [T])⊕ | last t = act} (Prop (2) from Fig. 2.4)

Therefore, by induction hypothesis, if property (1) holds for the i-th approximations,
and these constraints are considered, it also holds for the (i + 1)-th approximation.

Next, we consider a constraint corresponding to an edge (u, act, u′) ∈ E with an
observing action act. The constraint in the localized constraint system is given by

[u′] ⊇ J(u, act, u′)KLT

with

J(u, act, v)KLT η =

∅,
⋃

act′∈
observes act

J(u, act, u′)KT (η [u], η [act′])


The constraint in the global system is given by

[T] ⊇ fun η → (∅, J(u, act, u′)KT (η [T], η [T]))

Let us denote by (ηi+1 [T])⊕ the new contribution to [T] and by (η̄i+1 [u′])⊕ the new
contributions to [u′]. Then, once more by induction hypothesis and totality of loc,

(ηi+1 [T])⊕ = J(u, act, u′)KT (ηi [T], ηi [T]) = J(u, act, u′)KT ((
⋃

u′′∈N η̄i [u′′]), ηi [T])

and, by definition,

(η̄i+1 [u′])⊕ =
⋃

act′∈
observes act

J(u, act, u′)KT (η̄i [u], η̄i [act′])

Thus,

(ηi+1 [T])⊕

= J(u, act, u′)KT ((
⋃

u′′∈N η̄i [u′′]), ηi [T])
= J(u, act, u′)KT (η̄i [u], ηi [T]) (Prop (2) from Fig. 2.4)
= J(u, act, u′)KT (η̄i [u], {t ∈ ηi [T] | last(t) ∈ observes act}) (Prop (3) from Fig. 2.4)
= J(u, act, u′)KT (η̄i [u],

⋃
act′∈observes act{t ∈ ηi [T] | last(t) = act′})

= J(u, act, u′)KT (η̄i [u],
⋃

act′∈observes act η̄i [act′]) (IH)
=

⋃
act′∈

observes act
J(u, act, u′)KT (η̄i [u], η̄i [act′])

= (η̄i+1 [u′])⊕
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Furthermore, all resulting local traces end in u′, as

(ηi+1 [T])⊕

= {t ∈ (ηi+1 [T])⊕ | loc t = u′} ∪ {t ∈ (ηi+1 [T])⊕ | loc t 6= u′}
= {t ∈ (ηi+1 [T])⊕ | loc t = u′} ∪
{t ∈ J(u, act, u′)KT (ηi [T], ηi [T]) | loc t 6= u′}

= {t ∈ (ηi+1 [T])⊕ | loc t = u′} (Prop (2) from Fig. 2.4)

Since neither constraint system causes any side-effects here, by induction hypothesis, if
property (1) holds for the i-th approximations, and these constraints are considered, it
also holds for the (i + 1)-th approximation.

Last, consider constraints corresponding to a create action along an edge (u, x =

create(u1), u′) ∈ E . In the localized constraint system, the constraint is given by

[u′] ⊇ J(u, x = create(u1), u′)KLT

with

J(u, x = create(u1), u′)KLT η = let T = J(u, x = create(u1), u′)KT (η [u]) in
({[u1] 7→ new u1 (η [u])}, T)

The relevant constraints in the global system are given by

[T] ⊇ fun η → (∅, J(u, x = create(u1), u′)KT (η [T]))
[T] ⊇ fun η → (∅, new u′′ η [T]) (u′′ ∈ N )

By Eq. (2.3), for every trace t′ ∈ new u′′ t, there is a corresponding edge (loc t, x =

create(u′′), u′′′) ∈ E . It thus suffices to consider constraints for each edge (u, x =

create(u1), u′) ∈ E together with the constraint containing new u1 where one consider as
an argument only those local traces that end in u. Thus, the following constraints of the
global system are considered:

[T] ⊇ fun η → (∅, J(u, x = create(u1), u′)KT (η [T]))
[T] ⊇ fun η → (∅, new u1 {t ∈ η [T] | loc t = u})

Let us denote by (ηi+1 [T])⊕ the new contribution to [T] and by (η̄i+1 [u′])⊕ and
(η̄i+1 [u1])

⊕ the new contributions to any [u′] and [u1], respectively. Then

(ηi+1 [T])⊕

= J(u, x = create(u1), u′)KT (ηi [T]) ∪ new u1 ({t ∈ ηi [T] | loc t = u})
= J(u, x = create(u1), u′)KT (

⋃
u′′∈N η̄i [u′′]) ∪ new u1 (η̄

i [u]) (IH and loc total)

We now consider separately the cases where u′ = u1 and the case where u′ 6= u1. First,
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2 A Local Trace Semantics

for the case where u′ 6= u1. Then

{t ∈ (ηi+1 [T]) | loc t = u′}
= {t ∈ J(u, x = create(u1), u′)KT (

⋃
u′′∈N η̄i [u′′]) | loc t = u′}∪

{t ∈ new u1 (η̄
i [u]) | loc t = u′}

= {t ∈ J(u, x = create(u1), u′)KT (
⋃

u′′∈N η̄i [u′′]) | loc t = u′} (by Eq. (2.2))
= {t ∈ J(u, x = create(u1), u′)KT (η̄i [u]) | loc t = u′} (Prop (2) from Fig. 2.4)
= J(u, x = create(u1), u′)KT (η̄i [u]) (Prop (2) from Fig. 2.4)
= (η̄i+1 [u′])⊕

and

{t ∈ (ηi+1 [T]) | loc t = u1}
= {t ∈ J(u, x = create(u1), u′)KT (

⋃
u′′∈N η̄i [u′′]) | loc t = u1}

∪{t ∈ new u1 (η̄
i [u]) | loc t = u1}

= {t ∈ new u1 (η̄
i [u]) | loc t = u1} (Prop (2) from Fig. 2.4)

= new u1 (η̄
i [u]) (by Eq. (2.2))

= (η̄i+1 [u1])
⊕

and the property holds. Now for the case where u′ = u1.

{t ∈ (ηi+1 [T]) | loc t = u′}
= {t ∈ J(u, x = create(u′), u′)KT (

⋃
u′′∈N η̄i [u′′]) | loc t = u′}

∪{t ∈ new u′ (η̄i [u]) | loc t = u′}
= {t ∈ J(u, x = create(u1), u′)KT (η̄i [u]) | loc t = u′}
∪{t ∈ new u′ (η̄i [u]) | loc t = u′} (Prop (2) from Fig. 2.4)

= J(u, x = create(u1), u′)KT (η̄i [u])
∪{t ∈ new u′ (η̄i [u]) | loc t = u′} (Prop (2) from Fig. 2.4)

= J(u, x = create(u′), u′)KT (η̄i [u]) ∪ new u′ (η̄i [u]) (by Eq. (2.2))
= (η̄i+1 [u′])⊕

Furthermore, all resulting traces end either in u′ or u1 as

(ηi+1 [T])⊕

= {t ∈ (ηi+1 [T])⊕ | loc t ∈ {u′, u1}}∪
{t ∈ (ηi+1 [T])⊕ | loc t 6∈ {u′, u1}}

= {t ∈ (ηi+1 [T])⊕ | loc t ∈ {u′, u1}}∪
{t ∈ J(u, x = create(u1), u′)KT (ηi [T]) | loc t 6∈ {u′, u1}}∪
{t ∈ new u1 ({t ∈ ηi [T] | loc t = u}) | loc t 6∈ {u′, u1}}

= {t ∈ (ηi+1 [T])⊕ | loc t ∈ {u′, u1}}∪
{t ∈ new u1 ({t ∈ ηi [T] | loc t = u}) | loc t 6∈ {u′, u1}} (Prop (2) from Fig. 2.4)

= {t ∈ (ηi+1 [T])⊕ | loc t ∈ {u′, u1}} (by Eq. (2.2))

Therefore, by induction hypothesis, if property (1) holds for the i-th approximations,
and these constraints are considered, it also holds for the (i + 1)-th approximation. This
concludes the case distinction over the different actions. Thus, altogether, if property (1)
holds for the i-th approximations, it also holds for the (i + 1)-th approximation.
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Thus, both the global and the localized constraint systems describe the same set of
local traces when the appropriate side conditions from Fig. 2.4 are met. To construct
appropriate abstractions, we will focus on the localized constraint system — as it
provides us with flow-sensitivity within each thread without having to code program
locations into abstract states by having a separate unknown for each program point.

2.3 Digests & Refined Constraint System

Massaging a constraint system to obtain dedicated unknowns per program point, which
is part of what was done in the previous section, is one of the standard ways to obtain a
flow-sensitive abstract interpretation once the domain of the unknowns is changed from
sets of (local) traces to abstract values from some suitable domain — without having to
include, e.g., a dedicated abstraction of the program counter in the abstract states.

In the multi-threaded setting, the step from the global to the localized constraint
system is a step towards an analysis that is flow-sensitive within each thread. Later,
we aim for analyses that go beyond this, and are, in some sense, sensitive in further
abstractions of the computational past.

One way to do this would be to fix a specific refinement, construct a bespoke analysis
considering this refinement, and then provide an intricate correctness argument relating
abstract values for split unknowns of the constraint system arising from the analysis to
the values of (non-split) unknowns of the localized concrete constraint system.

Here, we take a different approach and instead, just as we did when giving the
localized constraint system, provide for the refinement already at the level of the
concrete semantics. In this way, we can argue about general refinements according to
abstractions of the computational history dubbed digests. Many of the analyses in later
chapters as well as their soundness proofs will be generic in the digest, and thus allow
for refinement according to any digest, as long as it satisfies some properties, i.e., is
admissible. Thus, the soundness proof of an analysis is decoupled from proving the
admissibility of some digest — which provides an elegant separation of concerns.

Let A be some set of information that can be extracted from a local trace by a
(total) function αA : T →A. We call αA t∈A the digest of some local trace t. Let
Ju, actK]A : Ak→2A be the effect on the digest when performing a k-ary action act ∈ Act
for a control flow edge originating at u. We require for e = (u, act, v) ∈ E ,

∀A0, . . . , Ak−1 ∈ A : |Ju, actK]A(A0, . . . , Ak−1)| ≤ 1 (2.6)

∀t0, . . . , tk−1 ∈ T : αA(JeKT (t0, . . . , tk−1)) ⊆ Ju, actK]A(αA t0, . . . , αA tk−1) (2.7)

where αA is lifted element-wise to sets. While the first restriction ensures determinism,
the second intuitively ensures that Ju, actK]A soundly abstracts JeKT .

For thread creation, we additionally require a helper function new]
A : N → N → A →

2A that returns for a thread created at an edge originating from u and starting execution

23
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at program point u1 the new digest.

∀A0 ∈ A : |new]
A u u1 A0| ≤ 1 (2.8)

∀t0 ∈ T : αA(new u1 t0) ⊆ new]
A loc(t0) u1 (αA t0) (2.9)

Furthermore, we require that whenever there is a successor digest for the creating thread,
there is also an appropriate digest for the newly created thread, i.e.,

Ju, x=create(u1)K
]
A(A0) 6= ∅ =⇒ new]

A u u1 A0 6= ∅ (2.10)

Also, we define for the initial digest at the start of the program

init]A = {αA t | t ∈ init} (2.11)

We will later refer to a set A together with suitable definitions of αA, Ju, actK]A, new]
A,

and init]A as the A−digest. It will always be clear from the context whether we are
referring to a single element A ∈ A or the whole system when talking about a digest.

Definition 4. A digest A is admissible, when αA, new]
A, and Ju, actK]A fulfill the requirements

(2.6), (2.7), (2.8), (2.9), (2.10), and (2.11).

When a digest A is admissible, it is possible to perform control-point splitting according
to the elements of A. This means that unknowns [u] for program points u are replaced
with new unknowns [u, A], A ∈ A. Analogously, unknowns for observable actions [act]
are replaced with unknowns [act, A] for A ∈ A, yielding the following new constraint
system:

[u0, A] ⊇ fun _→ (∅, {t | t ∈ init, A = αA(t)})
for A ∈ A

[u′, A′] ⊇ (J([u, A0], x = create(u1), u′)KLTA η)

for (u, x = create(u1), u′) ∈ E , A′ ∈ Ju, x = create(u1)K
]
A(A0)

[u′, A′] ⊇ (J([u, A0], act, u′), A1KLTA η)

for (u, act, u′) ∈ E , act ∈ Actobserving, A′ ∈ Ju, actK]A(A0, A1)

[u′, A′] ⊇ (J([u, A0], act, [u′, A′])KLTA η)

for (u, act, u′) ∈ E , act ∈ Actobservable, A′ ∈ Ju, actK]A(A0)

[u′, A′] ⊇ (J([u, A0], act, u′)KLTA η)

for (u, act, u′) ∈ E , act ∈ Actlocal, A′ ∈ Ju, actK]A(A0)

(2.12)

for A0, A1 ∈ A. The right-hand sides in the resulting constraint system thus always
additionally receive the digest of the local trace about to be extended, plus potentially
some extra digests to be able to access the correct unknowns and/or to re-direct side-
effects to the appropriate unknowns:
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2.3 Digests & Refined Constraint System

• When act is observing, the new right-hand side additionally gets the digest A1

associated with the local traces that are to be incorporated;

• When act is observable, the digest A′ of the resulting local trace is passed, so the
side-effect can be redirected to the appropriate unknown.

The right-hand sides are then given for a create action by

J([u, A0], x = create(u1), u′)KLTA η = let T = J(u, x = create(u1), u′)KT (η [u, A0]) in
({[u1, new]

A u u1 A0] 7→ new u1 (η [u, A0])}, T)

where, by abuse of notation, we denote by new]
A u u1 A0 the single element of that set,

which has at most one element by (2.8) and is non-empty here by (2.10). For observing
actions act, the right-hand sides are given by

J([u, A0], act, u′), A1KLTA η =

∅,
⋃

act′∈
observes act

J(u, act, v)KT
(
η [u, A0], η [act′, A1]

)
and for an observable action act by

J([u, A0], act, [u′, A′])KLTA η = let T = J(u, act, u′)KT (η [u, A0]) in
({[act, A′] 7→ T}, T)

and for all local actions act by

J([u, A0], act, u′)KLTA η = let T = J(u, act, u′)KT (η [u, A0]) in
(∅, T)

Before we can relate (least) solutions of this constraint system to least solutions of (2.5),
we once again need to establish that the new constraint system has a least solution and
that it is attained as the least upper bound of all Kleene iterates.

Proposition 10. The right-hand side function of constraint system (2.5) over the lattice mapping
(extended) unknowns to sets of local traces with the order as discussed in Section 2.2.2 is Scott-
continuous.

Proof. As a first step, once again all right-hand sides are collected together in one
constraint.

F η = (
⊔

A∈A(fun _→ flat[u0,A](∅, {t | t ∈ initA = αA(t)})))t
Fcreating η t Fobserving η t Fobservable η t Flocal η
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with

Fcreating η =
⊔

(u,x=create(u1),u′)∈E ,A′∈Ju,x=create(u1)K
]
A(A0)(

flat[u′,A′] (J([u, A0], x = create(u1), u′)KLTA η)
)

Fobserving η =
⊔

(u,act,u′)∈E ,act∈Actobserving,A′∈Ju,actK]A(A0,A1)(
flat[u′,A′] (J([u, A0], act, u′), A1KLTA η)

)
Fobservable η =

⊔
(u,act,u′)∈E ,act∈Actobservable,A′∈Ju,actK]A(A0)(

flat[u′,A′] (J([u, A0], act, [u′, A′])KLTA η)
)

Flocal η =
⊔

(u,act,u′)∈E ,act∈Actlocal,A′∈Ju,actK]A(A0)(
flat[u′,A′] (J([u, A0], act, u′)KLTA η)

)
for A0, A1 ∈ A. As the least upper-bound of Scott-continuous functions is Scott-
continuous, flat[x] is Scott-continuous, it once more suffices to check whether the in-
dividual functions per edge (J·KLTA here) are also Scott-continuous. This once more
follows directly from their definition, and the Scott-continuity of J·KT , new, and π[x]
for [x] ∈ X, where the same insight into the right-hand side for observable actions
already used in the proof of Proposition 8 is used again. Then, F is given as the least
upper bound of (compositions of) functions that are Scott-continuous, and is thus also
Scott-continuous.

Proposition 11. The constraint system (2.12) has a least solution which is obtained as the
least-upper bound of all Kleene iterates.

Next, we relate the least solution of a constraint system (2.12) for an admissible
digest A to the least solution of the constraint system (2.5) to establish soundness and
completeness of the family of refined constraint systems.

Let η be the unique least solution of the constraint system from (2.5). We construct
from it a mapping η̄ from the unknowns of constraint system (2.12) to 2T by

η̄ [u, A] = η [u] ∩ TA (u ∈ N , A ∈ A)
η̄ [act, A] = η [act] ∩ TA (act ∈ Act, act observable, A ∈ A)

where TA denotes the subset of local traces where {t | t ∈ T , αA(t) = A}.
Theorem 4. Provided that the digest A is admissible, η̄ is the least solution of the constraint
system (2.12) if and only if η is the least solution of the constraint system (2.5).

Proof. The proof is by fixpoint induction along the same lines as the proof of Theorem 3.
Consider the i-th approximation ηi to the least solution of (2.5) as well as the i-the
approximation η̄i to the least solution of (2.12).

Let us call property (1) that

η̄i [u, A] = ηi [u] ∩ TA (u ∈ N , A ∈ A)
η̄i [act, A] = ηi [act] ∩ TA (act ∈ Actobservable, A ∈ A)
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2.3 Digests & Refined Constraint System

For i = 0, the value of all unknowns in both constraint systems is equal to ∅ and
property (1) holds.

Next, we show that for constraints corresponding to a control-flow edge as well as
the constraint for initialization executed in lock-step, provided that property (1) holds
before the update, it still holds after the update. For this, it suffices to consider the
contribution of the constraint as well as its side-effects (if any are triggered).

First, consider the constraints corresponding to the initialization

[u0, A] ⊇ fun _→ (∅, {t | t ∈ init, A = αA(t)}) for A ∈ A
[u0] ⊇ fun _→ (∅, init)

The right-hand side does not access any unknowns; it thus suffices to verify that

{t | t ∈ init, A = αA(t)} = init∩ TA

holds for all A ∈ A. Thus, if property (1) holds for the i-th approximations, and these
constraints are considered, it also holds for the (i + 1)-th approximation.

Now, consider a local action act and an edge (u, act, u′) ∈ E . The family of constraints
in the refined constraint system is given by

[u′, A′] ⊇ J([u, A0], act, u′)KLTA for A′ ∈ Ju, actK]A(A0)

with
J([u, A0], act, u′)KLTA η = let T = J(u, act, u′)KT (η [u, A0]) in

(∅, T)

The constraints of the localized system are given by

[u′] ⊇ J(u, act, u′)KLT ((u, act, u′) ∈ E)

with

J(u, act, u′)KLT η = (∅, J(u, act, u′)KT (η [u]))

Let us denote by (ηi+1 [u′])⊕ the new contribution to [u′] and by (η̄i+1 [u′, A′])⊕ the new
contributions to [u′, A′]. Then, by induction hypothesis and α total,

(ηi+1 [u′])⊕ = J(u, act, u′)KT (ηi [u]) = J(u, act, u′)KT
(⋃

A∈A η̄i [u, A]
)

and
(η̄i+1 [u′, A′])⊕ =

⋃
A0∈A,A′∈Ju,actK]A(A0)

J(u, act, u′)KT (η̄i [u, A0])
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2 A Local Trace Semantics

Thus,

(ηi+1 [u′])⊕ ∩ TA′

= J(u, act, u′)KT
(⋃

A0∈A η̄i [u, A0]
)
∩ TA′

=
(⋃

A0∈AJ(u, act, u′)KT (η̄i [u, A0])
)
∩ TA′

=
((⋃

A0∈A,A′∈Ju,actK]A(A0)
J(u, act, u′)KT (η̄i [u, A0])

)
∩ TA′

)
∪((⋃

A0∈A,A′ 6∈Ju,actK]A(A0)
J(u, act, u′)KT (η̄i [u, A0])

)
∩ TA′

)
=

((⋃
A0∈A,A′∈Ju,actK]A(A0)

J(u, act, u′)KT (η̄i [u, A0])
)
∩ TA′

)
∪∅ (by (2.7))

=
⋃

A0∈A,A′∈Ju,actK]A(A0)
J(u, act, u′)KT (η̄i [u, A0]) (by (2.6))

= (η̄i+1 [u′, A′])⊕

Since neither constraint system causes any side-effects here, if property (1) holds for the
i-th approximations, and these constraints are considered, it also holds for the (i + 1)-th
approximation.

Now consider an observable action act along an edge (u, act, u′) ∈ E . The family of
constraints in the refined constraint system is given by

[u′, A′] ⊇ J([u, A0], act, [u′, A′])KLTA for A′ ∈ Ju, actK]A(A0)

with
J([u, A0], act, [u′, A′])KLTA η = let T = J(u, act, u′)KT (η [u, A0]) in

({[act, A′] 7→ T}, T)

The constraints of the localized system are given by

[u′] ⊇ J(u, act, u′)KLT

with
J(u, act, v)KLT η = let T = J(u, act, v)KT (η [u]) in

({[act] 7→ T}, T)

For the contribution to the left-hand sides, the same argument as given for the case
of a local action applies. We thus turn to the triggered side-effects: Let us denote by
(ηi+1 [act])⊕ the new contribution (via side-effect) to [act] and by (η̄i+1 [act, A′])⊕ the
new contributions to [act, A′]. Then, by induction hypothesis and α total,

(ηi+1 [act])⊕ = J(u, act, u′)KT (ηi [u]) = J(u, act, u′)KT
(⋃

A∈A η̄i [u, A]
)

and
(η̄i+1 [act, A′])⊕ =

⋃
A0∈A,A′∈Ju,actK]A(A0)

J(u, act, u′)KT (η̄i [u, A0])

Thus,
(ηi+1 [act])⊕ ∩ TA′ = (η̄i+1 [act, A′])⊕

once again by the same reasoning as for the contribution to the left-hand side in case
of local actions. Therefore, if property (1) holds for the i-th approximations, and these
constraints are considered, property (1) also holds for the (i + 1)-th approximation.
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2.3 Digests & Refined Constraint System

Now consider an observing action act along an edge (u, act, u′) ∈ E . The family of
constraints in the refined constraint system is then given by

[u′, A′] ⊇ J([u, A0], act, u′), A1KLTA for A′ ∈ Ju, actK]A(A0, A1)

with

J([u, A0], act, u′), A1KLTA η =

∅,
⋃

act′∈
observes act

J(u, act, u′)KT
(
η [u, A0], η [act′, A1]

)
The constraints of the localized system are given by

[u′] ⊇ J(u, act, u′)KLT

with

J(u, act, u′)KLT η =

∅,
⋃

act′∈
observes act

J(u, act, u′)KT (η [u], η [act′])


Let us denote by (ηi+1 [u′])⊕ the new contribution to [u′] and by (η̄i+1 [u′, A′])⊕ the new
contributions to [u′, A′]. Then

(ηi+1 [u′])⊕

=
⋃

act′∈
observes act

J(u, act, u′)KT (ηi [u], ηi [act′])

=
⋃

act′∈
observes act

J(u, act, u′)KT
(⋃

A∈A η̄i [u, A],
⋃

A∈A η̄i [act′, A]
)

(by IH and α total)

and

(η̄i+1 [u′, A′])⊕

=
⋃

A0∈A,A1∈A,A′∈Ju,actK]A(A0,A1)

⋃
act′∈

observes act
J(u, act, u′)KT

(
η̄i [u, A0], η̄i [act′, A1]

)
Thus,

(ηi+1 [u′])⊕ ∩ TA′

=

(⋃
act′∈

observes act
J(u, act, u′)KT

((⋃
A∈A η̄i [u, A]

)
,
(⋃

A∈A η̄i [act′, A]
)))
∩ TA′

=
⋃

act′∈
observes act

(
J(u, act, u′)KT

((⋃
A∈A η̄i [u, A]

)
,
(⋃

A∈A η̄i [act′, A]
))
∩ TA′

)
Now, consider for each act′ ∈ observes act:

J(u, act, u′)KT
((⋃

A∈A η̄i [u, A]
)

,
(⋃

A∈A η̄i [act′, A]
))
∩ TA′

=
⋃

A0∈A,A1∈A
(
J(u, act, u′)KT

(
η̄i [u, A0], η̄i [act′, A1]

)
∩ TA′

)
=

⋃
A0∈A,A1∈A,A′∈Ju,actK]A(A0,A1)

(
J(u, act, u′)KT

(
η̄i [u, A0], η̄i [act′, A1]

)
∩ TA′

)
∪⋃

A0∈A,A1∈A,A′ 6∈Ju,actK]A(A0,A1)

(
J(u, act, u′)KT

(
η̄i [u, A0], η̄i [act′, A1]

)
∩ TA′

)
=

⋃
A0∈A,A1∈A,A′∈Ju,actK]A(A0,A1)

(
J(u, act, u′)KT

(
η̄i [u, A0], η̄i [act′, A1]

)
∩ TA′

)
∪

∅ (by (2.7))
=

⋃
A0∈A,A1∈A,A′∈Ju,actK]A(A0,A1)

(
J(u, act, u′)KT

(
η̄i [u, A0], η̄i [act′, A1]

))
(by (2.6))
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2 A Local Trace Semantics

Inserting into the equation above, we obtain

(ηi+1 [u′])⊕ ∩ TA′

=
⋃

act′∈
observes act

(
J(u, act, u′)KT

((⋃
A∈A η̄i [u, A]

)
,
(⋃

A∈A η̄i [act′, A]
))
∩ TA′

)
=

⋃
act′∈

observes act

⋃
A0∈A,A1∈A,A′∈Ju,actK]A(A0,A1)

(
J(u, act, u′)KT

(
η̄i [u, A0], η̄i [act′, A1]

))
=

⋃
A0∈A,A1∈A,A′∈Ju,actK]A(A0,A1)

⋃
act′∈

observes act
J(u, act, u′)KT (η [u, A0], η [act′, A1])

= (η̄i+1 [u′, A′])⊕

Since neither constraint system causes any side-effects here, if property (1) holds for
the i-th approximations, and constraints corresponding to an observing action are
considered, it also holds for the (i + 1)-th approximation.

It thus remains to consider creating actions. The family of constraints in the refined
constraint system for an edge (u, x = create(u1), u′) ∈ E is then given by

[u′, A′] ⊇ J([u, A0], x = create(u1), u′)KLTA for A′ ∈ Ju, x = create(u1)K
]
A(A0)

with

J([u, A0], x = create(u1), u′)KLTA η = let T = J(u, x = create(u1), u′)KT (η [u, A0]) in
({[u1, new]

A u u1 A0] 7→ new u1 (η [u, A0])}, T)

where we once again denote by new]
A u u1 A0 the single member of that set, which exists

by (2.8) and (2.10). The constraints of the localized system are given by

[u′] ⊇ J(u, act, u′)KLT

with

J(u, x = create(u1), v)KLT η = let T = J(u, x = create(u1), v)KT (η [u]) in
({[u1] 7→ new u1 (η [u])}, T)

Let us denote by (ηi+1 [u′])⊕ the new contribution to [u′] and by (η̄i+1 [u′, A′])⊕ the new
contributions to [u′, A′]. Then by induction hypothesis and α total,

(ηi+1 [u′])⊕ = J(u, x = create(u1), v)KT (ηi [u])
= J(u, x = create(u1), v)KT

(⋃
A∈A η̄i [u, A]

)
and

(η̄i+1 [u′, A′])⊕ =
⋃

A0∈A,A′∈Ju,x=create(u1)K
]
A(A0)

J(u, x = create(u1), u′)KT (η̄i [u, A0])

Thus,
(ηi+1 [u′])⊕ ∩ TA′ = (η̄i+1 [u′, A′])⊕

once again by the same reasoning as for the contribution to the left-hand side in case
of local actions. Next, we consider the side-effects caused by such constraints: Let
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2.3 Digests & Refined Constraint System

us denote by (ηi+1 [u1])
⊕ the new contribution to [u1] and by (η̄i+1 [u1, A′])⊕ the new

contributions to [u1, A′]. Then, by induction hypothesis and α total,

(ηi+1 [u1])
⊕ = new u1 (η

i [u]) = new u1
(⋃

A∈A η̄i [u, A]
)

and
(η̄i+1 [u1, A′])⊕ =

⋃
A∈A,A′∈new]

A u u1 A new u1 (η̄
i [u, A])

Thus

(ηi+1 [u1])
⊕ ∩ TA′

= new u1
(⋃

A∈A(η̄
i [u, A])

)
∩ TA′

=
(⋃

A∈A new u1 (η̄
i [u, A])

)
∩ TA′

=
((⋃

A∈A,A′∈new]
A u u1 A new u1 (η̄

i [u, A])
)
∩ TA′

)
∪((⋃

A∈A,A′ 6∈new]
A u u1 A new u1 (η̄

i [u, A])
)
∩ TA′

)
=

((⋃
A∈A,A′∈new]

A u u1 A new u1 (η̄
i [u, A])

)
∩ TA′

)
∪∅ (by (2.9))

=
⋃

A∈A,A′∈new]
A u u1 A new u1 (η̄

i [u, A]) (by (2.8))

= (η̄i+1 [′1, A′])⊕

Therefore, if property (1) holds for the i-th approximations, and these constraints are
considered, it also holds for the (i + 1)-th approximation. This concludes the case
distinction over the different actions. Thus, altogether, if property (1) holds for the i-th
approximations, it also holds for the (i + 1)-th approximation.

Fig. 2.5 provides an overview over the different constraint systems for local traces, which
were shown to be equivalent to each other, and the respective unknowns they employ.

Remark 1. Given two admissible digests A1 and A2, we define the product digest A1 ×A2

with k-ary operations lifted as follows

Ju, actK]A1×A2

(
(A1

0, A2
0), . . . , (A1

k−1, A2
k−1)

)
=

{(
A1′,A2′

)}
for Ju, actK]A1

(A1
0, . . . , A1

k−1) =
{

A1′
}

and Ju, actK]A2
(A2

0, . . . , A2
k−1) =

{
A2′
}

∅ otherwise

with new]
A and init]A lifted point-wise to sets of tuples, and αA defined by the product of the

individual abstraction functions. The resulting product digest then also is admissible.

Remark 2. As a consequence of Eq. (2.6), digests cannot track information arising from non-
deterministic actions taken by the program, such as which value is returned for a non-deterministic
assignment or input provided from the user. This limitation is only needed for technical reasons
and can be lifted fairly easily at the expense of more intricate proofs.
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2 A Local Trace Semantics

Name Notation Unknowns

Global Constraint System J·KT { [T] }

Localized Constraint System J·KLT N ∪Actobservable

Refined Constraint System
(for a given digest A)

J·KLTA
{[u, A] | u ∈ N , A ∈ A}∪

{[act, A] | act ∈ Actobservable, A ∈ A}

Figure 2.5: Constraint systems for the concrete semantics.

2.4 Considered Set of Actions

While the results from previous sections are quite generic in the set of actions supported
by the programming language (except in examples), the concrete formalism for local
traces, instances of digests, as well as analyses are naturally specific to the set of
considered actions. For the analyses presented in this thesis, we consider a core subset
of an imperative, C-like, programming language. In Chapter 5, we discuss how the
implementation supports additional constructs, which do not form part of the core
subset, and places where the semantics of C programs deviates from the idealized view
taken here. In this section, we describe the set of actions supported by this imperative
C-like language, detailing which are local, observing, observable, and creating. Fig. 2.6
provides a quick overview of these actions.

Thread Creation

As detailed in the previous section, the considered creating actions are x = create(u1)

for x ∈ X , u1 ∈ N where u1 determines which thread template is used, and x received
the thread id of the newly created thread. Thread creation is creating.

Initialization of the Environment

As outlined previously, we assume for technical reasons that there is an action initMT
that is the first action performed by the main thread. This action can be understood to
initialize the multi-threaded environment. This action is observable.

Assignments Involving Local Variables

There are actions corresponding to writing a local variable of the form x = e, where
x ∈ X and the expression e is from some set Exp of expressions, which we assume
contains accesses to local variables, some set of suitable arithmetic constants, arithmetic
operations, and comparison operations. Additionally, we assume there is a special
expression ? that represents a non-deterministic assignment. We do not detail the
operations here, but only detail the assumptions we make: We assume all occurring
expressions to be type-correct and that for all local writes the type of the variable x on
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2.4 Considered Set of Actions

Creating x = create(u1) x ∈ X , u1 ∈ N
Observable initMT

unlock(a) a ∈ M
signal(s) s ∈ S
return

Observing x = join(x′) x ∈ X , x′ ∈ X
wait(s) s ∈ S
lock(a) a ∈ M

Local x = g x ∈ X , g ∈ G
g = x x ∈ X , g ∈ G
x = e x ∈ X , e ∈ Exp
Pos(e) e ∈ Exp \ {?}
Neg(e) e ∈ Exp \ {?}

Figure 2.6: Considered actions by type with observes relation indicated by arrows.

the left-hand side matches the type of the expression e on the right-hand side. Recall
that, here, thread ids can only be copied from one variable to another and compared for
equality — limiting the shape of expressions. We assume an evaluation function J·KExp
is given so that for each local program state σ : Σ and expression e 6≡?, JeKExp σ returns
a value in V . For convenience, we here encode the results of comparisons as integers
where 0 denotes false and every non-zero value true. These actions are local.

Guards on Local Variables

The set of actions provides actions Pos(e) and Neg(e) for e ∈ Exp \ {?} of integer type.
The intended semantics is that J(u,Pos(e), u′)KT yields a new local when e evaluates to
a non-zero value, whereas J(u,Neg(e), u′)KT yields a new local trace when e evaluates to
0. The local program state stays unmodified in both cases. These actions are local.

Locking and Unlocking of Mutexes

Our language provides actions for locking and unlocking mutexes that ensure mutual
exclusion. For simplicity, we only consider a fixed finite setM of mutexes. If, instead, a
semantics with dynamically created mutexes were to be formalized, we could identify
mutexes, e.g., via the local trace of the creating thread (as we did for threads). For
each mutex a ∈ M, the set of actions provides operations lock(a) and unlock(a). These
operations are assumed to return no value, i.e., do always succeed. Additionally, we
assume that unlock(a) for a ∈ M is only called by a thread currently holding the lock
of a, and that mutexes are not re-entrant; i.e., trying to lock a mutex already held is
undefined. Actions unlock(a) for a ∈ M are observable, actions lock(a) are observing,
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2 A Local Trace Semantics

with
observes (lock(a)) = {initMT, unlock(a)} for a ∈ M

where the action initMT is observed whenever the ego thread is the first one to acquire
the mutex a, and an action unlock(a) is observed otherwise.

Reading from and Writing to Globals

For reading from and writing to globals, we consider for x ∈ X and g ∈ G the actions
g = x; (copy value of the local x into the global g) and x = g; (copy value of the global
g into the local x) only. Thus, g = g + 1; for global g is not directly supported by our
language but must be simulated by reading from g into a local, followed by incrementing
the local and copying the resulting value back into g.

We assume for the concrete semantics that program execution is always sequentially
consistent, and that both reads and writes to globals are atomic. The latter is enforced by
introducing a dedicated mutex mg ∈ M for each global g (sometimes referred to as the
atomicity mutex for g) which is acquired before g is accessed and subsequently released.
This means that each access A to g occurs as lock(m g); A; unlock(m g);. Under this
proviso, the current value of each global g read by some thread can be determined just
by inspection of the current local trace, and these operations are local.

Returning and Joining

For technical reasons, we assume that there is a special local variable ret ∈ X that the
returning thread assigns a value to and that the value of this variable is passed to the
thread calling join. We introduce the following actions:

• return; terminates the current thread, and

• x=join(x′); where x, x′ ∈ X and x′ is a local variable holding a thread id; blocks
the ego thread, until the thread with the given thread id has terminated. As in
Pthreads, at most one thread may call join for a given thread id. The value of ret
at the endpoint of the joined thread is then assigned to x.

The action return is observable, whereas joins are observing with

observes (x = join(x′)) = {return} for x, x′ ∈ X

Waiting and Signaling

Extending our language and semantics with waiting and signaling is not completely
routine, partly because there is a variety of related concepts known by these names.
Here, we follow more closely the line of condition variables as provided by Pthreads [24]
and restrict ourselves to signaling and waiting only (broadcasting could also be handled,
but would require a generalization of our notion of local traces). Deviating from the
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semantics of Pthreads, we do not consider spurious wakeups, i.e., a wait returning,
despite the condition variable not being signaled.

Let S denote a finite set of condition variables. If instead, a semantics with dynamically
created condition variables were to be formalized, we could once more identify condition
variables by the local trace of the creating thread. The set of actions contains actions
signal(s) and wait(s) for each s ∈ S . Access to a condition variable s ∈ S should be
protected by some mutex. Here, we model that by assuming that the program, instead
of a single wait action (which would take a condition variable s and mutex m), always
executes the sequence unlock(m); wait(s); lock(m); where the action wait(s) blocks
until a signal for s is received. In that case, it proceeds with re-acquiring the protecting
mutex m. In the local trace semantics, a thread executing the wait action for condition
variable s thus expects a matching signal to have been executed after its unlock(m). We
remark that, as in Pthreads, it is not necessary to hold the mutex to call signal. Actions
signal(s) are observable, whereas actions wait(s) are observing with

observes (wait(s)) = {signal(s)} for s ∈ S

We remark that to simulate a semantics that allows for spurious wakeups, a program
may be modified to non-deterministically branch between a no-op and executing the
wait, i.e., the sequence unlock(m); x=?; if (x) { wait(s); } lock(m); for a fresh
local variable x instead of the sequence outlined above.

2.5 Formalism for Local Traces

Next, we give the formalism we use for local traces, instantiated to the actions from
Section 2.4 — thereby completely specifying the semantics of J·KT , for which thus
far only some requirements that need to be met have been presented. This concrete
concurrency semantics imposes restrictions onto when binary actions are defined. In
particular, a binary operation JeKT may only be defined for a pair of local traces t0 and
t1 if certain parts of t0 and t1 represent the same computation.

We first turn to the requirements for a sequence of states for a single thread to be
consistent within itself and later extend this to the interactions between different threads.

A raw trace of a single thread i ∈ Vtid is a sequence λ = ū0act1 . . . ūn−1actnūn for
states ūj = (uj, σj) ∈ N × Σ with σj self = i, and actions actj ∈ Act corresponding to
the local state transitions of the thread i starting in the configuration ū0 and executing
actions actj. In the sequence, every action lock(m), wait(s), and x = join(x′) is assumed
to succeed, and when accessing a global g, any value may be read. The same applies to
the return value of an action x=join(x′). In particular, this means that for every substring
(ui, σi)acti+1(ui+1, σi+1) appearing in λ, there is a corresponding edge (ui, acti+1, ui+1) ∈
E . Furthermore, there are requirements on local states depending on the action acti+1:

(S1) If it is observable (acti+1 ∈ Actobservable), a write to a global (acti+1 ∈ {g = x |
g ∈ G, x ∈ X}), a lock operation (acti+1 ∈ {lock(a) | a ∈ M}), a wait operation
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(acti+1 ∈ {wait(s) | s ∈ S}), or a guard (acti+1 ∈ {Pos(e) | e ∈ Exp \ {?}} ∪
{Neg(e) | e ∈ Exp \ {?}}), then σi = σi+1, i.e, the local state is unmodified.

(S2) If acti+1 ≡ Pos(e), then JeKExp σi 6= 0; and if acti+1 = Neg(e), then JeKExp σi = 0, i.e.,
the edge corresponding to the guard is only taken when the guard holds.

(S3) If acti+1 ≡ (x = e), and e 6≡ ?, then σi+1 = σi ⊕ {x 7→ JeKExp σi} where ⊕ denotes
destructive updates of a map, i.e., the local states agree on the values of all variables
except for the one that is assigned, and the assigned value is consistent with the
local state. For e ≡ ?, we have σi+1 ∈ {σi⊕{x 7→ v} | v ∈ Vτ} where τ corresponds
to the type of x.

(S4) If acti+1 ≡ (x = g) or acti+1 = (x = join(x′)), we have once more σi+1 ∈ {σi ⊕
{x 7→ v} | v ∈ Vτ}, i.e., the local states agree on all values except those that are
modified.

One can view λ as an acyclic graph whose nodes are the 3-tuples (j, uj, σj), j = 0, . . . , n,
and whose edges are ((j− 1, uj−1, σj−1), actj, (j, uj, σj)), j = 1, . . . , n. Let V(λ) and E(λ)
denote the set of nodes and edges of this graph, respectively. Let Λ(i) denote the set of
all individual raw traces for thread i, and Λ the union of all these sets.

A raw global trace is an acyclic graph τ = (V, E) where V =
⋃{V(λi) | i ∈ I} and

E =
⋃{E(λi) | i ∈ I} for a set I of thread ids and raw local traces λi ∈ Λ(i). We demand

that i0 ∈ I, i.e., each raw global trace contains a raw local trace for the main thread. We
remark that due to containing thread ids in σ self, the nodes are unique, even when the
numbering is applied per thread. On the set V, we define the program order as the set of
all pairs ū→p ū′ for which there is an edge (ū, act, ū′) in E. To formalize our notion of
local traces, we extend the program order to a causality order, which additionally takes
the order in which threads are created and joined, as well as the order in which mutexes
are acquired and released, and the order in which waits and signals are executed into
account.

For a ∈ M, let a+ ⊆ V denote the set of nodes ū where an incoming edge labeled
lock(a) exists, i.e., ∃x (x, lock(a), ū) ∈ E, and a− analogously for unlock(a). We require
that every mutex that is unlocked has been locked before by the same thread, and thus
demand that for each ū ∈ a− appearing in the local trace there is a ū′ ∈ a+ such that
ū′ →?

p ū (where →?
p denotes the transitive closure of →p) and there is no unlock of a

between the two actions, i.e. 6 ∃ū′′ ∈ a− : ū′ →?
p ū′′ →?

p ū.
By the same token, let s+ the set of nodes with an incoming edge signal(s) and s−

those with an incoming edge wait(s). Analogously, let J and R denote the sets of nodes
in V having an incoming edge labeled x=join(x′), and return, respectively, for any local
variables x, x′. On the other hand, let C denote the set of nodes with an outgoing edge
labeled x=create(u1) (for any local variable x and program point u1). Let S denote the
set of minimal nodes w.r.t.→?

p, i.e., the points at which threads start and let 0 the node
(0, u0, σ0) where σ0 self = i0. Recall that, by convention, the initial thread executes the
action initMT before any other actions. Let 1 denote the node with an incoming edge
corresponding to initMT.
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A global trace t then is represented by a tuple (τ,→c,→j, (→a)a∈M, (→s)s∈S ) where τ

is a raw global trace and the relations→c, →j, →a (a ∈ M), →s (s ∈ S) are called the
create, join, locking, and signaling orders and record additional dependencies between
the different thread configurations. The causality order ≤ of t then is defined as the
reflexive and transitive closure of the union

→p ∪ →c ∪ →j ∪
⋃

a∈M
→a ∪

⋃
s∈S
→s

These orders need to satisfy the following properties:

• Causality order ≤ is a partial order with unique least element 0;

• Create order: →c⊆ C × (S \ {0}): ∀s ∈ (S \ {0}) : |{z | z →c s}| = 1, that is,
every thread except the initial thread is created by exactly one appearance of a
create(...) action in the trace and ∀x ∈ C : |{z | x →c z}| ≤ 1, i.e., each appearance
of a create(...) action in the trace creates at most one thread. Additionally, for
((j− 1, uj−1, σj−1), x=create(v), (j, uj, σj)) ∈ E and (j− 1, uj−1, σj−1) →c (0, v, σ′0),
we have σ′0 = σj−1 ⊕ {self 7→ i′} for some thread id i′ where σj x = i′, i.e., the
creating and the created thread agree on the thread id of the created thread and
the value of all locals is copied over. It remains to tie the thread id i′ to the result
of calling the function ν used to compute new thread ids: Let us refer to the node
(j− 1, uj−1, σj−1) by c. Consider the subgraph of t that is induced by the set of all
nodes x, s.t. x ≤ c, i.e., the maximal subgraph with c as the maximal element w.r.t.
the causality order ≤. We denote this sub-graph by ↓c (t), and demand that it is a
local trace and that i′ = ν(↓c (t)).

• Join order: →j⊆ R× J: ∀j′ ∈ J : |{z | z→j j′}| = 1 and ∀r′ ∈ R : |{z|r′ →j z}| ≤ 1,
that is, each join action in the traces joins exactly one thread also appearing
in the trace and each thread is joined at most once. Additionally, for ((j −
1, uj−1, σj−1), x=join(x′), (j, uj, σj)) ∈ E and ((j′ − 1, uj′−1, σ′j′−1),
return, (j′, uj′ , σ′j′)) ∈ E and (j′, uj′ , σ′j′) →j (j, uj, σj): σj−1 x′ = σ′j′−1 self, and σj x =

σ′j′−1 ret, i.e., the thread that is being joined has the thread id stored in x′ and after
the join, the return value is assigned to x;

• Locking order: ∀a ∈ M :→a⊆ (a− ∪ 1)× a+: ∀x ∈ (a− ∪ 1) : |{z | x →a z}| ≤ 1
and ∀y ∈ a+ : |{z | z→a y}| = 1, that is, for a mutex a every lock is preceded by
exactly one unlock (or it is the first lock) of a, and each unlock is directly followed
by at most one lock. A consequence of defining the lock order in this way is that
mutexes are not re-entrant, as we have laid out in the exposition.

• Signaling order: ∀s ∈ S :→s⊆ (s+ × s−): ∀x ∈ s+ : |{z | x →s z}| ≤ 1 and
∀y ∈ s− : |{z | z→s y}| = 1, i.e., for a condition variable s, every wait is preceded
by exactly one signal to s, and each signal to s directly precedes at most one wait
on s. Furthermore, the signal(s) needs to happen concurrently to the wait(s) for the
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signal not to be lost. Thus, consider for each s+ →s s− the immediate predecessor
w of s− w.r.t. program order (where w →p s−). The edge corresponding to the
action wait(s) then originates at w. s+ must then not appear in the maximal
subgraph of t with w as the maximal element w.r.t. the causality order ≤. We thus
demand that s+ 6∈↓w (t).

Additionally, we require a consistency condition on values read from globals, cor-
responding to our assumption of sequential consistency (see Section 2.4). For ((j −
1, uj−1, σj−1), x = g, (j, uj, σj)) ∈ E, there is a unique maximal node (j′, uj′ , σj′) with
respect to ≤ such that either ((j′ − 1, uj′−1, σj′−1), g = y, (j′, uj′ , σj′)) ∈ E or ((j′ −
1, uj′−1, σj′−1), initMT, (j′, uj′ , σj′)) ∈ E and (j′, uj′ , σj′) ≤ (j− 1, uj−1, σj−1). The unique-
ness of such a maximal node is, in fact, already ensured by →mg , as every write to a
global g is immediately succeeded by an unlock(mg) operation and every read of a global
g is immediately preceded by a lock(mg) operation. Then, in case the corresponding
action is a write to the global, σj x = σj′−1 y, i.e., the value read for the global is the last
value written to it. Alternatively, if the corresponding action is initMT, then σj x = 0 as
all globals initially have the value 0.

A global trace t is local if it has a unique maximal element ū = (j, u, σ) (w.r.t. ≤). The
functions sink and last as required for a local trace formalism (see Section 2.1) are then
defined to return the tuple (u, σ), respectively the action act along the edge from the
program order predecessor of ū (if there is any) and ⊥ otherwise. For a local trace using
our formalism, we denote by last_writeg : T → E a function to extract the maximal
write to a global if one appears in the local trace, and the initMT call otherwise as defined
above. We also remark that for each node n appearing in a local trace, ↓n (t) is once
again a local trace with sink node n.

The partial functions new u1 t for program point u1 and JeKT for control-flow edges e
then are defined by extending given local traces appropriately. On top of this intuitive
definition, we outline the technical definition, verifying that requirements (1)− (3) from
Fig. 2.4 hold in the process.

For observable and local actions, an argument local trace t with maximal element
ū = (j, u, σ) of t, and a control-flow edge (u′, act, u′′) the set of resulting local traces
is empty whenever u 6= u′. Otherwise, the set of candidate traces is obtained by
adding a node ū′′ = (j + 1, u′′, σ′) to t as well as an edge (ū, act, ū′′), corresponding to
ū →p ū′′ in the program order, where σ′ is chosen such that the ego-lane fulfills the
requirements (S1)–(S4) on local states. The set of resulting local traces is then given
by filtering out those candidates that do not fulfill the requirements on the orders
→c,→j, (→a)a∈M, (→s)s∈S or the consistency condition on the values of globals read.
We remark that in all resulting local traces, ū′′ is the maximal element, thus fulfilling
requirement (2) from Fig. 2.4.

For observing actions, and argument traces (t0, t1) where t0 has the maximal element
ū = (j, u, σ), and a control-flow edge (u′, act, u′′), the set of resulting local traces is
empty whenever u 6= u′. Similarly, the set of resulting traces is empty if the last
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action of t1 is not in observes act (requirement (3) from Fig. 2.4). Otherwise, the set of
candidate traces is obtained by taking the union of both t0 and t1 and adding a new
node ū′′ = (j + 1, u′′, σ′) as well as an edge (ū, act, ū′′), corresponding to ū →p ū′′ in
the program order, where σ′ is chosen such that the ego-lane fulfills the requirements
(S1)–(S4) on local states. Additionally, depending on the action, a new element is added
to the orders: For an action lock(a), v̄→a ū′′ is added, where v̄ is the maximal element
of t1. Analogously, for wait(s), v̄→s ū′′ and for x = join(x′), v̄→s ū′′ are added. The set
of resulting local traces is then given by filtering out those candidates that do not fulfill
the requirements on the orders→c,→j, (→a)a∈M, (→s)s∈S or the consistency condition
on the values of globals read, and then filtering out those global traces that are not
local traces. We remark that in all resulting local traces (that have a maximal element
by definition), because of the inserted edges, the maximal element is ū′′, thus fulfilling
requirement (2) from Fig. 2.4.

For a creating action and an edge (u′, x = create(u1), u′′) and argument trace t with
maximal element ū = (j, u, σ), the set of resulting local traces is empty whenever u 6= u′.
Otherwise, the set of candidate traces is obtained by adding a node ū′′ = (j+ 1, u′′, σ′) to
t as well as an edge (ū, act, ū′′), corresponding to ū→p ū′′ in the program order, where
σ′ is chosen such that the ego-lane fulfills the requirements (S1)–(S4) on local states.
The set of resulting local traces is then given by filtering out those candidates that do
not fulfill the requirements on the orders→c,→j, (→a)a∈M, (→s)s∈S or the consistency
condition on the values of globals read, and then filtering out those global traces that are
not local traces. We remark that in all resulting local traces, ū′′ is the maximal element,
thus fulfilling requirement (2) from Fig. 2.4.

For the function new u1 t, where argument trace t has maximal element ū = (j, u, σ), the
set of resulting local traces is empty whenever there is no edge (u, x = create(u1), u′) ∈ E .
Otherwise, a new node ū1 = (0, u1, σ1) is inserted where σ1 = σ ⊕ {self 7→ ν(t)}.
Additionally, ū→c ū1 is added, making ū1 the maximal element. Thus, the requirement
Eq. (2.3) and those from Fig. 2.4 are fulfilled.

Proposition 12. The presented formalism fulfills the requirements (1)-(3) outlined in Fig. 2.4,
and Theorem 3 thus applies to the considered instance of the local trace semantics.

2.6 Examples for Local Traces

Consider the program given in Fig. 2.7. Graphical representations of some of its local
traces are given in Figs. 2.8 to 2.10.

Fig. 2.8 is a local trace of the thread t1 in which it is the first one to acquire the mutex
a, then sets its local variable z, and finally releases the mutex again. The sink node of
this local trace is highlighted in bold. Additionally, the create order is highlighted in
blue, and the mutex order for mutex a is highlighted in red. We remark that the node
1 corresponds to the node (1, u′1, σ′1) here. We assume that the σi and σ′i in Fig. 2.8 are
consistent mappings from the local variables {x, y, z, ret} to concrete values from V .
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main :
initMT;
x = create(t2);
y = create(t1);
signal(s);
lock(m g);
g = 1;
unlock(m g);
z = 28;
return;

t1 :
lock(a);
z = 1;
unlock(a);
wait(s);
lock(a);
z = join(x);
unlock(a);
lock(m g);
g = 2;
unlock(m g);
x = create(t2);
return;

t2 :
lock(a);
signal(s);
unlock(a);
ret = 12;
return;

Figure 2.7: Example program highlighting the supported features. For this program, ex-
ecution begins at program point main, and x, y, z are local variables, whereas
g is a global variable. To ensure atomicity, every access to the global g is
protected by the mutex mg, which we omit in the further examples. We
remark that signaling the condition variable s happens while holding a in t2,
while this is not the case if the signal comes from the main thread.

For the more involved examples, we now omit the internal structure of the nodes and
display them as circles. For all figures, we assume them to represent legal calculations.

Consider now the local trace given in Fig. 2.9. The graph highlights the create order,
the join order, as well as the locking orders for mutexes mg and a and the signaling
order for condition variable s. The unique sink node of this local trace is highlighted in
bold in the figure.

We remark that the order →mg , together with the program order of the threads
whenever they hold the mutex mg, totally orders the accesses to the global variable
g, in this case denoting that the access of the main thread comes before the access of
the thread t2. This is not the case for the signaling order: The two signal operations
occurring in the local trace in Fig. 2.9 are unordered w.r.t. each other, not just when
considering →s, but also when considering the entire causality order. This is a key
difference between the signaling order and the mutex order.

We proceed by giving two example local traces of the program and highlighting
how certain local traces can not be combined to yield new local traces as one of the
consistency requirements is violated.

First, consider the local traces shown in Fig. 2.10. In the local trace (a) on the left,
thread t2 is the first thread to acquire a. After signaling s, t2 unlocks a again, and thread
t1 acquires it. Finally, thread t2 unlocks a. The local trace (b) on the right, on the other
hand, represents a sub-computation of (a). Let t′0 denote the local trace (a) and t′1 denote
the local trace (b). Then, when computing J(u,wait(s), u′)KLT (t′0, t′1), the raw global trace
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(0, u0, σ0) (1, u1, σ1)
initMT

(2, u2, σ2)
x=create(t2)

(0, u′0, σ′0) (1, u′1, σ′1)
lock(a)

(2, u′2, σ′2)
z = 1

(3, u′3, σ′3)
unlock(a)

→c

→a

Figure 2.8: Local trace of the program in Fig. 2.7, detailing the node structure. Here,
we assume that program points are labeled consecutively and that the first
program point of the main thread is called u0, whereas the first program
point of t1 is called u′0.

initMT x=create(t2) y=create(t1) signal(s) lock(mg) g = 1 unlock(mg)

lock(a) z = 1 unlock(a) wait(s) lock(a) z = join(x) unlock(a) lock(mg) g = 2

lock(a) signal(s) unlock(a) ret = 12 return

→c

→c

→j

→mg →mg

→a

→a →a→s

Figure 2.9: Local trace of the program in Fig. 2.7; For this program, execution begins
at program point main, and x, y, z are local variables, whereas g is a global
variable. To ensure atomicity, every access to the global g is protected by the
mutex mg, which we omit in the further examples.
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initMT x=create(t2)

lock(a) z = 1 unlock(a) wait(s)

lock(a) signal(s) unlock(a)

→c

→c
→a

→a

→s

(a) Local trace ending in unlock(a); Possible raw global trace
resulting from combination with local trace on the right
indicated in dashed lines.

initMT

lock(a) signal(s)

→c
→a

(b) Local trace ending in the ac-
tion signal(s).

Figure 2.10: Local traces of the program in Fig. 2.7 highlighting requirements on the
signaling order.

shown in (a) when also considering dashed lines is one of the candidate traces. This
raw global trace, however, is not a global trace and thus also not a local trace: The
operations signal(s) and wait(s) are not unordered w.r.t. each other in the causality order
≤. Intuitively, the signal happens too early, as it is not concurrent with the wait in this
execution, and can thus not cause thread t1 to stop waiting.

2.7 Some Digests Abstracting Locking Histories

After having fixed a set of actions considered in our instance of the local trace semantics
and having outlined the concrete formalism employed in previous sections, this section
now provides some digests tailored to this set of considered actions. The examples in
this section focus on digests that — in some sense — compute abstractions of locking
histories.

As a first instance, consider digests representing the current lockset of the ego thread.
The concept of computing sets of held locks for the ego thread at each program point
is not novel. To the contrary, it is a standard technique widely employed for the static
analysis of multi-threaded software, useful not just for the analysis of globals, but, e.g.,
also when trying to detect data races. We express this standard technique as a digest
here. In this case, A = 2M, and αA t is defined to consider the history of the ego thread
only, and collect all mutexes a for which since the last call of lock(a), unlock(a) has not
been called yet. The corresponding right-hand sides for inductively computing the
digests are given in Fig. 2.11. We remark that, as a new thread always starts with an
empty lockset, new]

A u u1 S always returns the set containing the empty lockset. Other
than that, the definition of Ju, lock(a)K]A(S, S′) is of particular interest: While it excludes
the case that a mutex that is already held is locked again, note that it does not restrict the
set of compatible traces, when the intersection S′ ∩ S is non-empty. Even if the thread
who unlocked the mutex a was holding some other mutex b at that time, and the thread
now calling lock(a) currently holds b, that does not mean that they are incompatible
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init]A = {∅}
new]

A u u1 S = {∅}

Ju, lock(a)K]A (S, S′) =

{
∅ if a ∈ S

{S ∪ {a}} otherwise

Ju, unlock(a)K]A S =

{
∅ if a 6∈ S

{S \ {a}} otherwise
Ju, actK]A (S, S′) = {S} (other observing)

Ju, actK]A S = {S} (other non-observing)

Figure 2.11: Right-hand sides for expressing locksets as a digest.

— the thread unlocking a might also have unlocked b by now. The right-hand side for
Ju, unlock(a)K]AS here is defined to exclude the case where a mutex that is not held is
unlocked.

Refining an analysis according to this instance amounts to computing separate abstract
values per lockset and program point, and keeping for every observable action the set
of mutexes which were held after the corresponding action occurred. For unlock actions,
we will later refer to this set of mutexes as the background lockset.

Proposition 13. The lockset digest from Fig. 2.11 with αA(t) defined to inductively collect the
set of currently held mutexes along the ego-lane of t is an admissible digest.

Proof. Properties (2.6), (2.8), and (2.10) from Section 2.3 hold by construction. For (2.7),
we consider the case of locking a mutex in detail:

∀t0, t1 ∈ T : αA(J(u, lock(a), v)KT (t0, t1)) ⊆ Ju, lock(a)K]A(αA t0, αA t1)

If the ego thread in t0 already holds the mutex a, i.e., a ∈ αA(t0), J(u, lock(a), v)KT (t0, t1)

yields an empty set, and nothing is to be shown. In case a 6∈ S = αA(t0), if there is a
resulting trace t′ ∈ J(u, lock(a), v)KT (t0, t1), the ego thread in t′ holds mutexes S ∪ {a},
and thus αA(t′) = S ∪ {a}. Thus, for an action corresponding to locking a mutex, the
property holds. For unlock, the argument proceeds similarly.

For the other actions, we observe that, in the concrete semantics, the set of mutexes
currently held by the ego-thread remains unchanged along any edge where the action
does not correspond to locking or unlocking some mutex. The same holds for the
digests. Thus, for any edge and action not corresponding to locking or unlocking
mutexes and local traces t0 . . . tk where αA(tk) = Sk and t′ ∈ JeKT (t0, . . . , tk−1), we have
αA(t′) = S0 ∈ {S0} = Ju, actK]A(S0, . . . , Sk−1).

Lastly, properties (2.9) and (2.11) follow from the observation that new threads always
start with the empty lockset.

As such admissibility proofs are fairly mechanical in nature and mostly rely on an
appropriately defined abstraction function αA, we will in the subsequent chapters usually
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init]A = {∅}
new]

A u u1 L = {L}
Ju, actK]A L = {L} (other non-observing)
Ju, actK]A (L, L′) = {L∪L′} (other observing)

Ju, lock(a)K]A (L, L′) =

{
∅ if a∈L ∧ a 6∈L′

{L∪L′∪{a}} otherwise

Figure 2.12: Right-hand sides for refining according to encountered lock operations.

not conduct (detailed) admissibility proofs for digests, and instead limit ourselves to
providing the key intuition where necessary.

Remark 3. Alternatively, one could give stronger rules for Ju, wait(s)K]A(S, S′) and also for
Ju, x = join(x′)K]A(S, S′) that always return ∅ whenever S ∩ S′ 6= ∅. For wait(s), this is the
case as two operations signal(s) and wait(s) during both of which some common mutex a is
held are always ordered w.r.t. each other and thus combining two such local traces never yields
a valid new local trace. For join(x′), this is the case as a mutex that the thread still holds at
return is never released, and thus the thread calling join(x′) cannot have acquired it since the
corresponding thread returned.

We do not make use of this stronger definition in the following to ensure that the lockset digest
fits nicely into the framework of ego-lane digests (which will be defined in Section 2.9) and that
the predicate compat]A there need not distinguish between different actions.

As a further instance, consider tracking which mutexes have been locked at least once in
the local trace. In this case, we once again have A = 2M. Now, at lock(a), local traces in
which the ego thread knows some thread has performed a lock(a) cannot be combined
with local traces that contain no lock(a). Additionally, a newly created thread knows
about the lock events which have occurred in its creator and its initial digest thus comes
from its parent. The corresponding right-hand sides are given in Fig. 2.12. This scheme
naturally generalizes to counting how often some action (e.g., a write to a global g)
occurred, stopping exact bookkeeping at a constant (1 in this case).

2.8 Thread IDs as a Digest

While, in the previous section, abstractions of the locking history were tracked as a
digest, one can also track an abstraction of the encountered thread create actions. Here,
we propose to abstract such creation histories in a way that leads to an analysis of
abstract thread ids, and their uniqueness. Such abstract thread ids are a key ingredient
when dealing with systems where dynamic thread creation is supported (which leads
to a potentially unbounded number of threads), as is the case for programs in the core
language considered in this thesis.
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To obtain thread ids, we identify threads by their thread creation history, i.e., by
sequences of create edges. As these sequences may grow arbitrarily, we collect all creates
occurring after the first repetition into a set to obtain finite abstractions.

Example 6. In the program from Fig. 2.13, the first thread created by main receives the abstract
thread id (main · 〈u1, t1〉, ∅). It creates a thread with abstract thread id (main · 〈u1, t1〉 ·
〈u3, t1〉, ∅). At program point u3, the latter creates a thread starting at t1 and receiving the
abstract thread id (main · 〈u1, t1〉, {〈u3, t1〉}) — as do all threads subsequently created along
this edge.

Create edges, however, may also be repeatedly encountered within the creating thread,
namely in a loop. To deal with this, we track, for each thread, the set C of already
encountered create edges. When a create edge is encountered again, the created thread
receives a non-unique thread id.

Example 7. The first time the main thread reaches program point u2 in the program from
Fig. 2.13, the created thread is assigned the unique abstract thread id (main · 〈u2, t1〉, ∅). In
subsequent loop iterations, the created threads are no longer kept separate and thus receive the
non-unique id (main, {〈u2, t1〉}).

Formally, let NC and NS denote the subsets of program points with an outgoing edge
labeled x=create(...), and of first program points of thread templates, respectively. Let
P ⊆ NC ×NS denote the set of pairs relating thread creation nodes with the starting
points of the created threads. The set V ]

tid,A of abstract thread ids then consists of
all pairs (i, s) ∈ (main · P∗)× 2P in which each pair 〈u, f 〉 occurs at most once. The
abstract thread id of the main thread is given by (main, ∅). Elements in (main · P∗)×{∅}
represent the unique thread ids, i.e., abstract thread ids whose concretizations contain, for
each local trace t, at most one concrete thread id appearing in t.4 Elements (i, s) where
s 6= ∅, on the other hand, are ambiguous, i.e., may represent multiple concrete thread ids
appearing in some local trace t.

4This definition may seem a little unusual, but is a result of having non-determinism in the concrete
semantics (several states in init and allowing assignments x =?), and using local traces as concrete
thread ids. Uniqueness per local trace and thus per execution is sufficient here, as we do not attempt to
relate different executions to each other.

main :
x = g; // PP u1
y = create(t1);
for(i = 0; i < 5; i++) {
// PP u2
z = create(t1);

}

t1 :
g = 42; // PP u3
y = create(t1);

Figure 2.13: Program with multiple thread creations.
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2 A Local Trace Semantics

We consider not only abstract thread ids as part of the digest — but additionally
track sets of executed thread creations within the current thread as they are needed to
compute the thread ids of newly started threads. Accordingly, we set A = V ]

tid,A × 2P

and define the right-hand sides as shown in Fig. 2.14, where ī denotes the set of pairs
occurring in the sequence i. The function αA then is defined inductively in the intuitive
manner.

Using αA, it is possible to give a concretization function γV ]tid,A
: V ]

tid,A → 2Vtid from an

abstract thread id to the set of concrete thread ids such that

∀t ∈ T : αA t = (i], _) =⇒ id t ∈ γV ]tid,A
i] (2.13)

holds. Assume that we have identified the thread ids with thread creation histories, i.e.,
local traces. In this case, the concretization can, e.g., be given by

γV ]tid,A
i] = {↓w (t) | t ∈ T , (i], _) = αA t, last t = ⊥, ∃w : w→c (0, sink t)}

where, by abuse of notation, we denote by (0, sink t) its flattening into a 3-tuple. That
is, the concretization is given by the set of local traces ending in an action creating a
thread for which the sequence of create actions in the created thread agrees with the one
recorded in V ]

tid,A.

We remark that the concretizations of different V ]
tid,A are thus disjoint, and require that

this property holds for the chosen concrete thread id domain Vtid and the concretization
function γV ]tid,A

:

∀i]0, i]1 ∈ V
]
tid,A : i]0 6= i]1 =⇒ γV ]tid,A

i]0 ∩ γV ]tid,A
i]1 = ∅ (2.14)

Example 8. Consider again the program from Fig. 2.13 with right-hand sides from Fig. 2.14, and
assume that the right-hand side for observing actions returns the set containing its first argument.
The initial thread has the abstract thread id i0 = (main, ∅). At its start point, the digest thus is
(i0, ∅). At the create edge originating at u1, a new thread with id (main · 〈u1, t1〉, ∅) is created.

init]A = {((main, ∅), ∅)}
Ju, x=create(u1)K

]
A (i, C) = {(i, C ∪ {〈u, u1〉})}

Ju, actK]A (i, C) = {(i, C)} (other non-observing)

new]
A u u1 ((d, s), C) =

let (d′, s′) = (d, s) ◦ 〈u, u1〉 in
if s′ = ∅ ∧ 〈u, u1〉 ∈ C then ((d, {〈u, u1〉}), ∅)

else ((d′, s′), ∅)

(d, s) ◦ 〈u, u1〉 =
if d = (d0 · 〈u, u1〉) · d1 then
(d0, s ∪ d̄1 ∪ {〈u, u1〉})

else if s = ∅ then (d · 〈u, u1〉, ∅)

else (d, s ∪ {〈u, u1〉})

Figure 2.14: Right-hand sides for thread ids.
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2.8 Thread IDs as a Digest

The digest for this thread then is ((main · 〈u1, t1〉, ∅), ∅). For the main thread, the encountered
create edge 〈u1, t1〉 is added to the second component of the digest, making it (i0, {〈u1, t1〉}).

When u2 is reached with (i0, {〈u1, t1〉}), a unique thread with id (main · 〈u2, t1〉, ∅) is
created. The new digest of the creating thread then is (i0, {〈u1, t1〉, 〈u2, t1〉}). In subsequent
iterations of the loop, for which u2 is reached with (i0, {〈u1, t1〉, 〈u2, t1〉}), a non-unique thread
with id (main, {〈u2, t1〉}) is created.

When reaching u3 with id (main, {〈u2, t1〉}), a thread with id (main, {〈u2, t1〉, 〈u3, t1〉})
is created as the id of the creating thread was already not unique. When reaching it with the
id (main · 〈u1, t1〉, ∅), a new thread with id (main · 〈u1, t1〉 · 〈u3, t1〉, ∅) is created. When the
newly created thread reaches this program point, the threads created there have the non-unique
id (main · 〈u1, t1〉, {〈u3, t1〉}), as 〈u3, t1〉 already appears in the id of the creating thread.

Abstract thread ids should provide us with functions

• unique : V ]
tid,A → bool tells whether a thread id is unique.

• lcu_anc : V ]
tid,A → V

]
tid,A → V

]
tid,A returns the last common unique ancestor of two

threads.

• may_create : V ]
tid,A → V

]
tid,A → bool checks whether a thread may (transitively)

create another.

For our domain V ]
tid,A, these can be defined as unique (i, s) = (s = ∅) and

lcu_anc (i, s) (i′, s′) = (longest common prefix i i′, ∅)

may_create (i, s) (i′, s′) = (ī ∪ s) ⊆ (ī′ ∪ s′)

We use these predicates to enhance the definitions of Ju, lock(a)K]A, Ju, x′=join(x)K]A,
and Ju,wait(s)K]A to take into account that the ego thread cannot acquire a mutex from
another thread, (successfully) call join for it, or receive a signal from it, if this other
thread has definitely not yet been created. For a thread with thread id i′, it is known
that it has not yet been created if

(1) it is directly created by the unique ego thread, but the ego thread has not yet
reached the program point where i′ is created;

(2) its thread id indicates that a thread that has not yet been created according to (1),
is part of the creation history of i′.

Accordingly, we introduce the predicate may_run (i, C) (i′, C′) and define it by

(lcu_anc i i′ = i) =⇒ ∃〈u, u′〉 ∈ C : (i◦〈u, u′〉 = i′ ∨may_create (i◦〈u, u′〉) i′)

It is false whenever thread i′ is definitely not yet started. We then set

Ju, lock(a)K]A (i, C) (i′, C′) = Ju, x′=join(x)K]A (i, C) (i′, C′)
= Ju,wait(s)K]A (i, C) (i′, C′)

=

{
{(i, C)} if may_run (i, C) (i′, C′)

∅ otherwise

(2.15)
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2 A Local Trace Semantics

This analysis of thread ids and uniqueness can be considered as some form of May-
Happen-In-Parallel (or, more precisely, Must-Not-Happen-In-Parallel) analysis.

Remark 4. MHP information is useful in a variety of scenarios: For example, a thread-modular
analysis of data races or deadlocks that does not consider thread ids can be refined with this
digest to exclude more data races or deadlocks. To provide a semantic footing for such an analysis,
first the notion of accesses only ordered by atomicity mutexes in the local trace semantics would
need to be tied to existing notions of data races.

Additionally, abstract thread ids may be combined with an allocation-site abstraction [26]
and a uniqueness analysis for allocation sites in single-threaded programs to also identify heap
locations in multi-threaded programs as unique, which under some circumstances may allow for
strong updates.

Another way in which thread ids can be leveraged is to lift an analysis of single-threaded
use-after-free bugs to a multi-threaded setting. To this end, all thread id information of threads
calling free for a certain heap location is recorded. If, based on this information and the thread
id information of a thread accessing the memory, it can be excluded that the call to free has
already happened, no use-after-free bug can occur at this location. This is the approach taken by
the Goblint analyzer for detecting across-thread use-after-free bugs [103].

In the context of this thesis, we will employ this thread id digest in later chapters to
improve the precision of thread-modular analyses of globals.

2.9 Ego-Lane Digests

We observe that the thread id digest presented in the previous section can be computed
just in terms of the history of the ego thread and its parents up to the creation point.
This will render it applicable also for analyses that use a constraint system of a slightly
different form than the one outlined previously which is used by the concrete semantics
and some analyses. More formally, let us call a digest A ego-lane-derived (or more
concisely an ego-lane digest), if it fulfills the following property

∀A0 ∈ A : ∃A′ ∈ A : ∀A1 ∈ A : Ju, actK]A(A0, A1) ∈ {{A′}, ∅}
(for (u, act, v) ∈ E , act ∈ Actobserving)

(2.16)

Intuitively, this property ensures that digest information (up to emptiness) can be
computed as a function of only the actions on the ego lane and the ego lanes of parent
threads (transitively) creating the ego thread up to the point where the ego thread (or
one of its parent) is created. Let us call this linear sequence the creation-extended ego lane
of this thread. Analyses will later make use of this property to incorporate information
at points that are different from the ones where further local traces get incorporated in
the concrete semantics.

To ensure that such exclusions can be made soundly, it needs to be guaranteed that,
when incorporation is delayed when compared to the concrete semantics, the digests
at such a later point do still allow for the incorporation whenever the original digests
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2.9 Ego-Lane Digests

did at the original point. Thus, we replace the normal compatibility check performed
for binary actions by checks via some function compat]A : A → A → bool required to
satisfy

Ju, actK]A(A0, A1) 6= ∅ =⇒ compat]A(A0, A1)

(for (u, act, v) ∈ E , act ∈ Actobserving)

compat]A(A0, A1) =⇒ ∀A′ ∈ Ju, actK]A(A0) : compat]A(A′, A1)

(for (u, act, v) ∈ E , act ∈ (Actobservable ∪Actcreating ∪Actlocal))

compat]A(A0, A1) =⇒ ∀A′ ∈ Ju, actK]A(A0, A2) : compat]A(A′, A1)

(for (u, act, v) ∈ E , act ∈ Actobserving)

compat]A(A0, A1) =⇒ ∀A′ ∈ new]
A u u1 A0 : compat]A(A′, A1)

(for (u, x = create(u1), v) ∈ E)

(2.17)

Furthermore, we require some backwards compatibility property of compat]A: If some
digest A1 for another thread is compatible with the current digest A0, so are any digests
of the other thread that are potential predecessor digests to A1.

compat]A(A0, A1) ∧ A1 ∈ Ju, actK]A(A2) =⇒ compat]A(A0, A2)

(for (u, act, v) ∈ E , act ∈ (Actobservable ∪Actcreating ∪Actlocal))

compat]A(A0, A1) ∧ ∃A′ ∈ A : A1 ∈ Ju, actK]A(A2, A′) =⇒ compat]A(A0, A2)

(for (u, act, v) ∈ E , act ∈ Actobserving)

(2.18)

Lastly, for technical reasons, we require that initial digests be compatible with all other
digests.

∀A ∈ A, ∀A′ ∈ init]A : compat]A(A, A′) (2.19)

Example 9. The digest to compute locksets (Fig. 2.11) is ego-lane-derived. The only possible
definition for compat]A here is the function always returning True. On the other hand, the
digest for refining according to encountered lock operations (Fig. 2.12) is not ego-lane-derived.
Intuitively, this is because, at observing actions, parts of the history of the other threads get
incorporated, and the resulting digests may differ based on the digest of the other thread. This
violates Eq. (2.16).

Example 10. The thread id digests with right-hand sides from Fig. 2.14 and Eq. (2.15) are
ego-lane-derived. Possible definitions for compat]A are, e.g., the function always returning True,
or the more useful function compat]A(i, C)(i, C′) = may_run (i, C)(i, C′). The first definition
will usually not yield any improvement in precision for analyses, whereas the second one will be
able to exclude writes of threads that have definitely not been created yet (see, e.g., Example 16 in
Section 4.1.2).
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3 Abstract Domains & 2-Decomposability

In preparation for describing abstract-interpretation-based static analyses in the next
chapter, this chapter outlines the requirements on the abstract value domains employed,
and introduces the notation that will be used in the rest of this thesis — both for
relational and non-relational domains. While many of the definitions in this chapter will
seem familiar to the reader, there are two non-routine aspects to the setup considered
here that justify giving this content its own chapter: Firstly, we couple together a
relational and a non-relational abstract domain and provide functions for translating
between both, which is not so common. Secondly, and perhaps more importantly, we
also introduce the notion of 2-decomposability of relational domains, which plays a key
role for our relational analyses.

While this chapter re-uses the notation already employed in our two earlier works [107,
108], some definitions deviate from the ones used in either of the earlier works —
primarily for technical reasons relating to the novel proofs this thesis provides.

3.1 Non-Relational Domains

Recall that we denote by Vars the set of all variables. We assume that we are given for
each type τ of values, a complete lattice V ]

τ abstracting sets of concrete values from Vτ.
We require that the concretization function γV ]τ : V ] → 2Vτ is monotonic.

For values of type thread id, we impose the additional restriction that V ]
tid is given as

the powerset domain over some finite carrier set SV ]tid
with ⊥ = ∅, > = SV ]tid

, and join
and meet given by union and intersection, respectively. This restriction is needed to
ensure monotonicity in the side-effects for constraints corresponding to thread returns
in the analyses later on, and thus for proving the existence of least solutions for the
abstract constraint systems corresponding to these analyses. We further demand that
the concretization of an abstract value i] of type thread id is given by the union of the
concretizations of the constituent singleton sets in SV ]tid

, i.e., γV ]tid
i] =

⋃
i∈i](γV ]tid

{i}).
Let V ] denote the collection of the lattices V ]

τ. Then, let V̄ ] = Vars →⊥ V ] denote
the set of all type-consistent assignments σ from variables to abstract values, where
all bindings for local variables, i.e., those variables in X are non-⊥, extended with a
dedicated least element (also denoted by ⊥) and equipped with the induced point-wise
ordering. We define a monotonic concretization function γV ] : V ] → 2V by applying the
concretization function of the respective type. We then lift γV ] to obtain a monotonic
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3 Abstract Domains & 2-Decomposability

concretization function γV̄ ] : V̄ ] → 2Vars⇒V to a set of partial maps:

γV̄ ] σ] = {σ | ∀x ∈ X : σ x ∈ γV ](σ
] x) ∧ ∀g ∈ G : (g ∈ dom(σ)⇒ σ g ∈ γV ](σ

] g))}
with γV̄ ]⊥ = ∅. Alternatively, in some proofs, we will find it convenient to work with
an intermediate concretization γ̄V̄ ] : V̄ ]⇒(Vars→ 2V ) to (total) maps from variables to
sets of concrete values where

γ̄V̄ ] σ] = {x 7→ γV ](σ
] x) | x ∈ Vars}

with γ̄V̄ ]⊥ = {x 7→ ∅ | x ∈ Vars}. We remark that for a non-relational domain (and
X 6= ∅, which holds here as self ∈ X ), these two definitions are equivalent.

We further demand that the meet operation u of V ] safely overapproximates the
intersection of the concretizations of the respective arguments, which, e.g., is the case
for Galois connections [29].

Furthermore, we require that the domain provide the following operations:

Jx ← eK]V̄ ] : V̄ ] → V̄ ] (assignment for expression e)
r|Y : V̄ ] → V̄ ] (restriction to Y ⊆ Vars)

J?eK]V̄ ] : V̄ ] → V̄ ] (guard for condition e)

where the assignment operation may be defined as follows

Jx ← eK]V̄ ] σ = σ⊕ {x 7→ JeK]Exp σ}
for an abstract version of the expression evaluation function J·KExp . Restriction is
used to express non-deterministic assignments, i.e., assignments where the right-hand
side corresponds to the special expression ?. Restricting a relation r to a subset Y
of variables amounts to forgetting all information about variables not in Y. Thus, we
demand σ|Vars = σ, σ|∅ = > whenever σ 6= ⊥, ⊥|∅ = ⊥, and σ|Y1

w σ|Y2
when Y1 ⊆ Y2,

(σ|Y1
)
∣∣∣
Y2

= σ|Y1∩Y2
, and for σ 6= ⊥,

(σ|Y) x = > (x 6∈ Y) (σ|Y) x = σ x (x ∈ Y) (3.1)

Restriction thus is idempotent. The further requirements on these operations are outlined
in Fig. 3.1, where the expression evaluation function J·KExp from Section 2.4 is lifted, so
it can be applied to mappings that also have bindings for variables not in X , which will
by construction not be accessed.

We further require an abstract version of the computation of a new thread id ν(t)
for some thread t. This function ν] : N → V̄ ] → N → V ]

tid then needs to satisfy the
following soundness property:

∀t ∈ T : ∀u1 ∈ N : ∀σ] ∈ V̄ ] : ∀t′ ∈ new u1 t :
sink t = (u0, σ) ∧ σ ∈ γV̄ ](σ

]) =⇒ ν(t) ∈ γV ]tid
(ν] u0 σ] u1)

(3.2)

where we remark that — by construction of γV̄ ]σ
] — if the set is non-empty, it contains

maps that are defined for all elements of X , and thus match the type of the maps in σ.
This property ensures that the abstract version of the computation of a new thread id is
sound w.r.t. its concrete counterpart.
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3.2 Relational Domains

γV̄ ] (Jx ← eK]V̄ ] σ])⊇{σ⊕ {x 7→ JeKExp σ} | σ ∈ γV̄ ] σ]}
γV̄ ] (σ

]
∣∣
Y)⊇{σ⊕ {x1 7→ v1, . . . , xm 7→ vm} |

vi ∈ V , xi ∈ Vars \Y, σ ∈ γV̄ ] σ]}
γV̄ ] (J?eK]V̄ ] σ])⊇{σ | σ ∈ γV̄ ] σ], JeKExp σ 6= 0}

Figure 3.1: Required properties for operations of the non-relational domain.

3.2 Relational Domains

Next, we define the notion of relational domain employed in the description of our
analysis in Section 4.2. Here, a relational domain R is a complete lattice which once more
provides operations

Jx ← eK]R : R → R (assignment for expression e)
r|Y : R → R (restriction to Y ⊆ Vars)

J?eK]R : R → R (guard for condition e)

where we re-use the symbol for restriction, as it will always be clear, from the type of
the value it is applied to, whether the relational or the non-relational version is used.
Additionally, R supplies the functions

lift : V̄ ] → R unlift : R → V̄ ]

which allow casting from the non-relational domain to the relational domain as well as
extracting single-variable information. We assume that lift⊥ = ⊥ and unlift⊥ = ⊥, and
require that unlift ◦ lift w id where w refers to the ordering of V̄ ]. We also demand that
unlift distributes1 over t, i.e.,

unlift (x tR y) = (unlift x) tV̄ ] (unlift y) (3.3)

where we have indexed joins with their domain here to enhance clarity. Usually, it will
be clear from the context which operation is meant, and we will omit such indexes.
Moreover, we once more require that the meet operation u (of R in this case) safely
approximates the intersection of the concretizations. For restriction, we once again
demand that r|Vars = r, r|∅ = >, r|Y1

w r|Y2
when Y1 ⊆ Y2, (r|Y1

)
∣∣∣
Y2

= r|Y1∩Y2
, and

require for lift and unlift and restriction that, for r 6= ⊥,

unlift (r|Y) x = > (x 6∈ Y) unlift (r|Y) x = (unlift r) x (x ∈ Y) (3.4)

As for the non-relational case, restriction thus is idempotent. For convenience, we also
define a shorthand for assigning abstract values:

Jx ←] vK]R r =
(

r|Vars\{x}
)
u (lift (>⊕ {x 7→ v}))

1This property is not technically distributivity, as the first occurrence of t refers to R, whereas the second
one refers to V̄ ]. We nevertheless call it distributivity to convey the intuition.
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3 Abstract Domains & 2-Decomposability

γR⊥ = ∅ γR (lift σ]) ⊇ γV̄ ] σ] γV̄ ] (unlift r) ⊇ γR r

∀r, s : r v s =⇒ γR r ⊆ γR s

γR (Jx ← eK]R r) ⊇ {σ⊕ {x 7→ JeKExp σ} | σ ∈ γR r}
γR (r|Y) ⊇ {σ⊕ {x1 7→ v1, . . . , xm 7→ vm} | vi ∈ V , xi ∈ Vars \Y, σ ∈ γR r}

γR (J?eK]R r) ⊇ {σ | σ ∈ γR r, JeKExp σ 6= 0}

Figure 3.2: Required properties for γV̄ ] : V̄ ] → 2Vars⇒V and γR : R → 2Vars⇒V .

We once more require a monotonic concretization function γR : R → 2Vars⇒V which
together with γV̄ ] must satisfy the requirements presented in Fig. 3.2 where J·KExp is
once again lifted as above.

Example 11. As a value domain V ], consider the flat lattice over the sets of values of appropriate
type τ, and for V̄ ] the set of corresponding maps from variables to abstract values, extended with
⊥ as least element. A relational domain R1 is obtained by collecting satisfiable conjunctions of
equalities between variables or variables and constants where the ordering is logical implication,
extended with False as least element. The greatest element in this complete lattice is given by
True. The operations lift and unlift for non-⊥ arguments then can be defined as

lift σ =
∧{x = σ x | x ∈ Vars, σ x 6= >} unlift r x =

{
c if r =⇒ (x = c)

> otherwise

The restriction of r to a subset Y of variables is given by the conjunction of all equalities implied
by r that only contain variables from Y or constants.

3.3 2-Decomposability

A variable clustering S ⊆ 2Vars is a set of subsets (clusters) of variables. For any cluster
Y ⊆ Vars, let RY = {r | r ∈ R, r|Y = r}; this set collects all abstract values from R
containing information on variables in Y only. Given an arbitrary clustering S ⊆ 2Vars,
any relation r ∈ R can be approximated by a meet of relations from RY (Y ∈ S) since
for every r ∈ R, r v d{r|Y | Y ∈ S} holds.

Some relational domains, however, can be fully recovered from their restrictions to
specific subsets of clusters. We consider for k ≥ 1, the set [Vars]k = {Y | Y ⊆ Vars, 1 ≤
|Y| ≤ k}, i.e, the set of all non-empty subsets Y ⊆ Vars of cardinality at most k. We
call a relational domain R k-decomposable if each abstract value from R can be precisely
expressed as the meet of its restrictions to clusters of [Vars]k and when all least upper
bounds can be recovered by computing with clusters of [Vars]k only; that is,

r =
d{

r|Q | Q ∈ [Vars]k
}

(
⊔

R) |Q =
⊔{

r|Q | r ∈ R
}

(Q ∈ [Vars]k) (3.5)
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3.3 2-Decomposability

holds for each abstract relation r ∈ R and each set of abstract relations R ⊆ R.

Example 12. The domain R1 from the previous example is 2-decomposable. This also holds
for the octagon domain [81] and many other weakly relational numeric domains such as pen-
tagons [78], weighted hexagons [51], logahedra [62], TVPI [120], dDBM [100], and AVO [27].
The affine equalities or inequalities domains [35, 68], however, are not 2-decomposable.

However, the concept of 2-decomposability does not only apply to numerical domains.
For example, Seidl et al. [111] study the 2-decomposability of various non-numerical
domains and construct 2-decomposable approximations of non-numerical domains that
are not 2-decomposable themselves.

Remark 5. By setting V̄ ] = R and letting lift = unlift = id, one can obtain from any non-
relational domain V̄ ] a domain that fits into the framework of relational domains presented here.
Thus, any relational analysis presented in the subsequent chapters can naturally be instantiated
with a non-relational domain via this construction.
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4 Static Analysis by Abstract Interpretation

In a series of papers starting in 2011, Antoine Miné and his co-authors developed
analyses of the values of globals [83–85, 87, 129, 130] based on abstract interpretation
that can be considered the gold standard for thread-modular static value analysis. The
core analysis [83, 84] consists of a refinement of data flow which takes schedulability
into account by propagating values written before unlock operations to corresponding
lock operations — provided that appropriate side-conditions are met. Due to these
side-conditions, more flows are generally excluded than in other approaches [38, 89].
An alternative approach by Vojdani [133, 134] is realized in the static analyzer Goblint.
This analysis is not based on data flows. Instead, for each global g, a set of mutexes that
definitely protect accesses to g is determined. Then, side-effects during the analysis of
the threads’ local states are used to accumulate an abstraction of the set of all possibly
written values. This approach then is enhanced by means of privatization to account for
exclusive manipulations by individual threads similar to the thread-local shape analysis
of Gotsman et al. [55], which infers lock-invariants [96] by privatizing carved-out sections
of the heap owned by a thread. Despite its conceptual simplicity and perhaps to our
surprise, it turns out the Vojdani style analysis is not subsumed by Miné’s approach, but
that the approaches are incomparable. Since Miné’s analysis is more precise on many
examples, we highlight only non-subsumption in the other direction here.

Example 13. We use sets of integers for abstracting int values. Consider the following concurrent
program1 with global variable g and local variables x and y:

main:
initMT;
y = create(t1);
lock(a);
lock(b);
x = g;
...

t1:
lock(a);
lock(b);
g = 42;
unlock(a);
g = 17;
unlock(b);

Program execution starts at program point main where, after creation of another thread t1 and
locking of the mutexes a and b, the value of the global g is read. The created thread, on the other
hand, also locks the mutexes a and b. Then, it writes to g the two values 42 and 17 where mutex
a is unlocked in-between the two writes, and mutex b is unlocked only in the very end.

According to Miné’s analysis, the value {42} is merged into the local state at the operation
lock(a), while {17} is merged at lock(b). Thus, the local x receives the value {0, 17, 42}.

1We have omitted mutexes mg in this example for clarity.
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Vojdani’s analysis, on the other hand, finds that all accesses to g are protected by the mutex b.
Unlocking of a, therefore, does not publish the intermediately written value {42}. Only the final
value {17} at unlock(b) is published. Therefore, the local x only receives the value {0, 17}.

The jumping off point for this part of the work was a desire to understand this
intriguing incomparability and the desire to develop precision refinements to improve
either flavor of analysis. Here, we focus on the sequentially consistent setting, ignoring
effects of weak memory, which are of major concern in some works, e.g., in [6, 48, 129,
130]. Also, we assume that we are in a setting akin to Pthreads, i.e., in a setting with
dynamic thread creation and joining — but without priorities as they are, e.g., common
in systems in an automotive or avionic setting.

In Section 4.1, we propose non-relational analyses of the values of globals that consider
globals in isolation. To this end, we first cast both the analysis proposed by Miné [83, 84]
adapted to our setting and the one proposed by Vojdani [133, 134] into a common
framework — namely side-effecting constraint systems as also used to formulate the
local trace semantics. This lays the groundwork for providing enhancements to improve
the precision of either style, as well as an implementation in a common tool which
allows experimentation on real-world benchmarks (Chapter 5).

Section 4.2 then goes beyond analyses that consider globals in isolation, which renders
them inherently non-relational. Here, we do not track arbitrary relations, but instead
focus on those relations within (potentially overlapping) clusters of globals that are
mediated by protecting mutexes. The intuition behind this choice is that developers
usually rely on robust means to ensure mutual exclusion, and intricate invariants are
thus not encountered in high-level code too frequently.

For both analyses considering globals in isolation and those considering clusters of
globals, we allow refinement according to digests as discussed in Section 2.3. While
the analyses abstracting clusters of globals incorporate information at lock operations,
and thus allow for arbitrary digests to be considered, the analyses abstracting globals in
isolation delay the incorporation of values past the point where lock is called, and thus
only allow for ego-lane digests (Section 2.9). One digest of particular interest here is the
thread id digest from Section 2.8, which allows computing thread ids in a setting such as
ours, where threads are dynamically created and joined.

We proceed similarly for all analyses: First giving an intuitive description of the
analysis and giving its constraint system, proceeding to (a sketch of) a soundness proof,
and discussing potential limitations and possible extensions last.

For all analyses, we assume that the refinement from Fig. 2.11 has been applied, i.e.,
that unknowns for program points take the form [u, S] for u ∈ N and S ⊆ M. While
the unknowns for program points and locksets do coincide between the analyses and
the (refined) concrete semantics, this is not necessarily the case for other unknowns.
There, more intricate arguments are required to relate solutions of the abstract constraint
system to solutions of the constraint system representing the concrete semantics.

Table 4.1 provides an overview of the different analyses and highlights some advan-
tages and shortcomings. Since, just like the unknowns associated with program points,
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Table 4.1: Overview of the families of analyses presented in this thesis.

Name R
el

at
io

na
l f

or
G

R
eq

ui
re

s
M̄

Unknowns associated with
globals and/or mutexes

Refinable Proof

Protection-Based
(Section 4.1.1)

7 3 [g], [g′] for g ∈ G Ego-Lane
Digests

As an abstraction
of Write-Centered

Lock-Centered
(Section 4.1.4)

7 7
[g, a, S] for g ∈ G, a ∈ M,

S ⊆M
Ego-Lane
Digests Directly

Write-Centered
(Section 4.1.6)

7 7
[g, a, S, w] for g ∈ G, a ∈ M,

S ⊆M, w ⊆M
Ego-Lane
Digests Directly

Write- and
Lock-Centered
(Section 4.1.8)

7 7
[g, a, S, w] for g ∈ G, a ∈ M,

S ⊆M, w ⊆M
Ego-Lane
Digests

Via proofs of
Write- and

Lock-Centered

Mutex-Meet
(Section 4.2.1)

3 3

[a, Q] for a ∈ M, Q ∈ Qa

(where Qa are clusters of
globals associated with a)

3 Directly

the unknowns associated with thread returns ([i] for i ∈ SV ]tid
) and signals ([s] for s ∈ S)

take the same form for all analyses, they are not listed in the table. This table may be
helpful to refer back to when reading later sections.

For clarity of presentation, we will always denote the ⊥ element of the respective
domains of each analysis that denotes unreachability by the common symbol ⊥.

The analyses presented in this chapter were first proposed in Schwarz et al. [107]
(Section 4.1), and in Schwarz et al. [108] (Section 4.2), respectively. Compared to this
earlier work, we enhance all analyses with a handling of signalling and waiting, and
enhance the non-relational analyses with a handling of returning and thread joins which
were not considered in the earlier work [107]. Additionally, refinement according to
ego-lane digests for these analyses is an original contribution of this thesis.

4.1 Analyses Considering Globals in Isolation

In this section, we propose four novel analyses that consider globals in isolation, i.e.,
are non-relational. The first analysis (Protection-Based Reading) is an improved version
of Vojdani’s analysis [133, 134]. It assumes that for each global g, some set M̄[g] of
mutexes exists that is held at each write operation to g and maintains a private copy of
the global as long as one of the mutexes from M̄[g] is known to be held.

The second analysis is an improved version of the analysis proposed by Miné [83, 84] –
when adapted to a setting with dynamic thread creation as recapped and cast into terms
of side-effecting constraint systems in Section 4.1.3. It addresses two shortcomings of the
original analysis by tracking additional information about the history of the ego thread.
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Combined

Write-Centered

Protection-Based

Lock-Centered

Side-Effecting Version of
analysis by Miné [84]

Figure 4.1: Precision relationship between analyses considering globals in isolation.

As this information is organized by mutex, the analysis is called Lock-Centered Reading.
To obtain good invariants, Protection-Based Reading relies on the set of protecting

mutexes for a global being non-empty, i.e., some mutex (other than the atomicity mutex)
is held at every write access program-wide. As this may not always be the case, we
present a third analysis which lifts this extra assumption and strictly subsumes Protection-
Based Reading. Once again, this analysis tracks some extra information about the history
of the ego thread. This information is organized around individual global variables,
which is why the analysis is called Write-Centered Reading. Interestingly, Write-Centered
Reading and Lock-Centered Reading are still incomparable. Therefore, we sketch a fourth
non-relational analysis that is more precise than either of the three other analyses.

The relationship between the precision of these five analyses is visualized as a Hasse
diagram in Fig. 4.1, where the top element corresponds to the most precise analysis.

4.1.1 Protection-Based Reading

The original analysis proposed by Vojdani [133, 134] and implemented in the Goblint

system assumes that for each global g, there is a set of mutexes definitely held whenever
g is accessed. The best information about the values of g available after acquiring a
protecting lock is maintained in a separate unknown [g]. The value of the unknown [g]
for the global g is eagerly “privatized”: That is, it is incorporated into the local state
for a program point and currently held lockset whenever g first becomes protected, i.e.,
a mutex protecting g is acquired while none was held before. As long as one of these
protecting mutexes is held, all reads and writes refer to this local copy of the global, and
the copy can be destructively updated. It is only when the last mutex protecting g is
released that the value of the local copy is potentially visible to other threads, and thus
is published to the unknown [g]. This base setting is enhanced in three ways:

• Instead of assuming a set of mutexes protecting both reading and writing of g,
we now consider the mutexes held whenever the global is written as protecting.
While this does not necessarily lead to an improvement in precision, it allows for
analyzing interesting patterns where, e.g., only a subset of mutexes is acquired for
reading from a global, while a superset is held when writing to it.
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• Besides the unknown [g] for describing the possible values of the global g for pro-
tected accesses, another unknown [g]′ is introduced for the results of unprotected
read accesses to g, i.e., accesses where none of the write-protecting mutexes —
other than the atomicity mutex mg — are held.

• Instead of incorporating the value of the global g stored at [g] into the local state
at each lock operation of a mutex from the protecting set, the local state for a
program point and currently held lockset only keeps track of the values written by
the ego thread. At a read operation x = g, the value of global g is assigned to the
local variable x. For that, the analysis relies on the value stored at unknown [g]
together with the value of g stored in the local state. However, if the ego thread
has definitely written to g since acquiring a protecting mutex, and has not yet
released all protecting mutexes since then, it is sufficient to consider the local copy
as any other value will definitely have been overwritten.

Recall that M̄ : G → 2M maps each global g to the set of mutexes definitely held
when g is written to. Due to our atomicity assumption, the set M̄[g] is non-empty,
since mg ∈ M̄[g] always holds. We also require that mh ∈ M̄[g] =⇒ h = g, i.e., the
special mutexes mg only appear in the set of write-protecting mutexes for the global
g they belong to. In this thesis, we assume this mapping to be given, but remark that
this requirement could be lifted as outlined in Remark 9. The unknown [g]′ stores an
abstraction (from V ]) of all values ever written to g, while the unknown [g] stores an
abstraction (from V ]) of those values that were written last before releasing a protecting
mutex of g other than mg. For each pair (u, S) of program point u and currently held
lockset S, on the other hand, the analysis maintains (1) a set P of definitely written
globals g since a protecting mutex of g has been acquired and not all protecting mutexes
have been released (ordered by ⊇), together with (2) a variable assignment σ : V̄ ] of
potential descriptions of values for local or global variables.

When a mutex in M̄[g] is definitely held, after a write to variable g, all modifications
to g are performed destructively on the local copy, and further reads also refer to this
copy. Immediately after the write to g (at the unlock(mg)) the updated value of the local
copy is merged into [g]′ via a side-effect. On the other hand, the value of the copy must
be merged into [g] only when it can no longer be guaranteed that all other protecting
mutexes (M̄[g] \ {mg}) are held, i.e., when the first protecting mutex is released.

After having provided the key intuition, we now describe the analysis in a more formal
way: We start by giving the right-hand-side function for the start state at the initial
program point of the main thread u0 ∈ N with the empty lockset ∅, i.e., [u0, ∅] w init]:

init] _ = let σ = {x 7→ > | x ∈ X} ∪ {g 7→ J0K]Exp> | g ∈ G} in

let ρ = {[g] 7→ J0K]Exp> | g ∈ G} ∪ {[g]′ 7→ J0K]Exp> | g ∈ G} in

(ρ, (∅, σ⊕ {self 7→ Ji0K
]
Exp>}))

That is, on top of computing the start state for the analysis, an initial side-effect is
triggered to publish the information that globals may have the initial value 0. We remark
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that any mapping can be given to the abstract expression evaluation function J·K]Exp in
this case, as both expressions evaluate to constants.

The right-hand side for the action initMT returns the abstract state of the predecessor
and causes no side-effects.

Now, consider the right-hand side [v, S′] w J[u, S], actK] for the edge e = (u, act, v)
of the control-flow graph and appropriate locksets S and S′. Consider the right-hand
side for a thread creation edge. Recall that we have a function ν] u σ u1 that returns the
(abstract) thread id of a thread started at an edge originating from u in some local state
σ, where the new thread starts execution at program point u1. The returned argument
is an element of V ]

tid for which the soundness condition from (3.2) is satisfied.

J[u, S], x = create(u1)K]η = let (P, σ) = η [u, S] in
let i = ν] u σ u1 in
let σ′ = σ⊕ ({self 7→ i} ∪ {g 7→ J0K]Exp> | g ∈ G}) in
let ρ = {[u1, ∅] 7→ (∅, σ′)} in
(ρ, (P, σ⊕ {x 7→ i}))

This function has no effect on the local state apart from setting x to the abstract thread
id of the newly created thread, while providing an appropriate initial state to the start
point of the newly created thread. The value for any global g is set to J0K]Exp> in this
initial state, as in the newly created thread, no local writes to g have happened yet.2

For guards and computations on locals, the right-hand-side functions are defined to
operate on σ only, using the assignment Jx ← eK]V̄ ] , restriction r|Vars\{x} (for assignments

of ? to x), and guard J?eK]V̄ ] operations defined by the domain, leaving P unchanged.
Concerning locking and unlocking of a mutex a, the lock operation does not affect the

local state, while at each unlock, all local copies of globals g for which not all protecting
mutexes are held anymore, are published via a side-effect to the respective unknowns
[g] or [g]′. Moreover, globals for which none of the protecting mutexes are held anymore,
are removed from P. We thus have:

J[u, S], lock(a)K]η = (∅, η [u, S])

J[u, S], lock(mg)K]η = (∅, η [u, S])

J[u, S], unlock(mg)K]η = let (P, σ) = η [u, S] in
let P′ = {h ∈ P | ((S \ {mg}) ∩ M̄[h]) 6= ∅} in
let ρ = {[g]′ 7→ σ g} ∪ {[g] 7→ σ g | M̄[g] = {mg}} in
(ρ, (P′, σ))

J[u, S], unlock(a)K]η = let (P, σ) = η [u, S] in
let P′ = {g ∈ P | ((S \ {a}) ∩ M̄[g]) 6= ∅} in
let ρ = {[g] 7→ σ g | a ∈ M̄[g]} in
(ρ, (P′, σ))

2The value J0K]Exp> is always also read via [g], so it would also be sound to set the local value to ⊥. We
do not do this here, as it has no precision impact but causes complications for some of our proofs.
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for a 6∈ {mg | g ∈ G}. Recall that the dedicated mutex mg for each global g has
been introduced for guaranteeing atomicity. It is always acquired immediately before
and always released immediately after each access to g. The special treatment of this
dedicated mutex ensures that all values written to g are side-effected to the unknown
[g]′, while values written to g are side-effected to the unknown [g] only when unlock is
called for a protecting mutex different from mg.

For global g and local x, we define for writing to and reading from g,

J[u, S], g = xK]η = let (P, σ) = η [u, S] in
(∅, (P ∪ {g}, σ⊕ {g 7→ (σ x)}))

J[u, S], x = gK]η = let (P, σ) = η [u, S] in
if g ∈ P then

(∅, (P, σ⊕ {x 7→ (σ g)}))
else if S ∩ M̄[g] = {mg} then

(∅, (P, σ⊕ {x 7→ σ g t η [g]′}))
else

(∅, (P, σ⊕ {x 7→ σ g t η [g]}))

For realizing returns from threads and thread joins, we rely on side-effects to unknowns
corresponding to the abstract thread id of the thread calling return, i.e., σ self which
is from the lattice V ]

tid. To ensure monotonicity of the side-effects, any unknown that
receives a side-effect for any smaller value of σ self, also needs to receive a side-effect for
the current value of self. To this end, the unknowns for thread ids are not from V ]

tid but
from SV ]tid

, and all unknowns contained in σ self receive a side-effect.

Recall that the concrete semantics provides a special local variable ret whose value is
the one returned by the thread.

J[u, S], returnK]η = let (P, σ) = η [u, S] in
let I = σ self in
({[i] 7→ σ ret | i ∈ I} , (P, σ))

J[u, S], x = join(x′)K]η = let (P, σ) = η [u, S] in
let v =

⊔
i′∈(σ x′)(η[i′]) in

if v = ⊥ then
(∅,⊥)

else
(∅, (P, σ⊕ {x 7→ v}))

Thus, upon a call of return the value of ret is side-effected to all unknowns possibly
corresponding to the abstract thread id. All such unknowns are then consulted upon a
join operation — provided they are in the set of values stored in x′. If the value of all such
unknowns is ⊥, none of the threads potentially being joined have terminated. In this
case, the return value of the entire right-hand side is set to ⊥ to denote unreachability.
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For signal(s) and wait(s), we define

J[u, S], signal(s)K]η = let (P, σ) = η [u, S] in
({[s] 7→ (P, σ)} , (P, σ))

J[u, S],wait(s)K]η = let (P, σ) = η [u, S] in
if η [s] = ⊥ then

(∅,⊥)
else

(∅, (P, σ))

Thus, signal publishes its current local state to the unknown associated with the con-
dition variable, and wait checks whether the corresponding condition variable is ever
potentially signaled. If it is, the local state is returned unmodified. Otherwise, the entire
right-hand side returns ⊥ as the successor is unreachable.

Remark 6. We remark that all right-hand sides are monotonic here – both in the returned values
and in the side-effects, given that the assignment and guard functions provided by the domain
are also monotonic. In this case, the constraint system has a unique least solution, which we
denote by η] here. We remark that for this unique least solution η], η] [g] v η] [g]′ holds.

Example 14. Consider, e.g., the following program fragment and assume that M̄[g] = {a, mg}
and that we use value sets for abstracting int values.

initMT;
lock(a);
lock(m g); g = 5; unlock(m g);
lock(b);
unlock(b);
lock(m g); x = g; unlock(m g);
lock(m g); g = x+1; unlock(m g);
unlock(a);

Then, after unlock(b), the state attained by the program (where variables self and ret are omitted
for clarity of presentation) is

s1 = ({g}, {g 7→ {5}, x 7→ >})
where [g]′ has received the contribution {5} but no side-effect to [g] has been triggered. The read
of g in the subsequent assignment refers to the local copy. Accordingly, the second write to g and
the succeeding unlock(mg) result in the local state

s2 = ({g}, {g 7→ {6}, x 7→ {5}})
with side-effect {6} to [g]′ and no side-effect to [g]. Accordingly, after unlock(a), the attained
state is

s3 = (∅, {g 7→ {6}, x 7→ {5}})
and the value of [g] is just {0, 6} — even though g has been written twice. We remark that
without separate treatment of mg, the value of {5} would immediately be side-effected to [g].
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While this example highlights the behavior w.r.t. mutexes and global variables, the
following example highlights the other concurrency primitives thread creation and
joining as well as signalling and waiting.

Example 15. Assume integer sets are used for abstracting int values, and thread ids distin-
guishing threads by the program point at which they start, i.e., their templates are used. Consider
the following concurrent program and assume that M̄[g] = {mg}.

main:
initMT;
y = create(t1);
lock(m g); x = g; unlock(m g);

if(x == 0) {
y = create(t2);

}
signal(s);
x = join(y);
// ASSERT(x == 8);

t1:
lock(m g); g = 17; unlock(m g);
wait(s);
ret = 8;
return;

t2:
lock(m g); g = 42; unlock(m g);
wait(t);
ret = 42;
return;

First, the main thread creates thread t1, which may set the value of the global g to 17. Its thread
id is stored into a variable y. Then, the main thread reads the value of g into a local variable x. If
x is 0, a new thread t2 is started and the thread id is stored into the variable y, overwriting the
stored value. Then, the condition variable s is signalled and lastly join is called on the thread
id stored into y. Here, the analysis succeeds in showing the assertion at the end of main. The
reasoning is as follows: The analysis for thread t2 consults the unknown [t] when it reaches
the call to wait(t). As no thread ever calls signal(t), all succeeding program points are found
to be dead. In t1, on the other hand, the value of the unknown [s] is not ⊥ as the current
local state is side-effected by the main thread when it calls signal(s). Thus, thread t1 reaches
the return statement with an abstract state (∅, {ret 7→ {8}, self 7→ {t1}, . . . }), and the value
{8} is side-effected to the unknown [t1]. In the main thread, the call to join(y) is reached with
an abstract state of the form (∅, {y 7→ {t1, t2}, . . . }). Thus, the unknowns [t1] and [t2] are
consulted. As only [t1] has received any side-effects, for the state after the call to join, we have
(∅, {y 7→ {t1, t2}, x 7→ {8}}) and the assertion thus holds.

Theorem 5. Protection-Based Reading is sound w.r.t. the local trace semantics.

Proof. In Section 4.1.2, we show how to obtain this analysis as an instance of the refined
analysis presented there. The soundness proof for that analysis is, in turn, deferred to
Section 6.1.3.

Remark 7. The precision for calls to join(x′) could further be improved here by considering all
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possible values of x separately and refining the local state before the join accordingly.

J[u, S], x = join(x′)K]η = let (P, σ) = η [u, S] in
let V i′ = if η [i′] = ⊥ then

⊥
else

(P, σ⊕ {x 7→ η [i′], x′ 7→ {i′}})
in(

∅,
⊔

i′∈(σ x′)(V i′)
)

Then, the value for x′ can be refined in case it is known that, for some elements of the abstract
thread id stored in x′, the call to return is not reached by any of the threads with a corresponding
concrete thread id. In this case, the call to join(x′) will not terminate if the value of x′ is the
thread id of one of these threads. Consider again Example 15. In this case, the value of y after the
call to join could be refined to {t1}. To not overcomplicate the presentation later, we choose to
forgo this opportunity but remark that it applies to all the analyses presented in this thesis.

Remark 8. As presented, the analysis always maintains some information about each global
variable, which may lead to large local states. Alternatively, one may remove information about
globals from the local state as soon as all protecting mutexes are released. Then, an implementation
may set the start state to not contain any information on the globals, and then may additionally
track for each program point and currently held lockset, a set W of all globals which possibly
have been written (and not yet published) while holding protecting mutexes. A local copy of a
global g may then safely be removed from σ (set to ⊥) if g /∈ P ∪W. This is possible because for
each g /∈ P ∪W, σ g has already been side-effected and hence is already included in η [g] and
η [g]′, and thus the value σ g would normally have, is already accounted for through η [g] or
η [g]′, one of which is always consulted whenever a global is read that is not in P.

Remark 9. This analysis, as discussed here, requires the map M̄ : G → 2M to be given
beforehand. This map can, e.g., be provided by some pre-analysis. Alternatively, our analysis
can be modified to infer M̄ on the fly. For that, we consider the M̄[g] to be separate unknowns
of the constraint system. They take values in the complete lattice 2M (ordered by superset) and
each M̄[g] is initialized to the full set of all mutexes except special mutexes mh for h 6= g, i.e.,
initially M̄[g] =M\ {mh | h ∈ G \ {g}}. The right-hand-side function for writes to a global
g then is extended to provide the current lockset as a contribution to M̄[g]:

J[u, S], g = xK]η = let (P, σ) = η [u, S] in
({M̄[g] 7→ S}, (P ∪ {g}, σ⊕ {g 7→ (σ x)}))

There is one (minor) obstacle, though: the right-hand-side for control-flow edges with unlock(a)
is no longer monotonic in the unknowns M̄[g], g ∈ G: If M̄[g] shrinks to no longer contain a,
unlock(a) will no longer produce a side-effect to the unknown [g], whereas it previously did.

Remark 10. To improve efficiency in a implementation, it is also possible to abandon state-
splitting according to held locksets — at the cost of losing some precision. To this end, it suffices
to additionally track for each program point a set S̄ of must-held mutexes as part of the local state
from the lattice 2M (ordered by superset) and replace S with S̄ in all right-hand sides.
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4.1.2 Protection-Based Reading with Ego-Lane Digests

The analysis as presented thus far does not take thread ids into account, and, e.g., also
reads values from threads that have definitely not been started yet.

To remedy this, it would be desirable to modify the analysis to take digests into
account and then plug in the thread id digest from Section 2.8. However, the unknowns
used by this analysis differ from the ones used in the concrete semantics: For example,
the analysis does not incorporate any information when a mutex is locked, and instead
reads the values of global variables only upon access to a global variable by consulting
dedicated unknowns. Therefore, refinement of this analysis can only be performed
with ego-lane digests, which allow taking this deviation from the concrete semantics into
account by giving an appropriate definition of compat]A. In this way, the refined analysis
can be proven sound for any admissible ego-lane digest.

When applying a refinement based on ego-lane digests to the analysis from Sec-
tion 4.1.1, the resulting analysis has the following set of unknowns:

• [u, S, A] for u ∈ N , S ⊆M and A ∈ A,

• [g, A] and [g, A]′ for g ∈ G and A ∈ A,

• [i, A] for i ∈ SV ]tid
and A ∈ A, and

• [s, A] for s ∈ S and A ∈ A.

The constraint system then takes the following form:

[u0, ∅, A] w init(A)]

for A ∈ init]A

[u′, S, A′] w J[u, S, A0], x = create(u1)K]

for (u, x = create(u1), u′) ∈ E , A′ ∈ Ju, x = create(u1)K
]
A(A0)

[u′, S ∪ {a}, A′] w J[u, S, A0], lock(a)K]

for (u, lock(a), u′) ∈ E , A′ ∈ ⋃A1∈A{Ju, lock(a)K]A(A0, A1)}
[u′, S, A′] w J[u, S, A0], actK]

for (u, act, u′) ∈ E , act ∈ (Actobserving \ {lock(a) | a ∈ M}),
A′ ∈ ⋃A1∈A{Ju, actK]A(A0, A1)}

[u′, S \ {a}, A′] w J[u, S, A0], unlock(a), A′K]

for (u, unlock(a), u′) ∈ E , A′ ∈ Ju, unlock(a)K]A(A0)

[u′, S, A′] w J[u, S, A0], act, A′K]

for (u, act, u′) ∈ E , act ∈ (Actobservable \ {unlock(a) | a ∈ M}),
A′ ∈ Ju, actK]A(A0)

[u′, S, A′] w J[u, S, A0], actK]

for (u, act, u′) ∈ E , act ∈ Actlocal, A′ ∈ Ju, actK]A(A0)

(4.1)
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We remark that as the digests here are ego-lane-derived, by Eq. (2.16) from Section 2.9,
the sets

⋃
A1∈A{Ju, actK]A(A0, A1)} for an observable action act and a digest A0 of the

ego thread contain at most one element.
The right-hand sides for the initial constraints and for thread creation are then given by

init(A)] _ = let σ = {x 7→ > | x ∈ X} ∪ {g 7→ J0K]Exp> | g ∈ G} in

let ρ = {[g, A] 7→ J0K]Exp> | g ∈ G} ∪ {[g, A]′ 7→ J0K]Exp> | g ∈ G} in

(∅, (∅, σ⊕ {self 7→ Ji0K
]
Exp>}))

J[u, S, A0], x = create(u1)K]η =

let (P, σ) = η [u, S, A0] in
let i = ν] u σ u1 in
let σ′ = σ⊕ ({self 7→ i} ∪ {g 7→ J0K]Exp> | g ∈ G}) in

let ρ = {[u1, ∅, A′] 7→ (∅, σ′) | A′ ∈ new]
A u u1 A0} in

(ρ, (P, σ⊕ {x 7→ i}))

The right-hand sides corresponding to initMT, lock, assignment to a global variable,
and guards and computations on locals remain unchanged when compared to their
definitions from Section 4.1.1 — except that they now consult the unknown enhanced
with the digest.

For unlocking of mutexes, the new right-hand sides are given by

J[u, S, A0], unlock(mg), A′K]η =

let (P, σ) = η [u, S, A0] in
let P′ = {h ∈ P | ((S \ {mg}) ∩ M̄[h]) 6= ∅} in
let ρ = {[g, A′]′ 7→ σ g} ∪ {[g, A′] 7→ σ g | M̄[g] = {mg}} in
(ρ, (P′, σ))

J[u, S, A0], unlock(a), A′K]η =

let (P, σ) = η [u, S, A0] in
let P′ = {g ∈ P | ((S \ {a}) ∩ M̄[g]) 6= ∅} in
let ρ = {[g, A′] 7→ σ g | a ∈ M̄[g]} in
(ρ, (P′, σ))

for a 6∈ {mg | g ∈ G}. For reading from a global, on the other hand, we have

J[u, S, A0], x = gK]η = let (P, σ) = η [u, S, A0] in
if g ∈ P then

(∅, (P, σ⊕ {x 7→ (σ g)}))
else if S ∩ M̄[g] = {mg} then

(∅, (P, σ⊕ {x 7→ σ g t⊔A′∈A, compat]A A0 A′ η [g, A′]′}))
else (∅, (P, σ⊕ {x 7→ σ g t⊔A′∈A, compat]A A0 A′ η [g, A′]}))
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For return, thread join, signal(s), and wait(s), we define

J[u, S, A0], return, A′K]η = let (P, σ) = η [u, S, A0] in
let I = σ self in
({[i, A′] 7→ σ ret | i ∈ I} , (P, σ))

J[u, S, A0], x = join(x′)K]η = let (P, σ) = η [u, S, A0] in
let v =

⊔
i′∈(σ x′)

(⊔
A′∈A, compat]A A0 A′(η[i

′, A′])
)

in

if v = ⊥ then
(∅,⊥)

else
(∅, (P, σ⊕ {x 7→ v}))

J[u, S, A0], signal(s), A′K]η = let (P, σ) = η [u, S, A0] in
({[s, A′] 7→ (P, σ)} , (P, σ))

J[u, S, A0],wait(s)K]η = let (P, σ) = η [u, S, A0] in
if
((⊔

A′∈A, compat]A A0 A′ η [s, A′]
)
= ⊥

)
then

(∅,⊥)
else

(∅, (P, σ))

Thus, side-effects are re-directed to unknowns equipped with digests, and the function
compat]A is used to decide when information should be incorporated into the analysis.

Example 16. Consider the analysis refined with the ego-lane-derived thread id digest from
Section 2.8, with compat]A(i, C)(i, C′) = may_run (i, C)(i, C′) as proposed in Example 10.
Consider additionally the following program fragment and assume that M̄[g] = {a, mg} and
that we use value sets for abstracting int values.

main:
initMT;
x = create(t1);
lock(a);
lock(m g);
z = g;
unlock(m g);
unlock(a);
y = create(t2);
return;

t1:
lock(a);
lock(m g);
g = 1;
unlock(m g);
unlock(a);
return;

t2:
lock(a);
lock(m g);
g = 42;
unlock(m g);
unlock(a);
return;

The main thread here receives the thread id ¯main = (main, ∅), and the newly created threads
receive the thread ids t̄1 = (main · 〈u1, t1〉, ∅) and t̄2 = (main · 〈u8, t2〉, ∅), respectively. As
the read of g in the main thread is protected, the values of unknowns [g, A] are relevant here. At
the unlock(a) in thread t̄1, the unknown [g, (t̄1, ∅)] receives the contribution {1}, whereas at
the unlock(a) in thread t̄2, the unknown [g, (t̄2, ∅)] receives the contribution {42}. At the read
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in ¯main, the local state (when omitting the values of variables of type thread id for readability)
is (P, σ) = (∅, {g 7→ {0}}) and the digest information associated with the preceding program
point is ( ¯main, {〈u1, t1〉}). Thus, the value read for g is given by

d = σ g t⊔A′∈A,compat]A ( ¯main,{〈u1,t1〉}) A′ η [g, A′]

= σ g t⊔A′∈A,may_run ( ¯main,{〈u1,t1〉}) A′ η [g, A′]
= {0} t η [g, ( ¯main, ∅)] t η [g, (t̄1, ∅)]

= {0} t {0} t {1} = {0, 1}

as the only unknowns for protected accesses to g that receive side-effects are [g, ( ¯main, ∅)]

(initialization), [g, (t̄1, ∅)], and [g, (t̄2, ∅)] and may_run ( ¯main, {〈u1, t1〉}) (t̄1, ∅) as well as
may_run ( ¯main, {〈u1, t1〉}) ( ¯main, ∅) are true, while may_run ( ¯main, {〈u1, t1〉}) (t̄2, ∅) is not.
The analysis without this refinement, on the other hand, would find that the value read for g is
{0, 1, 42}.
Remark 11. By choosing A = {•} and setting all right-hand sides for digests to also return
{•} (which is ego-lane-derived), we obtain an analysis equivalent to the one from Section 4.1.1.

Theorem 6. Protection-Based Reading enhanced with an ego-lane digest is sound w.r.t. the
local trace semantics.

Proof. In Section 6.1.3, we show that this analysis computes an abstraction of the result
of the analysis presented in Section 4.1.7, which we then prove to be sound w.r.t. the
local trace semantics in Section 6.1.1.

4.1.3 Side-Effecting Formulation of the Analysis by Miné

As the analysis in Section 4.1.4 will attempt to improve upon a variant of the analysis
by Miné [83, 84], we will first give a side-effecting formulation of this analysis adapted
to our setting here. This analysis, when stripped of pre-determined thread ids, which
are not readily available in a setting such as the one considered here, and other features
specific to real-time systems such as Arinc653 [2] and reformulated by means of
side-effecting constraint systems, works as follows:

It maintains for each pair (u, S) of program point u and currently held lockset S,
copies of globals g whose values are weakly updated whenever the lock for some mutex
a is acquired. In order to restrict the set of possibly read values, the global g is split into
unknowns [g, a, S′] where S′ is a background lockset held by another thread immediately
after executing unlock(a). Then only the values of those unknowns [g, a, S′] are taken
into account where S ∩ S′ = ∅.

On top of the mechanism that handles synchronized accesses to variables (synchronized
interferences in Miné’s terminology), there also exist weak interferences, i.e., accesses
not synchronized via some common mutex in his original setting. After adaption to
our setting, such weak interferences do not exist because the atomicity assumption
introduced mutexes mg immediately surrounding each access to a global g. The would-
be weak interferences for a global g thus are stored at unknowns [g, mg, S]. To be faithful
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to the analysis as proposed, where such weak interferences are only consulted at the
read and not eagerly copied into the local state, locking and unlocking some mg for
g ∈ G does not affect the local state and the values stored at unknowns [g, mg, S] are
instead taken into account and side-effected to when reading from, respectively when
writing to, a global g. We also track a set W of written variables by which we restrict
synchronized interferences, as is done with the help of the weak interferences of a thread
with a given thread id in the original setting. We extend this analysis with treatment
for return, join, and signal and wait in the same manner these features are handled in
the other analyses and remark that these are not present in the original setting. The
right-hand-side functions thus are defined as follows:

init] _ =

let σ = {x 7→ > | x ∈ X} ∪ {g 7→ J0K]Exp> | g ∈ G} in
(∅, (∅, σ))

J[u, S], x = create(u1)K]η =

let (W, σ) = η [u, S] in
let i = ν] u σ u1 in
let σ′ = σ⊕

(
{self 7→ i} ∪

{
g 7→

(
σ g u J0K]Exp>

)
| g ∈ G

})
in

let ρ = {[u1, ∅] 7→ (∅, σ′)} in
(ρ, (W, σ⊕ {x 7→ i}))

J[u, S], lock(mg)K]η = (∅, η [u, S])

J[u, S], unlock(mg)K]η = (∅, η [u, S])

J[u, S], lock(a)K]η =

let (W, σ) = η [u, S] in
let σ′ = {g 7→ ⊔{η[g, a, S′] | S′ ⊆M, S′ ∩ S = ∅} | g ∈ G} in
(∅, (W, σ t σ′))

J[u, S], unlock(a)K]η =

let (W, σ) = η [u, S] in
({[g, a, S \ {a}] 7→ σ g | g ∈W}, (W, σ))

J[u, S], g = xK]η
let (W, σ) = η [u, S] in
let σ′ = σ⊕ {g 7→ σ x} in
({[g, mg, S \ {mg}] 7→ σ′ g}, (W ∪ {g}, σ′))

J[u, S], x = gK]η
let (W, σ) = η [u, S] in
let g′ =

⊔{η [g, mg, S′] | S′ ⊆M, S′ ∩ S = ∅} in
(∅, (W, σ⊕ {x 7→ σ g t g′}))

Once again, the right-hand side for the action initMT returns the abstract state of the
predecessor and causes no side-effects. Also, computations on locals and guards are
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defined in the intuitive manner, operating on σ only, leaving W unchanged. Return, join,
signal, and wait are handled in the same manner as in the Protection-Based analysis
(Section 4.1.1), when replacing the unmodified P component there with W.

This analysis is intricate; however, side-effecting constraint systems elegantly capture
the core idea in just a few lines. The weak interferences are associated with pseudo-lock
mg, but a weak interference is only propagated from a write with lockset S to a read with
lockset S′ if these sets have an empty intersection. Similarly, synchronized interferences
are only propagated from an unlock to a lock if the background locksets permit it.

Remark 12. The limiting of synchronized interferences in the extended version [84] happens by
checking whether a weak interference of the same thread id exists where the given mutex is in the
background lockset. The author remarks that, to gain precision, one could track for each critical
section which variables were modified during it and then only emit synchronized interferences for
such variables. In our setting with dynamic thread creation, however, no thread ids are readily
available. The set W is thus introduced to locally track sets of globals modified since the start of
the thread to somewhat limit synchronized interferences and stay true in spirit to the original
analysis. Interestingly, this is in some way more precise than the original setting, as W is tracked
flow-sensitively, whereas checking the existence of a weak interference is flow-insensitive. On the
other hand, an even more faithful rendering would instead require tracking maps from mutexes
to those globals that have been potentially modified since the mutex has been acquired, and would
then be in line with the additional remark in [84]. While one can construct examples where
tracking this information more precisely improves precision, it does not do so for any of the
example programs presented in this thesis, and our implementation does not support it.

4.1.4 Lock-Centered Reading

We identify two sources of imprecision in the variant of the analysis by Miné [83, 84]
adapted to our setting as presented in the previous section. One source is eager reading,
i.e., reading in values of g at every lock(a) operation. This may import the values of too
many unknowns [g, a, S′] into the local state. Instead, it suffices for each mutex a, to read
values at the last lock(a) before actually accessing the global.

Let UM denote the set of all upward-closed subsets ofM, ordered by subset inclusion.
For convenience, we represent each non-empty value in UM by the set of its minimal
elements. Thus, the least element of UM is ∅, while the greatest element is given by the
full power set of mutexes (represented by {∅}).

We now maintain a map L :M→ UM in the local state that tracks for each mutex a all
minimal background locksets that were held when a was acquired last. This abstraction
of acquisition histories [66, 67] allows us to delay the reading of globals until the point
where the program actually accesses their values. We call this behavior lazy reading.

The other source of imprecision is that each thread may publish values it has not
written itself. In order to address this issue, we modify the map component of the local
state to, for each global g, only maintain an abstraction σ g of values the ego thread itself
has written and then publish only those values.
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A consequence of lazy reading is that values for globals are now read from the global
invariant at each read. In case the ego thread has definitely written to a variable and no
additional locks have occurred since, only the local copy needs to be read. To achieve
that, we introduce an additional map V :M→ 2G with the order defined point-wise by
superset. For a mutex a ∈ M, V a ⊆ G is the set of global variables that were definitely
written since a was last acquired by the ego thread. In case a has never been acquired
by the ego thread, we set V a to the set of all global variables that have definitely been
written since the start of the thread.

We start by giving the right-hand-side function for the start state at program point
u0 ∈ N with the empty lockset ∅, i.e., [u0, ∅] w init] where

init] _ = let V = {a 7→ ∅ | a ∈ M} in
let L = {a 7→ ∅ | a ∈ M} in
let σ = {x 7→ > | x ∈ X} ∪ {g 7→ J0K]Exp> | g ∈ G} in

(∅, (V, L, σ⊕ {self 7→ Ji0K
]
Exp>}))

Next, we sketch the right-hand-side function for a thread creation edge.

J[u, S], x = create(u1)K]η =

let (V, L, σ) = η [u, S] in
let i = ν] u σ u1 in
let σ′ = σ⊕

(
{self 7→ i} ∪

{
g 7→

(
σ g u J0K]Exp>

)
| g ∈ G

})
in

let ρ = {[u1, ∅] 7→ ({a 7→ ∅ | a ∈ M}, {a 7→ ∅ | a ∈ M}, σ′)} in
(ρ, (V, L, σ⊕ {x 7→ i}))

This function has no effect on the local state apart from setting x to the abstract thread
id of the newly created thread, while providing an appropriate initial state to the start
point of the newly created thread.

Remark 13. We remark that setting g to
(

σ g u J0K]Exp>
)

in the initial state of the new thread
is done here only for symmetry reasons with the other analyses. Setting all such globals in σ′ to
⊥ would also be sound.

The right-hand side for the action initMT once more returns the abstract state of the
predecessor and causes no side-effects. For guards and computations on locals, the
right-hand-side functions are once more defined in a straightforward manner — they
operate on σ only, leaving L and V unchanged.

Locking a mutex a resets V a to ∅ and updates L, whereas unlock side-effects the
value of globals to the appropriate unknowns.

J[u, S], lock(a)K]η = let (V, L, σ) = η [u, S] in
let V ′ = V ⊕ {a 7→ ∅} in
let L′ = L⊕ {a 7→ {S}} in
(∅, (V ′, L′, σ))
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J[u, S], unlock(a)K]η = let (V, L, σ) = η [u, S] in
let ρ = {[g, a, S \ {a}] 7→ σ g | g ∈ G} in
(ρ, (V, L, σ))

The right-hand-side function for an edge corresponding to a write to a global g then
consists of a strong update to the local copy and addition of g to V a for all mutexes a.
For reading from a global g, those values [g, a, S′] need to be taken into account where a
is one of the mutexes acquired in the past of the ego thread, and the intersection of some
set in L a with the set of mutexes S′ held while publishing is empty.

J[u, S], g = xK]η = let (V, L, σ) = η [u, S] in
let V ′ = {a 7→ (V a ∪ {g}) | a ∈ M} in
(∅, (V ′, L, σ⊕ {g 7→ (σ x)}))

J[u, S], x = gK]η = let (V, L, σ) = η [u, S] in
let d =

⊔{η[g, a, S′] | a ∈ M, g 6∈ V a, ∃B ∈ L a, B ∩ S′ = ∅} in
(∅, (V, L, σ⊕ {x 7→ σ g t d}))

In case that L a = ∅, i.e., if, according to the analysis, no thread reaching u with lockset
S has ever locked mutex a, then no values from [g, a, S′] will be read.

The handling of returns, joins, signals, and waits remains essentially unchanged
compared to the analysis from Section 4.1.1.

J[u, S], returnK]η = let (V, L, σ) = η [u, S] in
let I = σ self in
({[i] 7→ σ ret | i ∈ I} , (V, L, σ))

J[u, S], x = join(x′)K]η = let (V, L, σ) = η [u, S] in
let v =

⊔
i′∈(σ x′)(η[i′]) in

if v = ⊥ then
(∅,⊥)

else
(∅, (V, L, σ⊕ {x 7→ v}))

J[u, S], signal(s)K]η = let (V, L, σ) = η [u, S] in
({[s] 7→ (V, L, σ)} , (V, L, σ))

J[u, S],wait(s)K]η = let (V, L, σ) = η [u, S] in
if η [s] = ⊥ then

(∅,⊥)
else

(∅, (V, L, σ))

The following example highlights core aspects of this analysis, and how eager reading
which was identified as a source of imprecision for the analysis in the previous section
is avoided here.

Example 17. Consider the following program fragment and assume that sets of integers are
used to abstract variables of type int.
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main:
initMT;
x = create(t1);
lock(b);
unlock(b);
lock(a);
lock(b);
lock(m g); z = g; unlock(m g);
// ASSERT(z>=0) (1)
unlock(b);
unlock(a);
return;

t1:
lock(a);
lock(b);
lock(m g); g = -1; unlock(m g);
unlock(b);
lock(m g); z = g; unlock(m g);
// ASSERT(z==-1) (2)
lock(m g); g = 8; unlock(m g);
unlock(a);
return;

With Lock-Centered Reading, both assertions can be shown, whereas the analysis from Sec-
tion 4.1.3 based on [83, 84] only succeeds in showing the assertion (2). In this analysis, upon the
first lock(b) in the main thread, the value {0,−1} associated with the unknown [g, b, {a}] is
joined into the local state. Thus, the assertion (1) will fail. For Lock-Centered Reading, no
information is incorporated right away upon the call to lock(b). When the global g is accessed in
the main thread, the set of minimal locksets since acquiring it (L b) is {{a}}, and the unknown
[g, b, {a}] is thus not consulted. The unknowns [g, a, ∅] and [g, b, ∅] which are consulted have
the values {0, 8} and {0}, respectively. The assertion (1) therefore can be established.

For assertion (2), on the other hand, the data structure V (which for mutex a contains g when
g is read in t1) is crucial to exclude reading other values, e.g., from [g, a, ∅]. The analysis from
Section 4.1.3 does not require this extra data structure.

Theorem 7. Lock-Centered Reading is sound w.r.t. the local trace semantics.

Proof. In Section 4.1.5, we show this analysis is an instance of the refined analysis
presented there. The soundness proof for that analysis is deferred to Section 6.1.2.

4.1.5 Lock-Centered Reading with Ego-Lane Digests

We now turn to enhancing this analysis with digests. When applying a refinement based
on ego-lane digests to the analysis from Section 4.1.4, the resulting analysis has the
following set of unknowns:

• [u, S, A] for u ∈ N , S ⊆M, and A ∈ A,

• [g, a, S, A] for g ∈ G, a ∈ M, S ⊆M, and A ∈ A,

• [i, A] for i ∈ SV ]tid
and A ∈ A, and

• [s, A] for s ∈ S and A ∈ A.

The resulting constraint system here takes the same form as the constraint system for
the protection-based analysis enhanced with digests, as given in Eq. (4.1).
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The right-hand sides are then given by:

init(A)] _ =

let V = {a 7→ ∅ | a ∈ M} in
let L = {a 7→ ∅ | a ∈ M} in
let σ = {x 7→ > | x ∈ X} ∪ {g 7→ J0K]Exp> | g ∈ G} in

(∅, (V, L, σ⊕ {self 7→ Ji0K
]
Exp>}))

J[u, S, A0], x = create(u1)K]η =

let (V, L, σ) = η [u, S, A0] in
let V ′ = {a 7→ ∅ | a ∈ M} in
let L′ = {a 7→ ∅ | a ∈ M} in
let i = ν] u σ u1 in
let σ′ = σ⊕

(
{self 7→ i} ∪

{
g 7→

(
σ g u J0K]Exp>

)
| g ∈ G

})
in

let ρ = {[u1, ∅, A′] 7→ (V ′, L′, σ′) | A′ ∈ new]
A u u1 A0} in

(ρ, (V, L, σ⊕ {x 7→ i}))

The right-hand sides for initMT, lock, assignment to a global variable, and guards and
computations on locals remain unchanged when compared to their definitions from
Section 4.1.4 — except that they now consult the unknown enhanced with the digest.
For unlocking of mutexes, the new right-hand side is given by:

J[u, S, A0], unlock(a), A′K]η = let (V, L, σ) = η [u, S, A0] in
let ρ = {[g, a, S \ {a}, A′] 7→ σ g | g ∈ G} in
(ρ, (V, L, σ))

For reading from a global, we now have

J[u, S, A0], x = gK]η =

let (V, L, σ) = η [u, S, A0] in
let d =

⊔{η[g, a, S′, A′] | a ∈ M,
g 6∈ V a, ∃B ∈ L a, B ∩ S′ = ∅, A′ ∈ A, compat]A A0 A′} in

(∅, (V, L, σ⊕ {x 7→ σ g t d}))

The handling of returns, joins, signals, and waits once more remains essentially un-
changed compared to the analysis from Section 4.1.2.

J[u, S, A0], return, A′K]η = let (V, L, σ) = η [u, S, A0] in
let I = σ self in
({[i, A′] 7→ σ ret | i ∈ I} , (V, L, σ))
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J[u, S, A0], x = join(x′)K]η = let (V, L, σ) = η [u, S, A0] in
let v =

⊔
i′∈(σ x′)

(⊔
A′∈A, compat]A A0 A′(η[i

′, A′])
)

in

if v = ⊥ then
(∅,⊥)

else
(∅, (V, L, σ⊕ {x 7→ v}))

J[u, S, A0], signal(s), A′K]η = let (V, L, σ) = η [u, S, A0] in
({[s, A′] 7→ (V, L, σ)} , (V, L, σ))

J[u, S, A0],wait(s)K]η = let (V, L, σ) = η [u, S, A0] in
if
((⊔

A′∈A, compat]A A0 A′ η [s, A′]
)
= ⊥

)
then

(∅,⊥)
else

(∅, (V, L, σ))

Thus, again side-effects are re-directed to the unknowns equipped with digests, and the
function compat]A is used to decide when information should be incorporated into the
analysis.

Example 18. Consider the analysis refined with the ego-lane-derived thread id digest from
Section 2.8, with compat]A(i, C)(i, C′) = may_run (i, C)(i, C′) as proposed in Example 10 and
consider again the program from Example 16. The reasoning given there also applies to this
analysis, i.e., it will also establish that the value read for g is {0, 1}.
Example 19. Alternatively, consider the analysis refined in the same way and the following
program:

main:
initMT;
lock(m g);
g = 1;
unlock(m g);
lock(m g);
z = g;
unlock(m g);
// ASSERT(z == 1); (1)
x = create(t1);
return;

t1:
y = create(t2);
lock(a);
lock(m g);
g = -8;
unlock(m g);
lock(m g);
g = 1;
unlock(m g);
unlock(a);
return;

t2:
lock(a);
lock(m g);
z = g;
unlock(m g);
// ASSERT(z == 1); (2)
unlock(a);
return;

Without refinement, assertion (1) could not be established as writes from other threads would
need to be considered. Conversely, assertion (2) is out of reach for the Protection-Based analysis,
even when it is refined with thread ids, as the global g is accessed without holding a before
any other threads are started and thus a is not considered a protecting mutex there. This is a
situation that is quite common where, e.g., the initialization of a global happens without holding
any mutexes, as no other threads have been started yet.
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Remark 14. By choosing A = {•} and setting all right-hand sides for digests to also return
{•} (which is ego-lane-derived), one obtains an analysis equivalent to the one from Section 4.1.4.

Theorem 8. Lock-Centered Reading enhanced with an ego-lane digest is sound w.r.t. the local
trace semantics.

Proof. The detailed proof is deferred to Section 6.1.2. Roughly, it proceeds as follows:
First, the constraint system for the concrete semantics is massaged into an equivalent
form that can more readily be related to the abstract semantics. Then, the equivalence
between both formulations is established (Proposition 21). After showing that restricting
the unknowns consulted upon read as presented in the transfer functions will not miss
any values (Proposition 22), solutions of the abstract constraint system are shown to
give rise to solutions of the concrete constraint system (Theorem 18).

4.1.6 Write-Centered Reading

In this section, we provide an improvement of Protection-Based Reading which lifts the
assumption that each global g is write-protected by some fixed set of mutexes M̄[g].
In order to lift the assumption, we locally track some additional information about the
history of the ego thread.

Recall that UM denotes the set of all upward-closed subsets ofM, ordered by subset
inclusion and that we represent each non-empty value in UM by the set of its minimal
elements. Further recall that the least element of UM is ∅, while the greatest element is
the full power set (represented by {∅}).

We then introduce the additional data structures W, P : G → UM to be maintained by
the analysis for each unknown [u, S] for program point u and currently held lockset S.
The map W tracks for each global g the set of minimal locksets held when g was last
written by the ego thread. At the start of a thread, the ego thread has not written any
global yet; hence, we set W g = ∅ for all globals g. The map P, on the other hand, tracks,
for each global g, all minimal locksets the ego thread has held since its last write to g. A
global g not yet written to by the ego thread is mapped to the full power set of mutexes
(represented by {∅}). The unknowns for a global g now are of the form [g, a, S, w] for
mutexes a, background locksets S at unlock(a) and minimal lockset w when g was last
written.

We start by giving the right-hand-side function for the start state at program point
u0 ∈ N with the empty lockset ∅, i.e., [u0, ∅] w init] where

init] _ = let W = {g 7→ ∅ | g ∈ G} in
let P = {g 7→ {∅} | g ∈ G} in
let σ = {x 7→ > | x ∈ X} ∪ {g 7→ J0K]Exp> | g ∈ G} in

(∅, (W, P, σ⊕ {self 7→ Ji0K
]
Exp>}))

The right-hand side for the action initMT once more returns the abstract state of the
predecessor and causes no side-effects. Next comes the right-hand-side function for a
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thread creating edge.

J[u, S], x = create(u1)K]η =

let (W, P, σ) = η [u, S] in
let W ′ = {g 7→ ∅ | g ∈ G} in
let P′ = {g 7→ {∅} | g ∈ G} in
let i = ν] u σ u1 in
let σ′ = σ⊕

(
{self 7→ i} ∪

{
g 7→

(
σ g u J0K]Exp>

)
| g ∈ G

})
in

let ρ = {[u1, ∅] 7→ (W ′, P′, σ′)} in
(ρ, (W, P, σ⊕ {x 7→ i}))

This function has no effect on the local state apart from setting x to the abstract thread
id of the newly created thread while providing an appropriate initial state to the start
point of the newly created thread.

Remark 15. We remark that setting g to
(

σ g u J0K]Exp>
)

in the initial state of the new thread
is only necessary for technical reasons to ensure that this analysis is more precise than the
Protection-Based Reading analysis presented in Section 4.1.1 in all circumstances. This is
because this analysis does not side-effect the initial value of the globals right at the program start
and thus needs to propagate this initial value to the newly created thread if g has indeed not been
written yet. However, propagating all of σ g could lead to a loss of precision, e.g., when g is only
written in one branch.

For guards and computations on locals, the right-hand-side functions are once more
defined straightforwardly — they operate on σ only, leaving W and P unchanged.

While nothing happens at locking, unlocking now updates the data structure P and
additionally side-effects the current local values for each global g to the corresponding
unknowns. Note that no distinction between mg and other mutexes is drawn here.

J[u, S], lock(a)K]η = (∅, η [u, S])

J[u, S], unlock(a)K]η = let (W, P, σ) = η [u, S] in
let P′ = {g 7→ P g t {S \ {a}} | g ∈ G} in
let ρ = {[g, a, S \ {a}, w] 7→ σ g | g ∈ G, w ∈W g} in
(ρ, (W, P′, σ))

When writing to a global g, on top of recording the written value in σ, W g and P g are
set to the set {S} for the current lockset S. When reading from a global g, now only
values stored at those unknowns η [g, a, S′, w] where the following conditions are met
are taken into account:

• a ∈ S, i.e., a is one of the currently held locks;

• S ∩ S′ = ∅; i.e., the intersection of the current lockset S with the background
lockset at the corresponding operation unlock(a) after the write producing the
value stored at this unknown is empty;
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• w ∩ S′′ = ∅ for some S′′ ∈ P g, i.e., the background lockset at the write producing
the value stored at this unknown is disjoint with one of the locksets in P g. This
excludes writes where the ego thread has since its last thread-local write always
held at least one of the locks in w. In this case, that write can not have happened
between the last thread-local write of the reading ego thread and its read;

• a /∈ S′′′ for some S′′′ ∈ P g, i.e., a has not been continuously held by the thread
since its last write to g.

Accordingly, we define

J[u, S], g = xK]η = let (W, P, σ) = η [u, S] in
let W ′ = W ⊕ {g 7→ {S}} in
let P′ = P⊕ {g 7→ {S}} in
(∅, (W ′, P′, σ⊕ {g 7→ (σ x)}))

J[u, S], x = gK]η = let (W, P, σ) = η [u, S] in
let d = σ g t⊔{η[g, a, S′, w] | a ∈ S, S ∩ S′ = ∅,
∃S′′ ∈ P g : S′′ ∩ w = ∅,
∃S′′′ ∈ P g : a /∈ S′′′} in

(∅, (W, P, σ⊕ {x 7→ d}))

The handling of returns, joins, signals, and waits once more remains essentially un-
changed compared to the analysis from Section 4.1.1.

J[u, S], returnK]η = let (W, P, σ) = η [u, S] in
let I = σ self in
({[i] 7→ σ ret | i ∈ I} , (W, P, σ))

J[u, S], x = join(x′)K]η = let (W, P, σ) = η [u, S] in
let v =

⊔
i′∈(σ x′)(η[i′]) in

if v = ⊥ then
(∅,⊥)

else
(∅, (W, P, σ⊕ {x 7→ v}))

J[u, S], signal(s)K]η = let (W, P, σ) = η [u, S] in
({[s] 7→ (W, P, σ)} , (W, P, σ))

J[u, S],wait(s)K]η = let (W, P, σ) = η [u, S] in
if η [s] = ⊥ then

(∅,⊥)
else

(∅, (W, P, σ))

Example 20. Assume integer sets are used for abstracting int values. Consider the following
concurrent program with global variable g and local variables x, y, and z:
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main:
initMT;
y = create(t1);
z = create(t2);
lock(c);
lock(m g); g = 31; unlock(m g);
lock(a);
lock(b);
lock(m g); x = g; unlock(m g);
...

t1:
lock(a);
lock(b);
lock(m g); g = 42; unlock(m g);
unlock(a);
lock(m g); g = 17; unlock(m g);
unlock(b);

t2:
lock(c);
lock(m g); g = 59; unlock(m g);
unlock(c);

At the read x = g, the current lockset is {a, b, c, mg} and in the local state P g = {{c}}. The
only unknown that receives a side-effect for this program and where all conditions above are
fulfilled is the unknown [g, b, ∅, {b, mg}] which has value {17}. Hence, this is the only value
read from the unknowns for g and together with the value {31} from σ g the final value for x is
{17, 31}. This is more precise than either of the analyses presented thus far: Protection-Based
Reading cannot exclude any values of x as g = {mg}, and thus has {0, 17, 31, 42, 59} for x.
Lock-Centered Reading has V c = {g} at the read. This excludes the write by t2 and thus
results in {17, 31, 42} for x.

Theorem 9. Write-Centered Reading is sound w.r.t. the local trace semantics.

Proof. In Section 4.1.7, we show this analysis is an instance of the refined analysis
presented there. The soundness proof for that analysis is deferred to Section 6.1.1.

4.1.7 Write-Centered Reading with Ego-Lane Digests

We now turn to enhancing this analysis with digests. When applying a refinement based
on ego-lane digests to the analysis from Section 4.1.6, the resulting analysis has the
following set of unknowns:

• [u, S, A] for u ∈ N , S ⊆M, and A ∈ A,

• [g, a, S, w, A] for g ∈ G, a ∈ M, S ⊆M, w ⊆M, and A ∈ A,

• [i, A] for i ∈ SV ]tid
and A ∈ A, and

• [s, A] for s ∈ S and A ∈ A.

The constraint system once more takes the same form as the constraint system for the
protection-based analysis enhanced with digests, as given in Eq. (4.1).
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The right-hand sides are then given by:

init(A)] _ = let W = {g 7→ ∅ | g ∈ G} in
let P = {g 7→ {∅} | g ∈ G} in
let σ = {x 7→ > | x ∈ X} ∪ {g 7→ J0K]Exp> | g ∈ G} in

(∅, (W, P, σ⊕ {self 7→ Ji0K
]
Exp>}))

J[u, S, A0], x = create(u1)K]η =

let (W, P, σ) = η [u, S, A0] in
let W ′ = {g 7→ ∅ | g ∈ G} in
let P′ = {g 7→ {∅} | g ∈ G} in
let i = ν] u σ u1 in
let σ′ = σ⊕

(
{self 7→ i}) ∪

{
g 7→

(
σ g u J0K]Exp>

)
| g ∈ G

})
in

let ρ = {[u1, ∅, A′] 7→ (W ′, P′, σ′) | A′ ∈ new]
A u u1 A0} in

(ρ, (W, P, σ⊕ {x 7→ i}))

The right-hand sides for initMT, lock, assignment to a global variable, and guards
and computations on locals (once more) remain unchanged when compared to their
definitions from Section 4.1.6 — except that they now consult the unknown enhanced
with the digest.
For unlocking of mutexes, the new right-hand side is given by:

J[u, S, A0], unlock(a), A′K]η =

let (W, P, σ) = η [u, S, A0] in
let P′ = {g 7→ P g t {S \ {a}} | g ∈ G} in
let ρ = {[g, a, S \ {a}, w, A′] 7→ σ g | g ∈ G, w ∈W g} in
(ρ, (W, P′, σ))

For reading from a global, we have:

J[u, S, A0], x = gK]η = let (W, P, σ) = η [u, S, A0] in
let d = σ g t⊔{η[g, a, S′, w, A′] | a ∈ S, S ∩ S′ = ∅,
∃S′′ ∈ P g : S′′ ∩ w = ∅,
∃S′′′ ∈ P g : a /∈ S′′′,
A′ ∈ A, compat]A A0 A′} in

(∅, (W, P, σ⊕ {x 7→ d}))

The handling of returns, joins, signals, and waits once more remains essentially un-
changed compared to the analysis from Section 4.1.2.

J[u, S, A0], return, A′K]η = let (W, P, σ) = η [u, S, A0] in
let I = σ self in
({[i, A′] 7→ σ ret | i ∈ I} , (W, P, σ))
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J[u, S, A0], x = join(x′)K]η = let (W, P, σ) = η [u, S, A0] in
let v =

⊔
i′∈(σ x′)

(⊔
A′∈A, compat]A A0 A′(η[i

′, A′])
)

in

if v = ⊥ then
(∅,⊥)

else
(∅, (W, P, σ⊕ {x 7→ v}))

J[u, S, A0], signal(s), A′K]η = let (W, P, σ) = η [u, S, A0] in
({[s, A′] 7→ (W, P, σ)} , (W, P, σ))

J[u, S, A0],wait(s)K]η = let (W, P, σ) = η [u, S, A0] in
if
((⊔

A′∈A, compat]A A0 A′ η [s, A′]
)
= ⊥

)
then

(∅,⊥)
else

(∅, (W, P, σ))

Thus, again side-effects are re-directed to the unknowns equipped with digests, and the
function compat]A is used to decide when information should be incorporated.

Example 21. Consider the analysis refined with the ego-lane-derived thread id digest from
Section 2.8, with compat]A(i, C)(i, C′) = may_run (i, C)(i, C′) as proposed in Example 10.
Consider the following program fragment which corresponds to modifying Example 20 to have t2

start later and have it write g while only holding mg. Once more, assume that we use value sets
for abstracting int values.

main:
initMT;
y = create(t1);
lock(c);
lock(m g); g = 31; unlock(m g);
lock(a);
lock(b);
lock(m g); x = g; unlock(m g);
z = create(t2);

t1:
lock(a);
lock(b);
lock(m g); g = 42; unlock(m g);
unlock(a);
lock(m g); g = 17; unlock(m g);
unlock(b);

t2:
lock(m g); g = 59; unlock(m g);

The main thread here receives the thread id ¯main = (main, ∅), and the newly created threads
receive the thread ids t̄1 = (main · 〈u1, t1〉, ∅) and t̄2 = (main · 〈u7, t2〉, ∅), respectively. Then,
the possible values of x determined by the refined Write-Centered analysis are {17, 31}, as the
thread with thread id t̄2 is definitely not started yet when the read occurs. Without the refinement,
the set would be {17, 31, 59}. Protection-Based Reading would find {0, 31, 42, 17, 59} without
refinement, and is able to exclude {59} with refinement. Lock-Centered Reading would find
{17, 31, 42, 59} without the refinement, and once more is able to exclude {59} with refinement.
This example thus highlights that, even after being refined with thread id digests from Section 2.8,
the analyses still achieve different results on at least some programs.

83



4 Static Analysis by Abstract Interpretation

Remark 16. By choosingA = {•} and setting all right-hand sides for digests to also return {•}
(which is ego-lane-derived), we obtain an analysis that is equivalent to the one from Section 4.1.6.

Theorem 10. Write-Centered Reading enhanced with an ego-lane digest is sound w.r.t. the
trace semantics.

Proof. The entirety of Section 6.1.1 is dedicated to a detailed account of the proof, we
quickly sketch its flow here: It proceeds by first massaging the concrete semantics into
an equivalent form that has unknowns that can more readily be related to the abstract
semantics and then proving that the least solution of the original constraint system can
be constructed from the modified one and vice versa (see Proposition 16). The central
issue is to prove that when reading a global g, the restriction to the values of unknowns
[g, a, S′, w] as indicated by the right-hand-side function is sound (see Proposition 17).
Next, an analysis with adapted side-effects is introduced, and a relationship between
solutions of this analysis and the original analysis established (Proposition 18). Finally,
to put it all together, solutions of the modified abstract constraint system are shown to
give rise to solutions of the modified concrete constraint system (Theorem 17).

4.1.8 Combining Write-Centered with Lock-Centered Reading

The analyses described in Sections 4.1.4 and 4.1.6 are sound, yet incomparable. This is
evidenced by Example 20, in which Write-Centered is more precise than Lock-Centered
Reading, and the following example, where the opposite is the case.

Example 22. Assume that we use value sets for abstracting the values of integer variables.
Consider the following concurrent program with two threads, a global variable g and local
variables x and y:

main:
initMT;
y = create(t1);
lock(d);
lock(a);
unlock(d);
lock(m g); x = g; unlock(m g);
...

t1:
lock(d);
lock(a);
lock(m g); g = 42; unlock(m g);
unlock(a);
lock(m g); g = 17; unlock(m g);
unlock(d);

For Write-Centered Reading, (on top of the initial value of {0}) both the value at unknowns
[g, a, {d}, {d, a, mg}] with value {42} and [g, d, ∅, {d, mg}] with value {17} are read, resulting
in a value of {0, 17, 42} for x. For Lock-Centered Reading, at the read in main, L a = {{d}},
and hence [g, a, {d}] with value {42} does not fulfill the conditions under which its value is
taken into account, resulting in a value of {0, 17} for x.

To obtain an analysis that is sound and more precise than Write-Centered and Lock-
Centered Reading, both can be combined. For the combination, we do not rely on a
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reduced product construction but, instead exploit the information of all simultane-
ously tracked data-structures V, W, P, L together to improve the set of writes read at a
particular read operation.

For completeness, we list all right-hand sides of the combined analysis here, giving
the version refined according to some ego-lane digest right away.

init(A)] _ = let W = {g 7→ ∅ | g ∈ G} in
let P = {g 7→ {∅} | g ∈ G} in
let V = {a 7→ ∅ | a ∈ M} in
let L = {a 7→ ∅ | a ∈ M} in
let σ = {x 7→ > | x ∈ X} ∪ {g 7→ J0K]Exp> | g ∈ G} in

(∅, (W, P, V, L, σ⊕ {self 7→ Ji0K
]
Exp>}))

The right-hand side for initMT once more returns the abstract state of the predecessor
and causes no side-effects.

J[u, S, A0], x = create(u1)K]η =

let (W, P, V, L, σ) = η [u, S, A0] in
let W ′ = {g 7→ ∅ | g ∈ G} in
let P′ = {g 7→ {∅} | g ∈ G} in
let V ′ = {a 7→ ∅ | a ∈ M} in
let L′ = {a 7→ ∅ | a ∈ M} in
let i = ν] u σ u1 in
let σ′ = σ⊕

(
{self 7→ i}) ∪

{
g 7→

(
σ g u J0K]Exp>

)
| g ∈ G

})
in

let ρ = {[u1, ∅, A′] 7→ (W ′, P′, V ′, L′, σ′) | A′ ∈ new]
A u u1 A0} in

(ρ, (W, P, V, L, σ⊕ {x 7→ i}))

The right-hand sides for guards and computations on locals are once more defined to
operate on σ only and return W, P, V, and L unchanged. The right-hand side for locking
a mutex a now is given by:

J[u, S, A0], lock(a)K]η = let (W, P, V, L, σ) = η [u, S, A0] in
let V ′ = V ⊕ {a 7→ ∅} in
let L′ = L⊕ {a 7→ {S}} in
(∅, (W, P, V ′, L′, σ))

while the right-hand side for unlocking a mutex a is given by:

J[u, S, A0], unlock(a), A′K]η = let (W, P, V, L, σ) = η [u, S, A0] in
let P′ = {g 7→ P g t {S \ {a}} | g ∈ G} in
let ρ = {[g, a, S \ {a}, w, A′] 7→ σ g |

g ∈ G, w ∈W g} in
(ρ, (W, P′, V, L, σ))
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The right-hand side for writing to a global variable is given by:

J[u, S, A0], g = xK]η = let (W, P, V, L, σ) = η [u, S, A0] in
let W ′ = W ⊕ {g 7→ {S}} in
let P′ = P⊕ {g 7→ {S}} in
let V ′ = {a 7→ (V a ∪ {g}) | a ∈ M} in
(∅, (W ′, P′, V, L, σ⊕ {g 7→ (σ x)}))

The handling of returns, joins, signals, and waits once more remains essentially un-
changed compared to the analyses from Sections 4.1.2 and 4.1.5.

J[u, S, A0], return, A′K]η = let (W, P, V, L, σ) = η [u, S, A0] in
let I = σ self in
({[i, A′] 7→ σ ret | i ∈ I} , (V, L, σ))

J[u, S, A0], signal(s), A′K]η = let (W, P, V, L, σ) = η [u, S, A0] in
({[s, A′] 7→ (W, P, V, L, σ)} , (W, P, V, L, σ))

J[u, S, A0], x = join(x′)K]η = let (W, P, V, L, σ) = η [u, S, A0] in
let v =

⊔
i′∈(σ x′)

(⊔
A′∈A, compat]A A0 A′(η[i

′, A′])
)

in

if v = ⊥ then
(∅,⊥)

else
(∅, (W, P, V, L, σ⊕ {x 7→ v}))

J[u, S, A0],wait(s)K]η = let (W, P, V, L, σ) = η [u, S, A0] in
if
(⊔

A′∈A, compat]A A0 A′ η [s, A′]
)
= ⊥ then

(∅,⊥)
else

(∅, (W, P, V, L, σ))

The key point then is for reading from a global g. Here, the information in the data-
structure P is not only used to restrict the set of reads for Write-Centered Reading, but can
also be used for restricting the set for Lock-Centered Reading (highlighted in teal below).
This way, also in the Lock-Centered style such writes can be excluded where the ego
thread has since its last local write always maintained a non-empty intersection with the
set of mutexes held by the thread that wrote the value, which means that write cannot
be the last one. This is what differentiates this analysis from simply applying a reduced
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product construction of both styles.

J[u, S, A0], x = gK]η = let (W, P, V, L, σ) = η [u, S, A0] in
let dwc =

⊔{η[g, a, S′, w, A′] | a ∈ S, S ∩ S′ = ∅,
∃S′′ ∈ P g : S′′ ∩ w = ∅,
∃S′′′ ∈ P g : a /∈ S′′′,
A′ ∈ A, compat]A A0 A′} in

let dlc =
⊔{η[g, a, S′, w, A′] | a ∈ M,

g 6∈ V a, ∃B ∈ L a, B ∩ S′ = ∅,
∃S′′ ∈ P g : S′′ ∩ w = ∅,
A′ ∈ A, compat]A A0 A′} in

(∅, (V, L, σ⊕ {x 7→ σ g t (dwc u dlc)}))

The resulting analysis is thus more precise than Write-Centered Reading and more precise
than Lock-Centered Reading. We do not detail the soundness proof here. Intuitively, it
follows from the soundness proofs of the two analyses in Sections 6.1.1 and 6.1.2 and
the additional observation that condition (W3) from Proposition 17 in Section 6.1.1 also
applies to Lock-Centered Reading.

4.1.9 Remark on Refinement with Thread Ids

All the novel analyses presented in this chapter can be refined with ego-lane digests,
and we have usually exemplified this with the digests for computing thread ids (from
Section 2.8). This is a natural choice and enhances the precision of the analyses by
limiting reading

I1 from other threads that have not yet been created.

However, this covers only part of the refinements one would like to make according to
the computed thread ids. The other two properties one would like to consider are

I2 not reading older writes by the ego thread if it is known to be unique;

I3 and also not reading the writes of threads that have definitely been joined —
provided the value they wrote last has been overwritten.

We will cover both properties in the subsequent section, but quickly remark here that
this refinement cannot be done purely based on reasoning on ego-lane digests. The
intuitive reason is that the ego-lane digests are an abstraction of trace compatibility,
and it is often possible for a thread to re-acquire a mutex that no other thread has held
since it was released last. For ego-lane digests, this compatibility is preserved in the
forward direction, making excluding earlier writes by the same thread infeasible for
many programs.

As all analyses presented here keep an abstraction of the most-recent thread-local
writes to a global g in their σ g component, a dedicated construction for the analyses
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refined with the digests from Section 2.8 is possible. To this end, one can modify the
analyses to forgo reading from unknowns associated with the thread id of the unique
ego thread. We do not provide a soundness argument here beyond this intuition. To
also achieve property I3, the σ components of the analyses would have to be modified
to merge the thread-local writes by threads which are joined into σ. We also only give
this informal intuition here.

Both improvements will be fully realized for the analysis in the next section (see
Section 4.2.4 for details), where their justification relies — in part — on the (full-fledged)
digest framework.

4.2 Analyses Considering Clusters of Globals

What all the analyses presented in the preceding sections have in common is that they
abstract the value of each global on its own, i.e., are inherently non-relational when it
comes to the values of globals. Nevertheless, one may instantiate these analyses with a
relational domain to track relations between locals and those copies of globals tracked
in the local state. In this section, we turn to analyses that jointly abstract (clusters of)
globals, and can thus be relational for globals when instantiated with an appropriate
domain. Inferring relational properties is particularly challenging for multi-threaded
programs as all interferences by other threads that may happen in parallel must be
taken into account. In such an environment, only relational properties between globals
protected by common mutexes are likely to persist throughout program execution.
Generally, relations on clusters consisting of fewer variables are less brittle than those on
larger clusters. Moreover, monolithic relational analyses employing, e.g., the polyhedral
abstract domain, are known to be notoriously expensive [81, 121]. Tracking smaller
clusters may even be more precise than tracking larger clusters [45].

Example 23. Consider the following program. All accesses to globals g, h, and i are protected
by the mutex a. The operations on mutexes mg g ∈ G are omitted for brevity here.

main:
initMT;
x = create(t1); y = create(t2);
lock(a);
g = ?; h = ?; i = ?;
unlock(a); r = join(y); lock(a);
z = ?; g = z; h = z; i = z;
unlock(a); lock(a);
// ASSERT(h==i); (1)
// ASSERT(g==h); (2)
unlock(a);

t1:
lock(a);
x = h;
i = x;
unlock(a);
return;

t2:
lock(a);
g = ?; h = ?;
unlock(a);
return;

In this program, the main thread creates two new threads, starting at t1 and t2, respectively.
Then, it locks the mutex a to set all globals non-deterministically to some value and unlocks
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a again. After having joined the thread t2, it locks a again and sets all globals to the same
unknown value and unlocks a again. Thread t1 sets i to the value of h. Thread t2 sets g and h to
(potentially different) unknown values. Assume we are interested in equalities between globals.
In order to succeed in showing assertion (1), it is necessary to detect that the main thread is
unique and thus cannot read its past writes since these have been overwritten. Additionally, the
analysis needs to certify that thread t2 also is unique, has been joined before the assertion, and
that its writes must also have been overwritten.

For an analysis to prove assertion (2), propagating a joint abstraction of the values of all
globals protected by a does not suffice: At the unlock of a in t1, g=h need not hold. If this
monolithic relation is propagated to the last lock of a in main, (2) cannot be shown — despite t1

modifying neither g nor h.

Here, we show that the loss of precision indicated in the example can be remedied by
replacing the monolithic abstraction of all globals protected by a mutex with suitably
chosen subclusters. In the example, we propose to separately consider the subclusters
{g, h} and {h, i}. As t1 does not write any values to the cluster {g, h}, the imprecise
relation > is not propagated to the main thread and assertion (2) can be shown.

Subsequently, we give relational analyses of the values of globals which are generic in
the relational domain R, with 2-decomposable domains being particularly well-suited,
as the concept of clusters is central to the analyses. We focus on relations between globals
that are jointly write-protected by some mutex.

4.2.1 Mutex Meet

As in Section 4.1.1, we once more assume we are given for each global g, a set M̄[g]
of (write) protecting mutexes, i.e., mutexes that are always held when g is written. Let
Ḡ[a] = {g ∈ G | a ∈ M̄[g]} denote the set of globals protected by a mutex a. Let
∅ 6= Qa ⊆ 2Ḡ[a] the set of clusters of these globals we associate with a. For technical
reasons, we require at least one cluster per mutex a. This cluster may however be chosen
as the empty cluster ∅, thus not associating any information with a.

Our basic idea is to store at unknowns [a, Q] (for each mutex a and cluster Q ∈ Qa)
an abstraction of the relations only between globals in Q. By construction, all globals in
Q are protected by a. Whenever the mutex a is locked, the relational information stored
at all [a, Q] is incorporated into the local state by the lattice operation meet, i.e., the local
state now maintains relations between locals as well as globals which no other thread
can modify at this program point. Whenever a is unlocked, the new relation between
globals in all corresponding clusters Q ∈ Qa is side-effected to the respective unknowns
[a, Q]. Simultaneously, all information on globals no longer protected is forgotten to
obtain the new local state. In this way, the analysis is fully relational in the local state
while only keeping relations within clusters of globals jointly protected by some mutex.
All non-trivial right-hand sides are detailed in Fig. 4.2 — we briefly sketch those here
and give an informal definition of the trivial right-hand sides. For the start point of
the program and the empty lockset, the right-hand side init] returns the > relation
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init] η =

(∅, Jself←] (Ji0K
]
Exp>)K

]
R>)

J[u, S], initMTK]η =

let r(Q) = J{g← 0 | g ∈ Q}K]R> in
let ρ = {[a, Q] 7→ r(Q) | a ∈ M,

Q ∈ Qa} in
(ρ, η [u, S])

J[u, S], x=create(u1)K]η =

let r = η [u, S] in
let i = ν] u (unlift r) u1 in
let r′ =

{
Jself←] iK]R r

} ∣∣∣
X

in

let ρ = {[u1, ∅] 7→ r′} in
(ρ, Jx ←] iK]Rr)

J[u, S], g = xK]η =

(∅, Jg← xK]R (η [u, S]))

J[u, S], x = gK]η =

(∅, Jx ← gK]R (η [u, S]))

J[u, S], lock(a)K]η =(
∅, η [u, S] u

(d
Q∈Qa

η [a, Q]
))

J[u, S], unlock(a)K]η =

let r = η [u, S] in
let ρ = {[a, Q] 7→ r|Q | Q ∈ Qa} in(

ρ, r|X∪⋃{Ḡ[a′]|a′∈(S\a)}
)

J[u, S], returnK]η =

let r = η [u, S] in
let I] = (unlift r) self in({

[i]] 7→ r|{ret} | i] ∈ I]
}

, r
)

J[u, S], x′=join(x)K]η =

let v =
⊔

i′∈((unlift r) x′) unlift (η[i′]) ret in
if v = ⊥ then

(∅,⊥)
else (

∅, Jx′ ←] vK]R(η [u, S])
)

J[u, S], signal(s)K]η =

({[s] 7→ η [u, S]}, η [u, S])

J[u, S],wait(s)K]η =

if η [s] = ⊥ then
(∅,⊥)

else
(∅, η [u, S])

Figure 4.2: Right-hand sides for the basic analysis. Guards and assignments on local
variables are defined in the straightforward way and are omitted here. All
functions are strict in ⊥, which describes the empty set of local traces. (As
the abstract values tracked by this analysis consist of only one component, ⊥
and ⊥ coincide here.) We only display definitions for non-⊥ abstract values
in this figure. J{g← 0 | g ∈ Q}K]R is shorthand for the abstract transformer
corresponding to the assignment of 0 to all variables in Q one-by-one.
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updated such that the variable self holds the abstract thread id i0 of the main thread. The
right-hand side for the action initMT returns the abstract state of the predecessor and
produces a side-effect for each mutex a and cluster Q that initializes all globals from the
cluster with the value 0.

For a thread creating edge starting in program point u with lockset S, the right-hand
side J[u, S], x=create(u1)K] first generates a new abstract thread id which then once more
is assigned to the variable x in the local state of the current thread. Additionally, the
start state r′ for the newly created thread is constructed and side-effected to the thread’s
start point with empty lockset [u1, ∅]. Since threads start with empty lockset, the state r′

is obtained by removing all information about globals from the local state of the creator
and assigning the new abstract thread id to the variable self.

When locking a mutex a, the states stored at unknowns [a, Q] with Q ∈ Qa are
combined with the local state by meet. This is sound because the value stored at any
[a, Q] only maintains relationships between variables write-protected by a, and these
values soundly account for the program state at every unlock(a) and at program start.
When unlocking a, on the other hand, the local state restricted to the appropriate
clusters Q ∈ Qa is side-effected to the respective unknowns [a, Q], so that the changes
made to variables in the cluster become visible to other threads. Also, the local state is
restricted to the local variables and only those globals for which at least one protecting
mutex is still held.

As special mutexes mg immediately surrounding accesses to g are used to ensure
atomicity, and information about g is associated with them, all reads and writes refer to
the local copy of g. Guards and assignments (which may only involve local variables)
are defined analogously.

For a return edge, the local state — restricted to the variable ret whose value is to
be returned — is side-effected to all members of the abstract thread id (recall that the
thread id domain is given as the powerset domain over some set SV ]tid

) of the current

thread, i.e., all members of (unlift r) self.

Remark 17. The handling of return as given in Fig. 4.2 could be further improved to maintain
some relationship between the thread id stored in the variable self and the value of ret by not
side-effecting the same value r|{ret} to all unknowns but instead potentially improving the value
of r before restricting to ret. In this case, the value side-effected to some unknown [i]] would
be given by (r u lift (>⊕ {self 7→ {i]}}))

∣∣
{ret}. This is similar in spirit to the way additional

precision can be obtained for calls to join that is outlined in Remark 7. As this construction once
more is quite complicated, and we will later use digests to track thread ids anyway, we do not
realize this optimization.

For join, the least upper bound of all return values of all possibly joined threads is
computed. This value then is assigned to the variable on the left-hand side of the join
statement in the local state. The handling of signal and wait is akin to how these were
handled for the analyses in the previous chapter.
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Example 24. Consider the program3 where M̄[g] = {a, b, mg}, M̄[h] = {a, b, mh}, Qa =

{{g, h}}, Qb = {{g, h}}.

main:
x = create(t1); y = ?;
lock(a); lock(b);
g = y; h = y+9;
unlock(b); lock(b);
h = y;
// ASSERT(g==y); (1)
// ASSERT(h==y); (2)
unlock(b); unlock(a);
x = create(t2);

t1:
lock(b);
unlock(b);
lock(a);
lock(b);
// ASSERT(g==h); (3)
y = ?; g = y; h = y;
unlock(b);
unlock(a);

t2:
lock(b);
lock(a);
// ASSERT(g==h); (4)
unlock(a);
unlock(b);

Our analysis succeeds in proving all assertions here. Thread t2 is of particular interest: When
locking b only g ≤ h is known to hold, and locking the additional mutex a means that the better
information g = h becomes available. The analysis by Mukherjee et al. [89], on the other hand,
only succeeds in proving assertion (2) — even when all globals are put in the same region. It
cannot establish (1) because all correlations between locals and globals are forgotten when the
mix operation is applied at the second lock(b) in the main thread. (3) cannot be established
because, at lock(b) in t1, the mix operation also incorporates the state after the first unlock(b) in
the main thread, where g = h does not hold. Similarly, for (4). The same applies for assertion (3)
and the analysis using lock invariants proposed by Miné [85]. This analysis also falls short of
showing (1), as at the lock(b) in the main thread, the lock invariant associated with b is joined
into the local state. (4) is similarly out of reach. The same reasoning also applies to [85, 89] and
the non-relational analyses presented in the preceding sections after equipping the analyses with
thread ids.

Theorem 11. Mutex-Meet is sound w.r.t. the local trace semantics.

Proof. In Section 4.2.2, we show this analysis is an instance of the refined analysis
presented there. The soundness proof for that analysis is deferred to Section 6.2.1.

Remark 18. Incorporating some information associated with some mutex a into the local state
upon locking this mutex, and forgetting this information again once the mutex a is unlocked, is
closely related to the rules for locking and unlocking in concurrent separation logic proposed
by O’Hearn [96] (extending earlier work of Owicki and Gries [98]). There, the proof specifies
a resource invariant associated with a which is added to the local state when the mutex a is
locked, and needs to hold again once the mutex a is unlocked, at which point it is removed again.

3In all examples in this section, g, h, and i are globals, whereas x, y, and z are locals, and the clusters at
special mutexes mg contain only g: Qmg = {{g}}. Also, the lock and unlock operations for mg, g ∈ G
are omitted for brevity. Unless explicitly stated otherwise, domain R1 from Example 11, enhanced with
variable inequalities is used.
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4.2.2 Mutex Meet with Digests

To improve the precision of this analysis, we take additional abstractions of local traces
in the form of digests as defined in Section 2.3 into account. The resulting analysis then
has the following set of unknowns

• [u, S, A] for u ∈ N , S ⊆M and A ∈ A,

• [a, Q, A] for a ∈ M, Q ∈ Qa and A ∈ A,

• [i, A] for i ∈ V ]
tid and A ∈ A, and

• [s, A] for s ∈ S and A ∈ A.

with the constraint system taking the following form:

[u0, ∅, A] w init(A)]

for A ∈ init]A

[u′, S, A′] w J[u, S, A0], x = create(u1)K]

for (u, x = create(u1), u′) ∈ E , A′ ∈ Ju, x = create(u1)K
]
A(A0)

[u′, S ∪ {a}, A′] w J[u, S, A0], lock(a), A1K]

for (u, lock(a), u′) ∈ E , A′ ∈ Ju, lock(a)K]A(A0, A1)

[u′, S, A′] w J[u, S, A0], act, A1K]

for (u, act, u′) ∈ E , act ∈ (Actobserving \ {lock(a) | a ∈ M}),
A′ ∈ Ju, actK]A(A0, A1)

[u′, S \ {a}, A′] w J[u, S, A0], unlock(a), A′K]

for (u, unlock(a), u′) ∈ E , A′ ∈ Ju, unlock(a)K]A(A0)

[u′, S, A′] w J[u, S, A0], act, A′K]

for (u, act, u′) ∈ E , act ∈ (Actobservable \ {unlock(a) | a ∈ M}),
A′ ∈ Ju, actK]A(A0)

[u′, S, A′] w J[u, S, A0], actK]

for (u, act, u′) ∈ E , act ∈ Actlocal, A′ ∈ Ju, actK]A(A0)

(4.2)

The new right-hand sides then consult appropriate refined unknowns and also cause
side-effects to appropriate unknowns. We exemplify this for some actions here, with
other right-hand sides defined analogously. All right-hand sides are detailed in the
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proof in Section 6.2.1.

J[u, S, A0], x = create(u1)K]η = let r = η [u, S, A0] in
let i = ν] u (unlift r) u1 in
let r′ =

{
Jself←] iK]R r

} ∣∣∣
X

in

let ρ = {[u1, ∅, A′] 7→ r′ | new]
A u u1 A0} in

(ρ, Jx ←] iK]Rr)

J[u, S, A0], lock(a), A1K]η =
(

∅, η [u, S, A0] u
(d

Q∈Qa
η [a, Q, A1]

))
J[u, S, A0], unlock(a), A′K]η = let r = η [u, S, A0] in

let ρ = {[a, Q, A′] 7→ r|Q | Q ∈ Qa} in(
ρ, r|X∪⋃{Ḡ[a′]|a′∈(S\a)}

)
J[u, S, A0], initMT, A′K]η = let r(Q) = J{g← 0 | g ∈ Q}K]R> in

let ρ = {[a, Q, A′] 7→ r(Q) | a ∈ M, Q ∈ Qa} in
(ρ, η [u, S, A0])

Remark 19. The new right-hand sides can alternatively be defined in terms of the right-hand
sides of the analysis from the previous section, which are used as black boxes. The right-hand sides
then act as wrappers, mapping unknowns consulted or side-effected to by the original analysis to
the appropriate unknown of the refined system. Our earlier work [108] details this approach for
some of the actions considered here. Here, we go for a direct definition in the interest of clarity.

Example 25. Consider the following program fragment and assume that the mutex a protects
both g and h.

main:
initMT;
lock(a);
h = 9; g = 10;
unlock(a);
x = create(t1);

t1:
x = create(t2);
lock(a);
h = 11; g = 12;
unlock(a);

t2:
lock(a);
// ASSERT(h<g);
unlock(a);

When refining the analysis from the previous section according to the digests from Fig. 2.12,
tracking which mutexes have been locked at least once in the local trace, it succeeds in proving
the assert in this program as the initial values of 0 for g and h can be excluded.

Remark 20. By choosing A = {•} and setting all right-hand sides for digests to also return
{•}, one obtains an analysis equivalent to the one from Section 4.2.1.

Theorem 12. Mutex-Meet enhanced with digest is sound w.r.t. the local trace semantics.

Proof. The detailed proof is deferred to Section 6.2.1. Roughly, it proceeds as follows:
First, the constraint system for the concrete semantics is massaged into an equivalent
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form that can more readily be related to the abstract semantics. Then, the equivalence
between both formulations is established (Proposition 28). Then, solutions of the abstract
constraint system are shown to give rise to solutions of the modified concrete constraint
system (Theorem 20).

4.2.3 Exploiting Thread IDs to Improve Relational Analyses

Recall from Section 4.1.9 and Example 23 the ways in which one may want to exploit
abstract thread ids and their uniqueness to improve the analysis to not read

I1 from other threads that have not yet been created.

I2 the ego thread’s past writes, if its thread id is unique.

I3 past writes from threads that have already been joined where these values have
been overwritten.

Improvements I1 and I3 have, e.g., been realized in a setting where thread ids and which
thread is joined at what program point can be read off from control-flow graphs [72].
Here, however, this information is computed during analysis.

In our framework, I1 is already achieved by instantiating the refined analysis from
Section 4.2.2 with the thread id digests from Section 2.8.

Example 26. Consider the program below where M̄[g] = {a, b, mg}, M̄[h] = {a, b, mh},
M̄[i] = {mi} and assume Qa = {{g, h}}.

main:
initMT;
x = create(t1);
lock(a);
// ASSERT(g==h); (1)
unlock(a);
y = create(t2);
lock(a);
// ASSERT(g==h); (2)
g = 42; h = 42;
unlock(a);
z = create(t3);
i = 3; i = 2;
// ASSERT(i==2); (3)
i = 8;

t1:
lock(a);
r = ?; g = r; h = r;
unlock(a);

t2:
lock(a); v = g; unlock(a);

t3:
lock(a); g = 19; unlock(a);

The analysis succeeds in proving (1), as the thread (starting at) t3 that breaks the invariant
g=h has definitely not been started yet at this program point. Without refinement, the analysis
from Section 4.2.1 could not prove (1). However, this refinement does not suffice to prove (2).
At this program point, t2 may already be started. At the lock(a) in t2, t3 may also be started;
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thus, the violation of the invariant g=h by t3 is incorporated into the local state of t2 at lock.
Upon unlock(a), despite t2 only reading g, the imprecise abstract relation violating g=h, is
side-effected to [a, {g, h}, t2] and is incorporated at the second lock(a) of the main thread. The
final shortcoming is that each thread reads all its own past (and future!) writes — even when it
is known to be unique. This means that (3) cannot be proven.

To achieve I2 some effort is required as our analysis forgets the values of globals when
they become unprotected. This is in contrast to, e.g., the analyses proposed by Miné
[85] or Mukherjee et al. [89] where no extra effort is required to achieve I2.

In the following section, we consider the analyses from Section 4.2.2 instantiated with
the thread id digests from Section 2.8 and then further improve this analysis step-by-step
to achieve I2 and I3. We first turn to I2 and restrict side-effecting to unknowns associated
with mutexes to cases where the ego thread has possibly written a protected global
since acquiring it. This is in contrast to Section 4.2.1, where a side-effect is triggered
unconditionally at every unlock, i.e., everything a thread reads is treated as if that thread
potentially wrote it.

To simplify the presentation, we first tie together the (abstract) thread ids V ]
tid,A

computed by the digests from Section 2.8, and the (non-relational) thread id domain V ]
tid

for which we, thus far, have only given soundness criteria and required that it be defined
as a powerset domain over some set SV ]tid

. To tie these together, we further require a

function single : V ]
tid,A → V

]
tid to translate from thread ids computed by digest to abstract

thread ids as employed by the value domain. We demand that γV ]tid,A
i] ⊆ γV ]tid

(single i])

hold. There are several possible choices for SV ]tid
and single here: One option is setting

SV ]tid
= {•} and single x = {•} for all x ∈ V ]

tid,A. This amounts to not tracking any thread
ids in the value domain at all.

The choice we make subsequently is setting SV ]tid
= V ]

tid,A and setting single x = {x},
which amounts to tracking sets of thread ids as computed by the digest for variables of
type thread id. As a consequence of the structure of the domain and the disjointness of
concretizations of values in V ]

tid,A as required in (2.14) in Section 2.8, we obtain

(γV ]tid,A
i]) ∩ (γV ]tid

I]) 6= ∅ =⇒ i] ∈ I] (4.3)

which is later exploited in the right-hand sides corresponding to returning from a thread.
Given these definitions, at any program point corresponding to a call to return, the
abstract value tracked for self given by i′ = (unlift r) self will be at most as precise as
the thread id component i of the digest (i, C) associated with this unknown. We thus
replace unknowns [i′, (i, C)] with unknowns [(i, C)] to avoid the hassle of dealing with
two separate types of thread ids forming part of some unknowns — without getting any
precision advantage.

The new analysis now locally tracks an abstraction of the last thread-local writes via
a map L : (M×Q)→ R, where L (a, Q) maintains for a mutex a, an abstract relation
between the globals in cluster Q ∈ Qa. More specifically, the abstract relation on the
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initMT x=create(t2) y=create(t1) signal(s) lock(mg) g = 1 unlock(mg)

lock(a) z = 1 unlock(a) wait(s) lock(a) z = join(x) unlock(a) lock(mg) g = 2

lock(a) signal(s) unlock(a) ret = 12 return

→c

→c

→j

→mg →mg

→a

→a →a→s

Figure 4.3: Illustration highlighting the join-local part of a local trace of the program
from Fig. 2.7, and which writes are thus accounted for by L.

globals from Q recorded in L (a, Q) is the one that held when a was unlocked join-locally
for the first time after the last join-local write to a global in Ḡ[a]. If there is no such
unlock(a), the relation at program start is recorded. We call an operation in a local trace
join-local to the ego thread, if it is (a) thread-local, i.e., performed by the ego thread,
or (b) is executed by a thread that is (transitively) joined into the ego thread, or (c)
is join-local to the parent thread at the node at which the ego thread is created. This
notion will also be crucial for realizing I3. Join-locality is illustrated in Fig. 4.3, where
the join-local part of a local trace is highlighted. For join-local contributions, it suffices
to consult L a instead of unknowns [a, Q, (i, C)]. Such contributions are called accounted
for. To check whether a contribution from some thread id is accounted for, we introduce
a function acc : (A×DS)→ A → bool (see definition (4.4) below), where DS denotes
the information tracked by the analysis in the local states, i.e., for unknowns of the
form [u, S, A]. Besides an abstract value from R, the local state DS now contains two
additional components:

• A map L : (M×Q)→ R as outlined above with the join given component-wise;

• A set W : 2G (ordered by ⊆) of globals that may have been written since one of
their protecting mutexes has been locked, and not all protecting mutexes have
been unlocked since.

L and W are also abstractions of reaching local traces. The values tracked for unknowns
[(i, C)] for (i, C) ∈ A and [s, A] for s ∈ S are also enhanced with an L component, while
the information associated with unknowns for mutexes remains unmodified.

We sketch the right-hand sides here; definitions are given in Figs. 4.4 and 4.5. For the
initialization action initMT, in contrast to the analysis from Section 4.2.2, there is no
initial side-effect to the unknowns for mutexes. The initial values of globals are join-local,
and thus accounted for in the L component produced by init] that is also passed to any
subsequently created thread.

The right-hand sides for thread creation and return differ from the analysis from
Section 4.2.2 enhanced with thread ids only in the handling of additional data structures
L and W. As remarked before, the information (i, C) ∈ A is now directly used for thread
ids and thus i] ∈ V ]

tid are no longer used for unknowns.
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init((i, C))] η =

let L (a, Q) = J{g← 0 | g ∈ Q}K]R> in
let r = Jself←] single iK]R> in
(∅, ({(a, Q) 7→ L (a, Q) | a∈M, Q∈Qa} , ∅, r))

J[u, S, (i, C)], initMT, (i, C)K]η = (∅, η [u, S, (i, C)])

J[u, S, (i, C)], x=create(u1)K]η =

let (L, W, r) = η [u, S, (i, C)] in
let (i′, C′) = new]

A u u1 (i, C) in
let r′ = (Jself←] (single i′)K]Rr)

∣∣∣
X

in

let ρ={[u1, (∅, (i′, C′))] 7→(L, ∅, r′)} in
(ρ, (L, W, Jx ←] single i′K]Rr))

J[u, S, (i, C)], return, (i, C)K]η =

let (L, W, r) = η [u, S, (i, C)] in
let v = r|{ret} in
let ρ = {[(i, C)] 7→ (L, v)} in
(ρ, (L, W, r))

J[u, S, (i, C)], x′ = join(x), (i′, C′)K]η =

let (L, W, r) = η [u, S, (i, C)] in
if i′ 6∈ ((unlift r) x) then
(∅,⊥)

elseif acc ((i, C), (L, W, r)) (i′, C′) then
(∅,⊥)

else
let (L′, v) = η[(i′, C′)] in
let r′ = Jx′ ←] (unlift v) retK]Rr in
(∅, (L t L′, W, r′))

Figure 4.4: Right-hand sides for improved (I1, I2) analysis using thread ids.

For join, if the return value of the thread is not accounted for, it is assigned to the
variable on the left-hand side and the L information from the thread for which join
is called is joined into the information maintained by the ego thread. If, on the other
hand, it is accounted for, the thread cannot be joined here in the concrete, and the value
⊥ is returned to denote unreachability. There is a separate constraint for each (i′, C′),
ensuring all threads that could be joined are considered.

For locking of mutexes, upon lock, if (i′, C′) for the corresponding call to unlock
is not accounted for, its information on the globals protected by a is joined with the
join-local information for a maintained in L (a, Q), Q ∈ Qa. This information about the
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J[u, S, (i, C)], lock(a), (i′, C′)K]η =

let (L, W, r) = η [u, S, (i, C)] in
let r′ = if acc ((i, C), (L, W, r)) (i′, C′) then ⊥ else

d
Q∈Qa

η [a, Q, (i′, C′)] in(
∅,
(

L, W, r u
((d

Q∈Qa
L (a, Q)

)
t r′

)))
J[u, S, (i, C)], unlock(a), (i, C)K]η =

let (L, W, r) = η [u, S, (i, C)] in
let (ρ, L′) = if Ḡ[a]∩W=∅ then

(∅, L)
else
({[a, Q, (i, C))] 7→ r|Q | Q ∈ Qa}, L⊕ {(a, Q) 7→ r|Q | Q ∈ Qa})

in
let r′ = r|X∪⋃{Ḡ[a′]|a′∈(S\a)} in
let W ′={g | g∈W,M̄[g] ∩ S\{a}6=∅}
in (ρ, (L′, W ′, r′))

J[u, S, (i, C)], g = xK]η =

let (L, W, r) = η [u, S, (i, C)] in
(∅, (L, W ∪ {g}, Jg← xK]R r))

J[u, S, (i, C)], x = gK]η =

let (L, W, r) = η [u, S, (i, C)] in
(∅, (L, W, Jx ← gK]R r))

J[u, S, (i, C)], signal(s), (i, C)K]η =

let (L, W, r) = η [u, S, (i, C)] in
({[s, (i, C)] 7→ (L, r)}, (L, W, R))

J[u, S, (i, C)],wait(s), (i′, C′)K]η =

let (L, W, r) = η [u, S, (i, C)] in
if η [s, (i′, C′)] = ⊥ then

(∅,⊥)
elseif acc ((i, C), (L, W, r)) (i′, C′) then

(∅,⊥)
else

(∅, (L, W, r))

Figure 4.5: Right-hand sides for improved (I1, I2) analysis using thread ids (continued).

globals protected by a is then incorporated into the local state by u.
For unlocking of mutexes, if there may have been a write to a protected global since

the mutex was locked (according to W), the join-local information L is updated and the
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local state restricted to Q is side-effected to the appropriate unknown [a, Q, (i, C)] for
Q ∈ Qa. Just like in Section 4.2.1, r is then restricted to only maintain relationships
between locals and those globals for which at least one protecting mutex is still held.
Reading from and writing to globals once more are purely local operations, where all
writes are recorded into W. Wait and signal remain essentially unmodified, with the
difference that, in case (i′, C′) is accounted for, the successor state is flagged a dead code.

To exclude self writes, we set

acc ((i, C), _) (i′, C′) = unique i ∧ i = i′ (4.4)

The resulting analysis thus takes I1 (via J·K]A defined in Eq. (2.15)), as well as I2 (via acc)
into account. This analysis can now show all assertions in Example 26.

Theorem 13. This analysis is sound w.r.t. the local trace semantics.

Proof. The proof relies on the following observations:

• When Ḡ[a]∩W = ∅, no side-effect is required. Any thread locking a following this
unlock, will either consult unknowns that the written values were side-effected to
at the unlock a immediately succeeding the write, or will have accounted for those
values via L a.

• Exclusions based on acc are sound, i.e., it only excludes join-local writes.

The detailed proof is a simplification of the proof for the enhanced analysis also consid-
ering joins from Section 4.2.4 which we outline in Section 6.2.2.

The analysis, as presented thus far, does not make use of components C forming part of
unknowns [a, Q, (i, C)] for mutexes a ∈ M, Q ∈ Qa, i ∈ V ]

tid,A and unknowns [i, C] for

i ∈ V ]
tid,A associated with thread returns. This information can be exploited to exclude

a further class of writes, namely, those that are performed by a thread involved in the
creation of the ego thread or its ancestor — before the ego thread or this ancestor was
created. Any writes that the ego thread may read from the creating thread before the
ego thread is created are already accounted for in the start state of the ego thread, so
only those writes happening after the creation of the ego thread need to be read via the
respective unknowns. To this end, one sets

acc ((i, C), (L, W, r)) (i′, C′) = (unique i ∧ i = i′)∨
(lcu_anc i′ i = i′∧ 6 ∃〈u, u′〉 ∈ C′ : ((i′ ◦ 〈u, u′〉) = i)

∨may_create (i′ ◦ 〈u, u′〉) i)
(4.5)

Example 27. Consider the following program where M̄[g] = {a, mg} and M̄[h] = {a, mh}
and assume Qa = {{g, h}} and that the domain R from Example 11 is used.
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main:
initMT;
lock(a);
g = 5; h = 8;
unlock(a);
lock(a);
g = 10; h = 10;
unlock(a);
x = create(t1);
lock(a);
g = 20; h = 20;
unlock(a);
y = join(x);
lock(a);
// ASSERT(g==20); (2)
unlock(a);

t1:
lock(a);
// ASSERT(g==h); (1)
unlock(a);
return;

Here, if we make use of the additional information on which create edges have been encountered,
the analysis can determine that assertion (1) in thread t1 holds.

Remark 21. If the additional information contained in C components is not exploited and the
original definition of acc (Eq. (4.4)) instead of the improved one (Eq. (4.5)) is employed, an
implementation may selectively abandon control-point splitting according to C at mutexes, thread
ids, and signals. This amounts to replacing unknowns [a, Q, (i, C)], [i, C], and [s, (i, C)] with
[a, Q, i], [i], and [s, i], respectively. This change may yield an improved runtime and will not
impact precision beyond, e.g., the effects of widening, which we consider out of scope for this
thesis.

The analysis still may incur an unnecessary loss of precision when past writes of a
thread are propagated to a thread it creates and then back to the creating thread upon a
call to join. In particular, this may happen when the created thread has not written to
some globals, but the original thread has overwritten them locally in the meantime.

Example 28. Consider again Example 27. Here, the assertion (2) cannot be proven, as the stale
information in L (a, {g, h}) in t1 (which includes the fact that g may be 10) is incorporated into
the main thread upon join (as well as equivalent information from L (mg, {g})). This can be
prevented by tracking, for each thread, the set W̄ of global variables that may have been written
by it or any thread it has joined, and then only joining in the L information of the joined thread
if at least one protected global has been written.

We do not detail this improvement here, but use it in our implementation.

Remark 22. Further useful abstractions to maintain in the ego thread may, e.g., track for each
created thread t′, the set WC t′ of globals that have been potentially written to by the join-local
part of the ego thread since the creation of t′. Then, upon joining t′, for mutexes a and clusters
Q ∈ Qa where Q ∩WC t′ = ∅, the L (a, Q) information of the joined thread definitely contains
the most up-to-date information, and L (a, Q) of the ego thread can be discarded.
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4.2.4 Exploiting Thread IDs and Joins to Improve Relational Analyses

Thus far, improvement I3 from Section 4.2.3 remains unrealized. The critical insights
needed to realize it are that, after a thread has been joined, it can no longer perform
any writes and that all writes of joined threads are join-local to the ego thread. It thus is
not necessary to read from the global unknowns associated with a thread with a unique
thread id i, if the thread with thread id i has definitely been joined.

We, therefore, enhance the analysis to also track in local states and return states of
threads a set J of thread ids of threads for which join has definitely been called in the
join-local part of the local trace. For unique thread ids in J, the associated unknowns are
not consulted when determining which value to read. To achieve this, we set

acc ((i, C), (J, L, W, r)) (i′, C′) = unique i′ ∧ (i = i′ ∨ i′ ∈ J)

Technically, we track a set J ∈ 2V
]
tid,A with the order given by superset inclusion that is

initially empty. We proceed to give the right-hand sides corresponding to return and
join; all other right-hand sides propagate this value locally and pass it as an additional
argument to acc.

J[u, S, (i, C)], return, (i, C)K]η = let (J, L, W, r) = η [u, S, (i, C)] in
let v = r|{ret} in
let ρ = {[(i, C)] 7→ (J, L, v)} in
(ρ, (J, L, W, r))

J[u, S, (i, C)], x′ = join(x), (i′, C′)K]η = let (J, L, W, r) = η [u, S, (i, C)] in
if i′ 6∈ ((unlift r) x) then

(∅,⊥)
elseif acc ((i, C), (J, L, W, r)) (i′, C′) then

(∅,⊥)
else

let (J′, L′, v) = η[(i′, C′)] in
let r′ = Jx′ ←] (unlift v) retK]Rr in
(∅, (J ∪ J′ ∪ {i′}, L t L′, W, r′))

We remark that, in the analysis, when performing a thread join, if there are different
thread ids for which join might be called, there is one constraint for each, and the
resulting values are joined to obtain the abstract state for the control flow successor.
As the lattice join for J is intersection, this naturally handles the case where x can take
values of thread ids of different threads, in that their J′ components are effectively
intersected.

Example 29. Consider the following program where M̄[g] = {a, mg} and M̄[h] = {a, mh}
and assume Qa = {{g, h}} and that the relational domain R from Example 11 is used.
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main:
initMT;
x = create(t1);
lock(a);
g = 20; h = 20;
unlock(a);
y = join(x);
lock(a);
// ASSERT(g==h); (1)
g = 5; h = 5;
unlock(a);
lock(a);
// ASSERT(g==5); (1)
unlock(a);

t1:
lock(a);
g = 4; h = 8;
unlock(a);
x = ?;
lock(a);
g = x; h = x;
unlock(a);
return;

Here, both assertions can be proven. At (1), the thread t1, is must-joined. Its last write is
accounted for in L (a, {g, h}), thus the unknown [a, {g, h}, t1] where the abstract relationship
g = h does not hold is not consulted. As the updates in L are destructive, after the main thread
writes 5 to g, this is also the only value it reads for g, meaning (2) is proven as well.

Remark 23. To further improve the precision, it would suffice to join in L from joined threads
when they have a unique thread id, as in other cases, the corresponding unknowns will be
consulted anyway. Additionally, the set J of must-joined threads could be published together with
the protected globals at an unlock. In this way, a thread need not read from another thread that
does all its writes after the first thread has already been must-joined. In the interest of brevity,
we do not further outline either of these ideas here.

Remark 24. The J component and acc could also be used in the right-hand side for wait to
exclude those signals that can not happen in parallel to the thread calling wait. This would
correspond to checking the same two conditions as for join. We do not elaborate on this here.

Theorem 14. Mutex-Meet enhanced with thread ids and tracking joined threads is sound w.r.t.
the local trace semantics.

Proof. The proof idea is the same as outlined in the preceding section for Theorem 13.
The detailed proof is outlined in Section 6.2.2.

Remark 25. When during a call to join acc ((i, C), (J, L, W, r)) (i′, C′) holds, this is an indica-
tion that — provided the corresponding program point is reached — join is called for a thread
that has definitely already been joined before. An analysis may produce a warning for this type
of bug. To detect all cases where join may be called more than once for the same thread is more
difficult and may be an interesting future topic.

4.2.5 Exploiting Clustered Relational Domains

Naïvely, one might assume that tracking relations among a larger set of globals is
necessarily more precise than between smaller sets. Interestingly, this is no longer true
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for our analyses, e.g., in the presence of thread ids. A similar effect where relating more
globals can deteriorate precision has also been observed in the context of an analysis
using a data-flow graph to model interferences [45].

To simplify the presentation, we in this section consider again the analysis not exploit-
ing thread joins from Section 4.2.3 — but use all improvements in our implementation.

Example 30. Consider again Example 23 with Qa = {{g, h, i}}. We reproduce the correspond-
ing source code here for convenience:

main:
initMT;
x = create(t1); y = create(t2);
lock(a);
g = ?; h = ?; i = ?;
unlock(a); r = join(y); lock(a);
z = ?; g = z; h = z; i = z;
unlock(a); lock(a);
// ASSERT(h==i); (1)
// ASSERT(g==h); (2)
unlock(a);

t1:
lock(a);
x = h;
i = x;
unlock(a);
return;

t2:
lock(a);
g = ?; h = ?;
unlock(a);
return;

For this program, the constraint system of the analysis presented thus far has a unique least
solution, as all right-hand sides are monotonic. It verifies that assertion (1) holds. It assures
for [a, {g, h, i}, t1] that h=i holds, while for the main thread and the program point before each
assertion, L (a, {g, h, i}) = {g=h, h=i} holds, while for [a, {g, h, i}, main] and [a, {g, h, i}, t2]

only > is recorded, as is for any relation associated with mg, mh, or mi.
Assertion (2), however, will not succeed, as the side-effect from t1 causes the older values from

the first write in the main thread to be propagated to the assertions as well, implying that while
h=i is proven, g=h is not.

Intuitively, the analysis loses precision because, at a program point where a mutex a is
unlocked, the current relationships between all clusters protected by a are side-effected.
As soon as one global is written to, the analysis behaves as if all protected globals
had been written. By only publishing values to affected clusters, i.e., clusters that
contain variables that may have been written, more precise information may remain for
unaffected clusters.

Accordingly, in the improved analysis, the side-effects at unlocks and the unknowns
consulted at lock are modified as indicated in Fig. 4.6. When unlocking a mutex a,
side-effects are only produced to clusters Q ∈ Qa containing at least one global that
was written to since the last lock(a). For locking the mutex a, the abstract value to be
incorporated into the local state is assembled from the contributions of different threads
to the clusters. For that, the separate constraints for each relevant digest from Eq. (4.2)
are combined into one for the set I = {(i′, C′) | (i, C) ∈ Ju, lock(a)K]A((i, C), (i′, C′))} of
all relevant digests. This is necessary as side-effects to unaffected clusters at unlock(a)
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J[u, S, (i, C)], unlock(a), (i, C)K]η =

let (L, W, r) = η [u, S, (i, C)] in
let Q′ = {Q | Q ∈ Qa, Q ∩W 6= ∅} in
let L′ = L⊕ {(a, Q) 7→ r|Q | Q ∈ Q′} in
let ρ = {[a, Q, (i, C)] 7→ r|Q | Q ∈ Q′} in
let r′ = r|X∪⋃{Ḡ[a′]|a′∈(S\a)} in
let W ′ = {W | g ∈W,M̄[g] ∩ S \ {a} 6= ∅} in
(ρ, (L′, W ′, r′′))

J[u, S, (i, C)], lock(a), IK]η =

let (L, W, r) = η [u, S, (i, C)] in
let J(Q) =

⊔ {η [a, Q, (i′, C′)] | (i′, C′) ∈ I,¬acc (i, C) (L, W, r) (i′, C′)} in
let r′ =

d
Q∈Qa

(J(Q) t L (a, Q)) in
(∅, (L, W, r u r′))

Figure 4.6: Right-hand sides for unlocking and locking when limiting side-effecting to
potentially written clusters.

have been abandoned and thus the meet with the values for clusters of one thread at a
time is unsound. For each cluster Q, the join-local information L (a, Q) is joined with
all contributions to Q by threads that are not yet accounted for, but admitted for Q by
the digests. Here, the contributions of threads that do not write Q are ⊥, and thus do
not affect the value for Q. Finally, the resulting value is used to improve the local state
by meet. The right-hand side for lock(a) thus exploits the fine-grained, per-cluster MHP
information provided by the digests and the predicate acc.

Remark 26. For an intuition on why performing a cluster-wise join of the contributions of
different threads before meeting across clusters is necessary here, consider the case where some
thread has only published to some clusters associated with a mutex, not all. As side-effecting
here is limited to modified clusters, clusters that are not written to have value ⊥. In this case,
first meeting would erroneously disregard all contributions of that thread.

We obtain:

Theorem 15. Given domains R and V ] fulfilling the requirements from Fig. 3.2, any solution
of the constraint system is sound w.r.t. the local trace semantics. Maximum precision is obtained
with Qa = 2Ḡ[a].

Proof. For an intuition-driven proof, consider modifying the program by introducing
auxiliary mutexes aQ for each considered cluster Q ∈ Qa and mutex a that are locked
and unlocked whenever a is and setting M̄[aQ] = Q. Provided these mutexes are
always locked and unlocked in the same order, the programs are semantically equivalent
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for some intuitive notion of equivalence. Performing the analysis from the previous
section on this modified program then simulates the behavior of the analysis described
in this section on the original program and is sound according to Theorem 13 from
Section 4.2.3.

In Section 6.2.3, we sketch a more principled proof that does not rely on this insight
and also considers joins as in the previous section.

For Example 23, with Qa = 2Ḡ[a], both assertions are verified. Performing the analysis
with all subclusters simultaneously can be expensive when sets Ḡ[a] are large. The choice
of subclustering, thus, generally involves a trade-off between precision and runtime.
This is different for k-decomposable relational domains:

Theorem 16. Provided the relational domain is k-decomposable (Equation (3.5)), the clustered
analysis using all subclusters of sizes at most k only, is equally precise as the clustered analysis
using all subclusters Qa = 2Ḡ[a] at mutexes a.

Proof. Consider a solution η of the constraint system with Qa = 2Ḡ[a]. Then, for
unknowns [a, Q, (i, C)] and [a, Q′, (i, C)] with Q ⊆ Q′ and |Q| ≤ k, and values r =

η [a, Q, (i, C)], r′ = η [a, Q′, (i, C)], we have that r v r′|Q (whenever the smaller cluster
receives a side-effect, so does the larger one). Thus, by k-decomposability, the additional
larger clusters Q′, do not improve the meet over the clusters of size at most k for
individual thread ids as well as the meet of their joins over all thread ids. The same also
applies to the clustered information stored in L components.

Example 31. Consider again Example 23. If the analysis is performed with clusters Qa =

{{h, i}, {g, h}, {g, i}, {g}, {i}, {h}} both assertions can be proven.

The one-element clusters, on the other hand, cannot be abandoned, as indicated by the
following example:

Example 32. Consider the following program, assume that a protects both g and h and that the
domain R from Example 11 (enhanced with two-variable inequalities) is used.

main:
initMT;
x = create(t1);
y = create(t2);
lock(a);
h = 31;
unlock(a);
lock(a);
h = 12;
unlock(a);
lock(a);
// ASSERT(g<=h); (1)
// ASSERT(h==12); (2)
unlock(a);

t1:
lock(a);
g =- 1;
//ASSERT(g<=h); (3)
unlock(a);
return;

t2:
lock(a);
h = ?;
h = 12;
unlock(a);
return;
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When running the clustered analysis with the cluster Qa = {{g, h}} alone, the side-effect at
the unlock(a) in t1 preserves the relationship g ≤ h, implying that the assertions (1) and (3)
succeed. No precise information on the value of h is preserved at the unknown [a, {g, h}, t1].
Consequently, when the main thread performs a lock(a) for the third time, the assertion (2)
cannot be verified. A clustered analysis, though, that additionally tracks the cluster {h}, will
record h = 12 at [a, {h}, t2] and have ⊥ for [a, {h}, t1]. Therefore, assertion (2) can successfully
be verified — provided the one element clusters are considered as well.
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For an experimental evaluation of the analyses, we pose the following research questions:

(RQ1) How do the different approaches in Section 4.1 compare to each other w.r.t. their
runtime? What is the runtime impact of enabling/disabling thread ids? What
impact does the considered domain have?

(RQ2) Can the thread id digest successfully identify threads? How many thread ids are
computed? How many of those are unique?

(RQ3) How do the different approaches in Section 4.1 compare to each other w.r.t. their
precision? What is the precision impact of enabling/disabling thread ids? What
impact does the considered domain have?

(RQ4) How do the different analyses in Section 4.2 compare to each other w.r.t. their
runtimes? What is the runtime impact of switching from intervals to octagons?
What is that of additionally enabling thread ids? What is the additional overhead of
considering clusters? How do these runtimes compare to the ones for the analysis
in Section 4.1?

(RQ5) How do the different analyses in Section 4.2 compare to each other w.r.t. their
precision? What is the precision impact of switching from intervals to octagons?
What is that of additionally enabling thread ids? What is the precision impact of
considering clusters? How does the precision compare to the ones for the analysis
in Section 4.1?

To answer these research questions, we implemented all analyses presented in this
thesis in the Goblint

1 static analyzer targeting multi-threaded C programs that employ
the Pthreads library for concurrency. Goblint supports function pointers, dynamic
creation of threads, dynamic allocation of memory, and many other features of the
C programming language — meaning it can be used to analyze real-world programs.
Goblint performs a context-sensitive interprocedural analysis, where the degree of
context-sensitivity can be configured to tune the precision-performance trade-off. The
system’s modular architecture allows different analyses to be activated and deactivated
at runtime and provides a separation of concerns between specifying analyses and
other aspects, such as the solver used to solve the side-effecting constraint system [8].
All activated analyses are run at the same time and can communicate with each other
through a system of queries and events.

1https://goblint.in.tum.de/ and https://github.com/goblint/analyzer
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Goblint is implemented in OCaml and makes use of an updated fork2 of Cil [93]
for parsing and simplification of the input program. Goblint comes both with its own
custom implementations of some relational domains and an interface to the Apron

library [64]. For the experiments using relational domains, we relied on the implementa-
tion of the Octagon domain supplied by Apron.

To allow for the analysis of real-world programs, the analyses as presented in this
thesis were extended in a variety of ways. Thus, the implementations sometimes slightly
deviate from the presentation in the previous chapter, e.g., in the following ways:

• The implementation supports arbitrary data types, including pointers. Thus, it
is not possible to actually add mutexes mg in a pre-processing step, as a pointer
dereference at some point in the code may access no, one, or multiple different
globals, depending on the runtime value of the pointer variable. Therefore, we
consider mg mutexes conceptually only and do not insert them into the code.
For compound datatypes, CIL decomposes accesses into accesses to individual
members, meaning no special handling is required.

• The implementation uses machine integers as mandated by the C standard, as
opposed to mathematical integers used in this thesis. The handling of signed
overflows is configurable: Goblint offers options to flag overflows. Additionally, it
allows the user to specify how execution is supposed to continue once a potential
overflow has occurred — either by assuming all overflows were due to imprecision
or by assuming overflows cause involved variables to have the value >.

• The set of variables that need to be handled as globals in C programs consists not
just of the syntactically global variables of the program, but also includes local
variables that escape their thread. Goblint comes with support for detecting such
escaping variables, and we have extended all approaches to handle the dynamic
discovery of additional global variables during analysis, which is also needed to
handle heap-allocated data. Additional globals being discovered during analysis
also required us to implement support for heterogeneous relational domains in
the sense of Journault et al. [65]. A strengthening as proposed by them is also
implemented for our relational domains in Goblint, though we usually do not
enable it, as it is expensive and seems to offer only a small precision boost.

• We added support for function calls: Here, we perform a context-sensitive abstract
interpretation using partial tabulation, a variant of the functional approach as
proposed by Sharir and Pnueli [118]. For our experiments, we use the complete
local abstract state of the caller as the context. As the framework allows for
partial contexts [9, 43] as well, it may be interesting to study the impact of only
considering parts of the local states for the context, e.g., only the part of the state
abstracting values of variables.

2https://github.com/goblint/goblint-cil
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• In C, locking and unlocking of mutexes happens through pointers to mutexes. Gob-
lint splits by the different mutexes in the points-to set of the pointer arguments
to functions locking and unlocking mutexes, and considers each of the resulting
paths separately, akin to how the analysis splits unknowns according to lockset.
When mutexes are unlocked that are not currently held, a warning is emitted.

• Pthreads offers different types of mutexes (e.g., recursive vs. non-recursive
mutexes) [24]. We adapt the analyses to remain sound for recursive mutexes, by,
among other changes, considering lock operations of potentially recursive mutexes
as no-ops, provided the mutex is already held.

• Thread creation also works through a pointer in C. Thus, at a thread creation point,
threads executing different procedures may be started.

• The system already computes the set of mutexes that are always held when a
given global is accessed. This information is computed during fixpoint iteration
by starting with the full set of mutexes and then intersecting the currently held set
with it upon every access (akin to what is outlined in Remark 9). Deviating from
the presentation in the previous chapter, we took care to implement all analyses in
a way that is able to deal with the set of protecting mutexes shrinking dynamically
during the analysis. It is conceivable that the set of protecting mutexes may
grow again during analysis when certain code previously considered reachable is
discovered to be, in fact, unreachable. The framework does currently not benefit
from protecting sets growing again. However, we do not expect the precision gain
from supporting this feature to be high.

• Goblint in its base configuration already computes thread ids as explained in
Section 2.8, so they are always computed for unknowns corresponding to program
points but are only used for other unknowns when the respective analysis is
configured to exploit them.

• While implemented in Goblint, the handling of condition variables was not
activated for this evaluation, as the semantics of C allows for spurious wakeups.
Therefore, the analyses would only be able to produce warnings about spuriously
live fragments of code, i.e., fragments that can only be live because of spurious
wakeups. Such warnings would, however, likely be the same for all approaches.

A preliminary version of this evaluation was already reported on in [107, 108]. In this
thesis, we conduct the experiments with a more recent version of Goblint, consider
additional analyses, and an extended set of benchmarks.

The benchmarks were conducted on a machine with two Intel Xeon Platinum 8260 @
2.40GHz processors with 24 cores each and 256 GB of RAM running Ubuntu 18.04.6 LTS.
Goblint was compiled with OCaml 4.14.0 with flambda activated. We remark that
Goblint itself is single-threaded, and so the runtime on consumer-grade hardware is
expected to be in the same range as on the server used for the evaluation. The version of
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5 Experimental Evaluation

Table 5.1: Larger benchmarks from the Goblint suite and from SV-COMP.
Goblint benchmark suite (Posix)

Name Lines LLoC Description

pfscan 1295 562 Parallel file scanner
aget 1280 587 Multi-threaded HTTP download accelerator
ctrace 1407 657 C Tracing library sample program
knot 2255 981 Multi-threaded webserver
ypbind 6588 992 Linux NIS binding process
smptrc 5787 3037 SMTP Open Relay Checker

SV-COMP (Tasks generated from Linux device drivers by LDV toolchain [135])

Name Lines LLoC Description (Driver for)

iowarrior 7687 1345 IOWarrior devices from Code Mercenaries
adutux 8114 1520 ADU devices from Ontrak Control Systems
w83977af 10071 1501 Winbond W83977AF Super I/O chip
tegra20 7111 1547 Nvidia’s Tegra20/Tegra30 SLINK Controller
nsc 12778 2379 Driver for the NSC PC’108 and PC’338 IrDA chipsets
marvell1 12246 2465 CMOS camera controller in Marvell 88ALP01 chip
marvell2 12256 2465 CMOS camera controller in Marvell 88ALP01 chip

Goblint used for the evaluation3, as well as the repository containing the benchmarks4

are available on GitHub. Both repositories and the scripts and intermediate data needed
to produce the results in this chapter, are available as an artifact on Zenodo [104].

5.1 Description of the Benchmark Sets

This section describes two sets of benchmarks that play at least some part in answering
all research questions outlined above. Both sets have already been used in the literature
and are comprised of not-too-small real-world multi-threaded programs.

Goblint benchmarks. This set consists of six multi-threaded Posix programs from
the Goblint benchmark suite5 and seven large benchmarks used in the international
competition on software verification (SV-COMP) 2021 [14]. The latter tasks are gen-
erated from Linux device drivers by the LDV toolchain [135] and form part of the
c/ldv-linux-3.14-races/ folder from the ConcurrencySafety-Main category6. This
set was already used in [107, 108].

3https://github.com/goblint/analyzer/tree/michael-schwarz-dissertation
4https://github.com/goblint/bench/tree/michael-schwarz-dissertation
5https://github.com/goblint/bench
6https://github.com/sosy-lab/sv-benchmarks
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5.1 Description of the Benchmark Sets

Table 5.2: Larger benchmarks from the Concrat [61] suite.

Name Lines LLoC Description

AirConnect 17954 7512 Bridge to use AirPlay with UPnP devices
axel 6004 2716 CLI download accelerator
brubeck 5879 2240 Statistics aggregator
C-Thread-Pool 749 241 Minimal threadpool implementation
cava 4858 2011 Cross-platform Audio Visualizer
clib 25773 11090 Package manager for C
dnspod-sr-fixed 9473 4698 DNSPod Security Recursive DNS Server
dump1090 4777 2079 Decoder for Software Defined Radio
EasyLogger 2140 839 High-performance C log library
fzy 2765 1077 Fuzzy finder for the terminal
klib 736 293 A standalone and lightweight C library
level-ip 5699 2452 A userspace TCP/IP stack
libaco 1302 667 C asymmetric coroutine library
libfaketime 528 143 Modifies the system time for a single application
libfreenect 646 245 Drivers and libraries for the Xbox Kinect device
lmdb 11021 5748 Memory-Mapped Database
minimap2 17596 9081 Aligner for DNA or mRNA sequences [77]
Mirai-Source-Code-fixed 1876 820 Source Code of the Mirai malware
nnn 12293 6712 Terminal file manager
phpspy 19695 9551 Sampling PHP profiler
pianobar 11663 4382 Console-based music streaming player
pigz-fixed 9232 5014 A parallel implementation of gzip
pingfs 2403 913 Filesystem storing information in ICMP ping packets
ProcDump-for-Linux 4220 2157 Linux version of ProcDump
Remotery 7562 3531 CPU/GPU profiler with Remote Web View
shairport 8902 3791 An AirPlay audio player for Linux
siege 19880 9239 Load tester for HTTP servers
snoopy 3638 1938 Library to log program executions
sshfs 7451 3258 Network filesystem client
streem 20803 9185 Prototype stream-based programming language
sysbench-fixed 16340 3575 Database and system performance benchmark
the_silver_searcher 7396 3615 ack-like code search
uthash 822 476 Utilities for working with hashtables in C
vanitygen 11163 5160 Vanity address generator for Bitcoin
wrk 8883 3747 Load tester for HTTP servers
zmap 17908 7183 Network scanner [40]
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5 Experimental Evaluation

Table 5.3: Tasks from the Concrat suite for which none of the approaches terminated
normally within the 15 min time limit. The symbol í denotes termination due
to a stack overflow, whereas 
 denotes termination due to an internal error of
the analyzer or the compiler frontend, and ¨ is used to indicate timeout.
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AirConnect í í í í í í í í ¨ ¨ í í í í í ¨ ¨ ¨

axel ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

clib 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


minimap2 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

phpspy ¨ ¨ ¨ ¨ ¨ í í í í í ¨ ¨ ¨ ¨ í í í í

Remotery í í í í í í í í í í í í í í í í í í

sshfs ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

streem í í í í í ¨ ¨ ¨ ¨ ¨ í í í í ¨ ¨ ¨ ¨

the_silver_searcher í ¨ ¨ ¨ ¨ í í í í í í ¨ ¨ ¨ í í í í

Concrat benchmarks. On top of this, we used the benchmarks assembled by Hong
and Ryu [61] for evaluating an automatic C-to-Rust translator for concurrent programs.
These benchmarks were assembled by considering public GitHub repositories with more
than 1,000 stars that contain C code, use the Pthreads lock API, have less than 500 kB
of C code, and can be translated by the C2Rust tool — where programs corresponding
to didactic material were excluded. From the 46 programs in this suite, we exclude 5
programs that do not contain a main function as our approach does not target libraries,
and 5 further programs that do not contain any calls to pthread_create, and are thus
statically known to be single-threaded. For dnspod-sr, Mirai-Source-Code, sysbench,
and pigz we use a modified version that fixes some issues with how the original
programs were merged to obtain a single C file. We denote this by appending -fixed to
the program name. This brings the total number of benchmarks in this set to 36.

Tables 5.1 and 5.2 provide a short description of each benchmark program, alongside
the number of physical lines of code, as well as the number of logical lines of code
(LLoC) counting only lines with executable code — thus excluding, e.g., struct and
extern function declarations.

5.2 Evaluation of the Analyses Considering Globals in
Isolation

For the evaluation of the scalability and precision of these non-relational analyses
((RQ1–3)), we used the Goblint and Concrat benchmarks described above.

We experimented with the following non-relational analyses:
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5.2 Evaluation of the Analyses Considering Globals in Isolation

(Protection): Protection-Based Analysis (Section 4.1.1)

(Miné): Side-Effecting Formulation of the Analysis by Miné [83, 84] (Section 4.1.3)

(Lock): Lock-Centered Reading Analysis (Section 4.1.4)

(Write): Write-Centered Reading Analysis (Section 4.1.6)

(Combined): Combined Lock- and Write-Centered Analysis (Section 4.1.8)

The analyses are performed context-sensitively with a standard points-to analysis for
addresses. For the enabled integer domains, we experiment with two different setups:
In the first setup, we use only exclusion/inclusion sets, and in the second setup, we
additionally activate an interval domain. For the latter configuration, we add the suffix
-I to the analysis name.

For all analyses for which we have presented refinement based on ego-lane digests,
i.e., all analyses except (Miné), we additionally experiment with a configuration where
refinement according to thread ids as presented in Section 2.8 with compat]A defined in
terms of may_run as described in Example 10 is enabled. For these configurations, we
add the suffix -TID to the analysis name. For the configurations using this refinement
and the interval domain for numeric values, this results in the combined suffix -I-TID.

We used a timeout of 15 min for each run and did not bound the memory usage for
the experiment. Peak memory usage did not exceed 14 GB for any of the configurations.

For 9 tasks from the Concrat suite, none of the configurations terminated normally,
i.e., without raising an exception and within the time limit. Table 5.3 lists these results.
Three cases can be distinguished there:

• For 5 of programs, at least one of the analyses encountered a stack overflow in
the solver. In Goblint, this occurs for recursive programs whenever the analysis
descends deeply into a recursion, always encountering new contexts. Goblint

supports techniques [43] to limit the encountered number of contexts. However,
these were not enabled for the experiments in this section, to ensure all programs
are analyzed in the same way.

• For clib, due to a bug in the compiler frontend, the analysis encounters a situation
where abstract values of types int and unsigned long are to be joined. As such a
situation does not arise for well-typed programs, the analysis does not support
this operation and crashes.

• For the cases where the timeout was reached, it is unclear whether the analysis
would terminate normally given more time or encounter issues such as stack
overflows. Coming up with more lightweight configurations for Goblint that
allow at least some analyses presented in this thesis to terminate within the time
limit is an interesting question, which, however, is orthogonal to comparing the
precision and performance of the different approaches presented here.

We omit these 9 tasks from further discussion.
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5 Experimental Evaluation

5.2.1 Runtime Comparison

Tables 5.4 and 5.5 show the runtimes of the non-relational analyses in the cases where at
least one of the configurations terminated normally within the time limit (RQ1). While
for most small programs, only a small difference in runtime is observable, this changes
for larger programs where a bigger difference is observed.

For the configurations without refinement according to thread ids (Table 5.4), the
protection-based approaches are the fastest across the board, regardless of whether
intervals are additionally enabled or not. Among the analyses that admit refinement
according to thread ids (Table 5.5), the same also holds true.

Fig. 5.1 shows the runtimes for the various approaches, both without and with
intervals plotted against the number of logical lines of code per benchmark. In these
graphs, data points belonging to the same benchmark are connected by a dashed line.
While one can clearly observe that the protection-based approaches tend to be the
fastest among the approaches, with the difference between the other approaches mostly
negligible, no clear relationship between program size and runtime becomes apparent.

Fig. 5.2 shows the runtimes of terminating runs plotted against the number of en-
countered unknowns. Here, a clear trend is observable: there seems to be a linear
relationship between the number of encountered unknowns and the runtimes of the
respective approaches. This conclusion is also supported by the linear regression for
the (Protection) configuration, which seems to fit the data well. This relationship hints
at the analysis time scaling linearly not with the program size, but with the number of
program points in contexts to be analyzed, as the number of flow-insensitive unknowns
does not grow as fast as the number of program points in contexts. This also supports
the hypothesis that for those larger programs where the analyses fail to terminate within
the time limit, the root cause is more likely to be the number of encountered contexts to
be analyzed — which is also an issue for single-threaded analyses — and less likely a
blowup due to the effects of concurrency.

The approaches enhanced with thread ids behave similarly to the ones without it, and
we thus forgo giving a detailed description and plots here.

Fig. 5.3 shows the aggregated runtimes for the non-relational analyses for those
programs where all approaches terminated. One can see that for all configurations,
the protection-based approach offers the shortest runtimes, while the other four (three)
approaches are significantly slower on aggregate, but do not exhibit large differences
in runtime between each other. This general observation also holds when considering
the runtimes on individual tasks (Tables 5.4 and 5.5). This graph also allows shows the
overhead of enabling intervals and/or performing a refinement according to thread ids.
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5.2 Evaluation of the Analyses Considering Globals in Isolation

Table 5.4: Runtimes on the non-relational benchmarks in seconds. Some benchmark
names were abbreviated for space (as indicated by ellipses). The fastest
runtime for each domain is marked in bold.
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pfscan 562 1.0 1.9 2.0 1.8 1.9 1.1 2.1 2.1 2.0 2.1
aget 587 2.6 4.8 4.8 4.8 5.0 2.7 5.4 5.3 5.3 5.5
ctrace 657 1.9 3.1 3.1 3.1 3.4 2.0 3.4 3.3 3.3 3.6
knot 981 3.0 8.2 8.2 8.3 8.4 3.6 10.8 13.0 13.2 13.2
ypbind 992 32.7 106.1 111.4 103.1 129.5 35.4 127.0 133.3 120.1 154.2
smtprc 3037 20.1 38.4 39.2 38.8 40.6 24.3 49.0 49.7 48.0 51.1
iowarrior 1345 2.0 3.4 3.4 3.0 3.5 2.1 3.6 3.6 3.2 3.7
adutux 1520 2.0 3.0 3.2 2.7 3.3 2.1 3.2 3.3 2.8 3.4
w83977af 1501 4.0 9.5 9.4 9.7 9.8 4.2 10.1 10.0 10.3 10.5
tegra20 1547 8.8 14.6 15.3 15.7 17.2 9.0 15.9 16.5 16.9 18.9
nsc 2379 9.2 26.9 22.2 22.0 22.6 9.6 28.7 23.6 23.4 23.9
marvell1 2465 9.7 26.0 33.4 29.5 40.3 10.2 29.7 37.8 33.6 46.7
marvell2 2465 9.8 26.2 33.3 29.7 40.3 10.4 29.8 37.9 33.7 46.6
brubeck 2240 5.4 12.1 11.8 12.5 12.6 5.7 13.6 13.2 13.9 14.1
C-Thread-Pool 241 0.5 0.6 0.6 0.6 0.6 0.5 0.6 0.7 0.7 0.7
cava 2011 10.5 23.3 18.8 17.9 19.3 12.3 28.8 22.6 21.5 23.2
dnspod-sr-fixed 4698 151.2 ¨ ¨ ¨ ¨ 194.9 ¨ ¨ ¨ ¨

dump1090 2079 7.8 30.1 31.9 31.8 33.4 8.7 40.9 43.5 43.3 45.3
EasyLogger 839 6.1 12.6 13.3 15.4 16.5 6.5 14.8 15.1 17.6 18.7
fzy 1077 4.1 15.6 14.6 15.4 15.6 89.3 158.8 146.5 158.9 158.7
klib 293 1.6 2.1 2.1 2.1 2.2 1.8 2.5 2.4 2.6 2.7
level-ip 2452 4.1 16.8 18.3 12.2 19.5 4.3 19.1 23.3 13.5 21.6
libaco 667 12.6 15.5 15.9 16.5 17.7 13.0 16.5 16.8 17.4 18.7
libfaketime 143 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
libfreenect 245 0.5 0.7 0.7 0.7 0.7 0.6 0.8 0.7 0.7 0.7
lmdb 5748 366.5 ¨ ¨ ¨ ¨ í í í í í

Mirai-...-fixed 820 6.1 18.3 18.7 20.1 20.2 6.9 21.9 22.4 24.0 24.2
nnn 6712 21.6 265.6 397.4 333.3 422.1 64.3 ¨ ¨ ¨ ¨

pianobar 4382 142.3 ¨ ¨ ¨ ¨ 163.0 ¨ ¨ ¨ ¨

pigz-fixed 5014 445.1 ¨ ¨ ¨ ¨ 541.8 ¨ ¨ ¨ ¨

pingfs 913 3.8 10.8 10.9 9.8 12.3 3.9 11.9 11.6 10.4 13.2
ProcDump-... 2157 80.2 ¨ 890.5 ¨ ¨ 82.6 ¨ ¨ ¨ ¨

shairport 3791 34.4 440.9 380.6 344.9 486.9 75.0 835.1 669.2 546.2 798.6
siege 9239 64.5 ¨ ¨ ¨ ¨ 69.9 ¨ ¨ ¨ ¨

snoopy 1938 1.3 1.3 1.3 1.3 1.3 1.4 1.4 1.4 1.4 1.4
sysbench-fixed 3575 15.4 46.3 40.9 34.1 40.5 17.1 57.2 53.0 45.2 53.2
uthash 476 3.9 6.1 6.3 6.3 6.6 4.4 6.8 7.0 7.0 7.4
vanitygen 5160 20.0 25.4 26.2 26.1 26.5 20.8 26.7 27.5 27.3 27.8
wrk 3747 36.3 119.3 77.6 76.1 78.3 368.8 878.7 759.4 754.7 785.8
zmap 7183 42.9 203.4 207.5 223.6 221.3 50.5 273.3 276.8 288.5 288.6
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5 Experimental Evaluation

Table 5.5: Runtimes on the non-relational benchmarks enhanced with thread ids in
seconds. Some benchmark names were abbreviated for space (as indicated by
ellipses). The fastest runtime for each domain is indicated in bold.
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pfscan 562 1.1 2.6 2.0 2.3 1.2 2.8 2.6 3.0
aget 587 3.2 5.9 5.7 6.1 3.4 6.6 6.4 6.9
ctrace 657 2.7 6.2 5.3 6.7 2.9 7.2 5.9 7.7
knot 981 3.2 8.5 8.6 8.7 3.9 11.2 11.3 11.4
ypbind 992 120.8 ¨ 494.3 ¨ 146.4 ¨ 637.9 ¨

smtprc 3037 22.6 52.2 48.7 54.4 27.1 64.8 59.5 66.7
iowarrior 1345 2.1 3.4 3.1 3.5 2.1 3.6 3.2 3.7
adutux 1520 2.1 3.2 2.7 3.3 2.1 3.3 2.8 3.4
w83977af 1501 5.5 11.5 12.0 12.1 5.8 12.3 12.7 13.0
tegra20 1547 11.6 20.6 21.1 23.8 12.2 23.0 23.9 26.9
nsc 2379 12.8 25.5 24.4 25.2 13.4 27.1 26.1 26.9
marvell1 2465 12.4 53.8 33.3 48.9 13.5 64.4 38.3 57.9
marvell2 2465 12.5 54.5 33.4 49.1 13.7 65.2 38.7 57.7
brubeck 2240 6.2 13.3 14.1 14.2 6.5 14.8 15.7 15.7
C-Thread-Pool 241 0.6 0.7 0.7 0.7 0.6 0.8 0.8 0.8
cava 2011 10.9 19.5 18.3 20.2 12.8 23.8 22.3 24.5
dnspod-sr-fixed 4698 163.6 ¨ ¨ ¨ 204.3 ¨ ¨ ¨

dump1090 2079 12.3 39.8 38.6 40.3 14.1 53.6 52.1 54.2
EasyLogger 839 6.4 15.9 16.7 18.1 6.9 18.2 19.2 20.8
fzy 1077 4.3 14.9 15.8 15.9 115.5 153.9 170.9 171.4
klib 293 1.8 2.4 2.4 2.6 2.1 2.8 2.8 3.0
level-ip 2452 4.5 21.7 12.8 22.6 4.6 27.5 14.3 25.0
libaco 667 29.7 136.4 43.9 144.4 33.1 162.4 50.7 171.4
libfaketime 143 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
libfreenect 245 0.7 0.9 0.9 1.0 0.7 1.0 1.0 1.1
lmdb 5748 372.3 ¨ ¨ ¨ í í í í

Mirai-...-fixed 820 6.9 19.8 21.2 21.4 8.2 25.2 26.7 27.1
nnn 6712 23.6 454.0 343.3 438.5 81.9 ¨ ¨ ¨

pianobar 4382 209.3 ¨ ¨ ¨ 239.5 ¨ ¨ ¨

pigz-fixed 5014 814.7 ¨ ¨ ¨ ¨ ¨ ¨ ¨

pingfs 913 6.0 43.1 24.4 55.9 6.4 49.0 27.0 62.9
ProcDump-... 2157 849.1 ¨ ¨ ¨ ¨ ¨ ¨ ¨

shairport 3791 46.9 ¨ 821.9 ¨ 100.6 ¨ ¨ ¨

siege 9239 106.2 ¨ ¨ ¨ 116.3 ¨ ¨ ¨

snoopy 1938 1.3 1.4 1.3 1.4 1.4 1.5 1.4 1.4
sysbench-fixed 3575 19.0 145.8 47.9 81.5 22.1 203.6 57.9 100.9
uthash 476 4.2 9.0 7.7 8.9 4.8 10.2 8.7 10.2
vanitygen 5160 19.9 26.7 26.5 27.1 20.9 28.1 27.7 28.5
wrk 3747 37.0 78.2 76.3 78.7 383.3 785.2 741.3 782.3
zmap 7183 47.2 213.3 229.6 228.4 55.5 287.9 297.1 296.6
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5.2 Evaluation of the Analyses Considering Globals in Isolation
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(a) Base configurations.
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(b) Interval configurations.

Figure 5.1: Runtimes per benchmark program, where a runtime of 900s corresponds
to a timeout or other non-normal termination and the runtimes for each
benchmark are connected by a dotted vertical line.
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Figure 5.2: Runtimes of the basic approaches plotted against the number of encountered unknowns. The dotted line represents
a linear regression for the (Protection) configuration.
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5.2.2 Identified Thread Ids

Before studying differences in precision between the approaches, we first turn to the
question whether the digests introduced in Section 2.8 succeed at identifying thread
ids in the benchmark programs and how many of these thread ids can be shown to be
unique ((RQ2)). While, in principle, the encountered thread ids depend on the analysis
considered, as, e.g., a more precise analysis may find sections of code where threads
are created to be unreachable, or a weaker points-to analysis may lead to more threads
being identified, no such effects were observed for the benchmarks considered here. The
number of thread ids and how many of those are known to be unique per benchmark
program is given in Table 5.6.

The number of identified thread ids ranges between 2 for EasyLogger and 39 for wrk,
with an outlier of 107 for ypbind. We remark that the very high number of threads for
this program seems to stem from a call to pthread_create where only very imprecise
points-to information for the pointer argument is computed, leading to many threads
potentially being created. For 5 benchmark programs, all identified thread ids are unique
as indicated by the bold numbers in Table 5.6. For these benchmarks, the number of
encountered thread ids is an upper bound to the number of concrete threads created. In
general, the high fraction of thread ids identified as unique here is encouraging.

5.2.3 Precision Comparison

To answer (RQ3), the results computed by the different analyses need to be compared.
However, the analyses have different unknowns and track different auxiliary information,
making a direct comparison based on the computed solutions to the respective constraint
systems impossible. Instead, we record and compare the observable behavior in the
form of which abstract values are read for what global variables at which locations. We
exclude reads that happen via pointers where the points-to-set the analysis reads from
does contain the > element, which represents a pointer for which a catastrophic loss of
precision has occurred.

Base Configurations. We first consider the precision differences in the base setting
without intervals and thread ids as also presented in [107], only on the extended
set of benchmarks here. For 5 of the programs, only (Protection) terminated. For
ProcDump-for-Linux, only (Protection) and (Lock) terminated. For this program, both
terminating approaches yielded the same precision. For the remaining 34 programs,
all configurations terminated. For these, the results mostly echo the ones in the earlier
evaluation:

• For 24 of the programs, all approaches were equally precise.

• For 6 of the remaining programs, all analyses were equally precise except (Miné),
which was less precise for between 9.6% and 0.7% of values read.
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Figure 5.3: Accumulated runtime for the non-relational analyses where all approaches
terminated. This subset of the complete suite comprises around 106k LLoC.
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Table 5.6: Number of (unique) thread ids identified in the benchmark programs. Some
benchmark names were abbreviated for space (as indicated by ellipses). When-
ever all identified thread ids are unique, the numbers are given in bold.

Name LLoC #T
ID

s

#U
ni

qu
e

pfscan 562 3 2
aget 587 6 4
ctrace 657 3 3
knot 981 9 5
ypbind 992 107 41
smtprc 3037 4 3
iowarrior 1345 4 4
adutux 1520 4 4
w83977af 1501 6 4
tegra20 1547 7 5
nsc 2379 11 7
marvell1 2465 6 5
marvell2 2465 6 5
brubeck 2240 32 16
C-Thread-Pool 241 6 3
cava 2011 20 11
dnspod-sr-fixed 4698 9 6
dump1090 2079 9 5
EasyLogger 839 2 2
fzy 1077 8 4

Name LLoC #T
ID

s

#U
ni

qu
e

klib 293 6 3
level-ip 2452 9 7
libaco 667 35 13
libfaketime 143 4 3
libfreenect 245 14 8
lmdb 5748 3 2
Mirai-...-fixed 820 6 4
nnn 6712 23 12
pianobar 4382 26 13
pigz-fixed 5014 14 7
pingfs 913 35 18
ProcDump-... 2157 24 16
shairport 3791 21 10
siege 9239 5 4
snoopy 1938 7 4
sysbench-fixed 3575 14 9
uthash 476 5 5
vanitygen 5160 33 17
wrk 3747 39 18
zmap 7183 11 7

Table 5.7: Precision comparison for the programs shairport and zmap. The table shows
the comparison between the results from the analysis corresponding to the row
and the one corresponding to the column. Incomparable results are denoted
by 6@A. The same relationship was observed for both programs.
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5 Experimental Evaluation

• For 2 programs, all analyses were equally precise except (Protection), which was
less precise for 54.4%, respectively 4.3% of values read.

• For the remaining 2 programs shairport and zmap, the relationship between the
precision of the different approaches is depicted in Table 5.7. Here, approaches
(Lock), (Write), and (Combined) are all equally precise, and more precise than
either (Protection) (for 1.2%, resp. 0.2% of values read), or (Miné) (for 0.1%, resp.
0.4% of values read). The precisions of (Protection) and (Miné) are incomparable.

Table 5.8 provides an overview of the results of the precision comparison for the
base configuration. It lists, for each approach, for how many programs each analysis
yielded the most precise results. Considering the drastic differences in runtime (and that
only (Protection) terminated for 5 of the programs), this seems to hint at (Protection)
being the most reasonable compromise for the analysis of the programs considered
here, despite it being less precise than (Write), (Lock), and (Combined) for 4 of the
benchmarks from the suite.

TID Configurations. For these analyses, additionally enabling refinement according
to thread ids seems to not increase precision as measured by the read values at program
locations much. The analyses read the same values as in their base configuration on all
but three programs.

For dnspod-sr-fixed, only the approaches based on (Protection) did terminate within
the resource limit. In this case, thread ids yielded a precision increase for 2.2% of values
read. For zmap, the -TID configurations are all better than their base configurations:
(Write-TID), (Lock-TID), and (Combined-TID) achieve the same precision, which is
better than the precision of (Write), (Lock), and (Combined) for 0.2% of values read.
(Protection-TID) is also more precise than (Protection) for 0.2% of values read. Compar-
ing within the -TID variants, (Protection-TID) is less precise than the other approaches
once more for 0.2% of values read.

Given the extra cost incurred by refining according to thread ids, it seems that, for
these benchmarks, the modest precision increase obtained is not worth the cost.

Table 5.8: Number of programs for which each approach yielded the most precise
result for the 34 programs on which all approaches terminated. The (+1) for
(Lock) indicates the program, where only (Lock) and (Protection) terminated.
Analogously for the (+1+5) for (Protection), where (+5) denotes the additional
5 programs where only it terminated.

(Protection) (Miné) (Lock) (Write) (Combined)

30 (+1+5) 26 34 (+1) 34 34
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#include <pthread.h>
int occupied;
pthread_mutex_t m;

void* thread(void* arg) {
pthread_mutex_lock(&m);
if(occupied < 1) {

occupied++;
pthread_mutex_unlock(&m); // (1)

} else {
pthread_mutex_unlock(&m);

}
}

int main() {
pthread_t t;

pthread_create(&t, 0, &thread, 0);

pthread_mutex_lock(&m);
occupied = 0;
pthread_mutex_unlock(&m); // (2)

pthread_mutex_lock(&m);
__goblint_check(occupied >= 0);
pthread_mutex_lock(&m);
return 0;

}

Figure 5.4: Example of a pthread program highlighting the effects of widening extracted
from pfscan. The assertion succeeds with the Protection-Based Analysis but
fails with Write-Centered Reading. As this is an example extracted from C
code, we do not employ our toy language, but turn to C to describe this
program here.

Interval Configurations. When considering the analysis with the interval domain
additionally enabled, it is important to note that the domain used for globals requires
widening now. This may lead to the analyses behaving differently w.r.t. precision than
in the base configuration, where the relationships between the individual results mostly
correspond to the results one would obtain for least solutions.

Example 33. Consider the program in Figure 5.4, which is an extracted snippet from the pfscan
benchmark. Notice that the variable occupied is protected by the mutex m and ranges between 0
and 1 in the concrete.
When additionally using intervals and the usual widening on them, the assertion succeeds
with the Protection-Based Analysis but fails with the Write-Centered Reading analysis. This
effect is due to widening in combination with the enabled domains: Instead of considering
the combination of inclusion/exclusion sets and intervals, we illustrate the problem with an
easier-to-follow combination of constant propagation and intervals. Let us denote abstract values
in this domain as a pair where the first element of the pair is the constant (or >), and the second
is the interval.

• Goblint applies widening for all contributions to a global unknown as soon as more than
one increasing contribution has happened from the same program point.

• The enabled solver will, in this example, after performing any side-effects corresponding
to thread creation, attempt to compute a fixpoint for the unknown corresponding to the
return of the thread whose start point just received a side-effect.
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• For Write-Centered Reading, the contributions to [occupied, m, ∅, {m}] from unlock of m
in the true branch in thread (annotated with (1) in the program) are (1, [1, 1]) and in a
later iteration (>, [1, 1]) (as no reduced product between the domains is applied, and the
constants cannot exploit the guard to refine the read value (>, [0, 1])) which leads to this
unknown becoming a widening point with the value (>, [1, 1]). When the contribution
from (2), i.e., (0, [0, 0]), is considered, widening is applied, and the value of the unknown
becomes (>, [1, 1])∇(0, [0, 0]) = (>, [minint, 1]).

• For Protection-Based Reading, the unknown [occupied] receives an initial contribution of
(0, [0, 0]) when Goblint first enters multi-threaded mode, and then later the contribution
(1, [1, 1]). These are joined and the value (>, [0, 1]) is attained. While the unknown may
later also become a widening point, all the contributions are accounted for by the result of
this join, and no widening takes place.

For this example, there exist various ways to obtain the desired precision also with Write-Centered
Reading, including disabling the inclusion/exclusion sets, enabling reduced product, or choosing
a different widening strategy. However, all of these also have drawbacks.

Example 33 thus illustrates the complex interplay between different options and
widening and highlights that it is not unexpected that the relationships between least
solutions, on the one hand, and the empirically observed precision, on the other hand,
may not always align.

Out of the 40 programs for which at least one configuration terminated without
intervals, this is still the case for 39 programs when enabling intervals: For lmdb,
none of the approaches additionally using intervals terminated. For 6 programs, only
(Protection-I) terminated.

For the remaining 33 programs, all configurations terminated. The breakdown of the
precisions is as follows:

• For 16 of the programs, all approaches were equally precise.

• For 4 programs, all approaches were equally precise except for (Protection-I),
which was more precise for between 0.7% (cava) and 28.3% (klib) of values read.

• For 3 programs, all approaches were equally precise except for (Miné-I), which
was less precise for between 0.7% (vanitygen) and 28.6% (snoopy) of values read.

• For fzy, all approaches were equally precise except for (Protection-I), which was
less precise for 54.4% of values read.

• For dump1090, all approaches were equally precise except for (Protection-I) which
yielded precision incomparable to the others.

For the remaining 8 programs, the relationships between the precisions are more
involved and are highlighted in Table 5.9.

Table 5.10 provides an overview of the results of the precision comparison for the
interval configurations. It lists, for each approach, for how many programs the analysis
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5.2 Evaluation of the Analyses Considering Globals in Isolation

Table 5.9: Precision comparison for the 8 programs where the relationship between
precisions is not straightforward. The table shows the comparison between the
results from the analysis corresponding to the row and the one corresponding
to the column. Incomparable results are denoted by 6@A.
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pfscan knot ypbind

(Protection-I) @ @ @ @ @ @ @ @ @ @ = =
(Miné-I) A A 6@A 6@A A 6@A 6@A 6@A A 6@A A A
(Lock-I) A @ @ @ A 6@A = = A 6@A A A
(Write-I) A 6@A A = A 6@A = = = @ @ =
(Combined-I) A 6@A A = A 6@A = = = @ @ =

shairport sysbench-fixed zmap

(Protection-I) 6@A 6@A 6@A 6@A @ @ @ @ 6@A A A A
(Miné-I) 6@A A 6@A 6@A A 6@A A A 6@A A A A
(Lock-I) 6@A @ @ @ A 6@A A A @ @ = =
(Write-I) 6@A 6@A A = A @ @ = @ @ = =
(Combined-I) 6@A 6@A A = A @ @ = @ @ = =

wrk level-ip

(Protection-I) @ @ = = @ 6@A @ @
(Miné-I) A = A A A A = =
(Lock-I) A = A A 6@A @ @ @
(Write-I) = @ @ = A = A =
(Combined-I) = @ @ = A = A =
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yielded the most precise results, as well as (after the slash) the number of results where
no other approaches were better, but some yielded incomparable results.

Considering the drastic differences in runtime (and that only (Protection-I) terminated
for 6 of the programs), this seems to hint at (Protection-I) being the most reasonable
choice for the analysis of the programs considered here when analyzed with intervals
enabled.

To evaluate the impact of additionally enabling the interval domain, we compare
the results between the base configurations and the configurations with intervals by
projecting the results of the base configuration to the interval domain while using the
range information encoded in the exclusion set domain. The observed results were
relatively uniform across the benchmarks: For 39 benchmarks, at least one base configu-
ration and one configuration with intervals terminated. For 30 of these benchmarks, all
interval configurations were more precise than their respective base configuration. The
percentage of values that became more precise ranged between 1.6% to 87.0% with on
average around 30% of values read becoming more precise. The median improvement
was between 24.3% and 30.7%. For the remaining 9 programs, none of the analyses got
more precise by additionally enabling the interval domain. All in all, this confirms the
conventional wisdom that an analysis using intervals also gives precision advantages in
practice.

Interval-TID Configurations. As previously for the configurations without intervals,
it is of interest to study the impact of additionally enabling the refinement according
to thread ids. Out of a total of 37 programs, for which at least one configuration with
intervals and thread ids terminated, for 27 programs, the precision for all analyses did
not change when additionally enabling thread ids. For the remaining 10 programs, the
results were more varied:

• For knot, all configurations with intervals and thread ids yielded identical precision.
That amounts to the (Protection-I-TID) configuration losing some precision when
compared to the (Protection-I) configuration (for 12.6% of values read). For
the other analyses, the configurations using thread ids and intervals yielded
incomparable results to the configuration using intervals only (10.8% of values
read more precise, 12.6% less precise).

Table 5.10: Number of programs for which each approach yielded the most precise
result (and for how many no other approaches were better, but overall results
were incomparable listed after the slash) for the 35 programs on which all
approaches terminated. The (+6) for (Protection-I) indicates the 6 programs,
for which only it terminated.

(Protection-I) (Miné-I) (Lock-I) (Write-I) (Combined-I)

28/3 (+6) 17/1 21/3 23/1 23/1
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• For ypbind, the only configurations with intervals and thread ids that terminated
are (Protection-I-TID) and (Write-I-TID). Both configurations lost precision when
compared to the configurations without thread ids where (Write-I), (Protection-I),
and (Combined-I) were equally precise. (Protection-I-TID) was less precise than
these for 7.8% of values read, and (Write-I-TID) was less precise for an additional
2.2% of values read.

• For dnspod-sr-fixed, (Protection-I-TID) and (Protection-I) which were the only
terminating configurations with intervals enabled, yielded results that were in-
comparable: (Protection-I-TID) was more precise for 2.2% of values read, while
(Protection-I) was more precise for 0.9% of values read.

• For dump1090, the analyses using intervals became less precise when enabling
thread ids: All approaches became less precise for 55.6% of values read.

• For klib, (Write-I-TID) (Lock-I-TID) and (Combined-I-TID) were equally pre-
cise as the corresponding analyses without thread ids. (Protection-I-TID) was
equally precise as all these, meaning the precision edge for 23.2% of globals read
that (Protection-I) had over all of these was lost.

• For libfreenect, (Protection-I-TID) was equally precise as (Protection-I). (Lock-
I-TID) (Write-I-TID), and (Combined-I-TID) all improved over their respective
configurations without thread ids, and were then equally precise as (Protection-I-
TID). That amounts to an improvement for 6.3% of values read.

• For shairport, (Protection-I-TID), the only configuration with intervals and
thread ids that terminated, was less precise than (Protection-I) for 0.3% of values
read.

• For snoopy, the configurations additionally using thread ids were less precise for
25.0% of values read.

• For wrk, the configurations with intervals and thread ids yielded equal precision
to the configurations without thread ids, except for (Lock-I-TID), which was less
precise than (Lock-I) for 0.9% of values read.

• For zmap, the configurations with intervals and thread ids yielded precisions that
were incomparable to the configurations without thread ids: They were more
precise for 0.2% of values read, and less precise for another 0.2% of values read.

Thus, there is no clear advantage to enabling the refinement according to thread ids here.
Given that there is some advantage from enabling thread ids for the relational analyses
(see next section), we suspect that there may be the potential of attaining precision gains
by using thread ids, but that perhaps different approaches to widening may be needed
to realize such improvements.
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5.2.4 Summary

For the non-relational analyses, the benchmark results seem to suggest that (Protection)
is as precise as the other approaches for the majority of benchmarks ((RQ3)), and given
its runtime is significantly faster than the other approaches ((RQ1)), it is the most
promising approach for practical use.

For the approaches additionally using intervals, this holds true even more: As
explained above, due to the effects of widening and narrowing when (efficiently)
computing fixpoints, (Protection-I) is not only more scalable than the other approaches
on the considered set of benchmarks, but also often more precise.

Despite many encountered thread ids and a high fraction of unique thread ids ((RQ2)),
there seems to be little benefit (and even some potential harm) when enabling the
refinement according to thread ids for the considered benchmark programs. This
refinement should thus probably be enabled only when thread ids are needed for some
other analysis such as an analysis of data races, but not when only an analysis of the
values of global variables is to be conducted.

5.3 Evaluation of the Analyses Considering Clusters of Globals

To address (RQ4–5), we experimented with four different configurations of our analyses
from Section 4.2:

(MM-I): Mutex Meet with Intervals (Section 4.2.1)

(MM-Oct): Mutex Meet with Octagons (Section 4.2.1)

(MM-Oct-TID): (MM-Oct) with thread ids and joins (Section 4.2.4)

(MM-Oct-TID-C): (MM-Oct-TID) with clusters of size at most 2 (Section 4.2.5)

where all configurations except (MM-I) employ a relational domain. Further, we
include two configurations based on the non-relational Protection-Based analysis from
Section 4.1.1, namely, (Protection-I) and (Protection-I-TID) , which we have observed
to be more precise than the other approaches when using intervals.

An experimental comparison with other tools is difficult. We considered comparing
with the following abstract-interpretation based tools that can analyze concurrent C
programs:

• Duet [45] — Its benchmarks are only available as binary goto-programs, which
neither its current version nor any other tool considered here can consume. While
we managed to run Duet successfully on some benchmarks, our configuration of
the tool did not produce valid results for others: For dealing with code containing
function calls, Duet relies on inlining. As the inlining implemented in the most
recent version of Duet available at the time of writing was not working on some
examples, we contacted the author, who sent us a fixed version of the module

130



5.3 Evaluation of the Analyses Considering Clusters of Globals

responsible for inlining. In the experiments, we executed the tool with this
implementation of inlining (and Octagons enabled); however, there were still cases
in which our configuration of the tool reported a too low number of reachable
asserts, indicating that some reachable code was not considered by the tool. Thus,
for these benchmarks, no results are reported for Duet.

• AstréeA [85] — A public version is available but not licensed for evaluation.

• Watts [72] — Since we were unable to run the tool on any program, we compared
with the numbers reported by the authors where they were available.

• Frama-C [70] — to handle concurrency, Frama-C relies on the MThread plug-in,
which is not publically available.

For (RQ5), we first consider a set of small litmus tests also proposed in literature
against which we were able to compare our analyses. For both (RQ4) and (RQ5), we
used the same set of programs as in the previous section to evaluate performance and
precision on more real-world programs.

5.3.1 Litmus Tests

The results for this suite of litmus tests are summarized in Table 5.11. For these runs, a
threshold widening [18] was enabled, which derives the considered thresholds from the
constants appearing in the program to be analyzed.

In the following, we quickly describe the individual groups of benchmarks and the
results.

Ratcop benchmarks [89]. These 19 programs were originally Java programs. After
manual translation to C, our analyzer succeeded in proving all assertions any configura-
tion of Ratcop could with Octagons, while Ratcop required polyhedra in one case. For
these quite small benchmarks (≤ 140 logical lines of code (LLoC)), the analysis time was
negligible (≤ 1s), but a bit slower than the runtimes reported for the Ratcop tool.

Our benchmarks. To capture particular challenges for multi-threaded relational analy-
sis, we collected a set of small benchmarks (including most examples from this thesis)
and instrumented them with assertions. Our relational analysis in the (MM-Oct-TID-C)
configuration succeeded in verifying all assertions. The other tools and configurations
could only prove a handful of relational assertions.

Watts Benchmark Suite. While we were unable to get Watts to run, we executed our
analyses on the benchmarks reported on in [72]. We took the benchmarks as available
from the GitHub repository7. The benchmarks proposed in this paper consist of two
sets of C-source files containing multi-threaded code with asserts.

7https://github.com/markus-kusano/watts
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Table 5.11: Summary of evaluation results for the litmus tests, with individual programs
grouped together. For each group the number of programs and the total
number of assertions are given. 3 (7) indicates that all (no) assertions are
proven, otherwise the number of proven assertions is given. (—) indicates
that invalid results were produced.
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Watts Created 4 4 2 2 2 2 2 2 7

SV-COMP 3 3 7 7 7 7 7 7 7

LKMPG 1 2 7 7 7 7 7 7 7

DDVerify 29 1072 1044 1044 3 3 1044 1044 —
Scalability 5 740 735 735 3 3 735 735 —

Ratcop 19 34 8 14 22 22 6 6 4

132



5.3 Evaluation of the Analyses Considering Clusters of Globals

Table 5.12: Runtimes, in seconds, of our analyzer on the five scalability benchmarks
from [72]. The second column indicates the number of concrete threads in the
benchmark program (including the main thread). Runtimes are considerably
lower than those reported for Watts but were obtained on different hardware.
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i8xx_tco_03_thr01 31 0.4 0.4 1.5 4.2 0.3 0.3
i8xx_tco_03_thr02 41 0.4 0.4 2.4 6.6 0.3 0.3
i8xx_tco_03_thr03 51 0.5 0.5 3.5 9.5 0.4 0.4
i8xx_tco_03_thr04 61 0.5 0.6 4.8 12.8 0.4 0.4
i8xx_tco_03_thr05 71 0.6 0.6 6.5 16.7 0.4 0.5

The first set of benchmarks consists of 37 C-files, originating from different sources,
that were adapted for [72]. We took the benchmark set as-is, except for removing
an obviously misplaced semicolon in the wdt977_02 benchmark that rendered one
assert(0) reachable in the concrete.

The second set of benchmarks consists of five versions of the benchmark i8xx_tco_03,
contained in the first benchmarks set, instrumented to create different numbers of
threads. In [72], the number of threads created in the benchmarks varies from 30 to
70. In the repository, there were two files creating 40 threads and no file that created
30, rendering one test case redundant. Thus, we removed ten thread creates from
i8xx_tco_03_thr01. We also fixed the number of function stubs in that file to be the
same as in the other benchmark files.

The runtimes of our tool can be seen in Table 5.12. Our most expensive analysis takes
around 17 seconds to complete on the largest benchmark, which creates 70 threads.
While exact runtimes are not reported in [72], the graph (found in Fig. 11 of that
paper) indicates that the runtime of their most expensive analysis was close to 400
seconds, while the least expensive configuration still took more than 200 seconds on
the benchmark creating 70 threads. We remark that while runtimes reported for Watts

in [72] were obtained on a different machine and the numbers are thus not directly
comparable, the comparison is still meaningful as the magnitudes differ greatly.

The configuration (MM-Oct-TID) succeeded in verifying that all asserts in 36 of these
benchmarks hold. The six benchmark files for which, in total, seven asserts could not be
proven, contain data-dependent thread-synchronization that our tool cannot handle.

Unlike the other sets of benchmarks considered, there was a significant number
of assert(0) statements in the benchmark files, where code should be proven to be
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5 Experimental Evaluation

Table 5.13: Tasks from the Concrat suite for which none of the approaches from Sec-
tion 4.2 terminated normally within the 15 min time limit. The symbol í
denotes termination due to a stack overflow, whereas 
 denotes termination
due to an internal error of the analyzer or the compiler frontend, and ¨

indicates timeout. For programs prefixed with ?, there was at least one con-
figuration of the analyses from Section 4.1 that terminated normally within
the time limit.
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? pigz-fixed ¨ ¨ ¨ ¨

Remotery í í í í

sshfs ¨ ¨ ¨ ¨

streem ¨ ¨ ¨ ¨

the_silver_searcher í í í í

unreachable. Consequently, for these benchmarks, we include the number of asserts that
could be proven unreachable in the number of verified asserts we report.

Altogether, the results on this set of litmus tests show that the analysis in the (MM-Oct-
TID-C) configuration is able to verify more assertions than any other of the considered
configurations and tools, with the (MM-Oct-TID) configuration in a close second place.
For these programs, taking thread ids into account seems to be crucial, as evidenced by
the difference between those two configurations and (MM-Oct).

5.3.2 Real-World Benchmarks

To address (RQ4) and provide additional insights into (RQ5), once more runtimes of
the approaches as well as their relative precision were evaluated on the set of real-world
benchmarks described in Section 5.1.

Runtime Comparison ((RQ4))

For 11 benchmarks from the Concrat suite, none of the configurations terminated
normally within the 15-minute time limit. These benchmarks are listed in Table 5.13.
This set includes all benchmarks for which no non-relational configuration terminated
normally within the time limit, as well as the programs lmdb and pigz-fixed.

For the remaining benchmarks, the runtimes are given in Table 5.14. For quick
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Figure 5.5: Runtimes per benchmark program for the relational analyses, where a run-
time of 900s corresponds to a timeout or other non-normal termination and
the runtimes for each benchmark are connected by a dotted vertical line.

reference, the table also includes the number of logical lines of code8 as well as the
number of computed thread ids and how many of these were found to be unique.

8The number of LLoC differs by a few lines between the relational and non-relational analyses due to the
preprocessor not including some stub files in the former setting. For the sake of internal consistency, we
list the number of LLoC computed by the non-relational analysis (as in Table 5.4) here.
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5 Experimental Evaluation

Table 5.14: Runtimes of the approaches from Section 4.2 on the benchmarks in seconds.
Some benchmark names were abbreviated for space (as indicated by ellipses).
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pfscan 562 3 2 2.5 4.1 16.8 17.6
aget 587 6 4 3.5 4.0 5.6 5.8
ctrace 657 3 3 2.9 5.9 12.0 14.6
knot 981 9 5 4.9 8.9 54.9 172.4
ypbind 992 107 41 75.2 135.2 620.7 638.1
smtprc 3037 4 3 43.7 64.7 147.5 147.7
iowarrior 1345 4 4 4.9 5.5 7.7 7.7
adutux 1520 4 4 5.8 8.3 13.4 13.4
w83977af 1501 6 4 7.0 8.1 21.1 21.4
tegra20 1547 7 5 23.3 26.7 57.9 58.1
nsc 2379 11 7 41.0 47.2 107.3 108.3
marvell1 2465 6 5 23.5 25.3 56.4 56.5
marvell2 2465 6 5 26.1 28.3 61.7 61.4
brubeck 2240 32 16 8.4 17.2 49.6 50.5
C-Thread-Pool 241 6 3 0.6 0.7 0.9 0.9
cava 2011 20 11 17.6 71.6 80.6 85.5
dnspod-sr-fixed 4698 9 6 253.3 493.8 ¨ ¨

dump1090 2079 9 5 20.5 25.0 70.8 70.9
EasyLogger 839 2 2 17.7 77.1 205.4 207.1
fzy 1077 8 4 5.8 6.5 29.7 29.8
klib 293 6 3 3.3 4.0 8.8 8.7
level-ip 2452 9 7 14.2 17.7 56.4 60.0
libaco 667 35 13 30.2 56.1 244.4 247.1
libfaketime 143 4 3 0.2 0.2 0.2 0.2
libfreenect 245 14 8 1.3 1.6 2.6 3.0
Mirai-...-fixed 820 6 4 10.2 15.7 
 


nnn 6712 23 12 53.5 298.9 ¨ ¨

pianobar 4382 26 13 372.1 550.6 ¨ ¨

pingfs 913 35 18 5.5 5.9 19.4 20.2
ProcDump-... 2157 24 16 236.0 270.5 ¨ ¨

shairport 3791 21 10 143.4 ¨ ¨ ¨

siege 9239 5 4 111.0 202.5 ¨ ¨

snoopy 1938 7 4 2.3 6.0 7.0 7.4
sysbench-fixed 3575 14 9 55.3 93.4 375.6 ¨

uthash 476 5 5 6.0 6.7 14.1 14.0
vanitygen 5160 33 17 26.6 32.7 51.9 51.9
wrk 3747 39 18 68.6 856.9 868.1 ¨

zmap 7183 11 7 157.0 452.9 ¨ ¨
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Figure 5.6: Runtimes of the approaches considering cluster of globals plotted against the number of encountered unknowns.
The dotted line represents a linear regression for the (MM-Oct) configuration.137



5 Experimental Evaluation

As expected, going from the non-relational configuration (MM-I) to the relational
configuration (MM-Oct) using the octagon domain incurs a slowdown. Ignoring one
outlier where the slowdown is 1149% (wrk) and the program shairport where (MM-Oct)
times out, the average slowdown is 86.6%, and the median slowdown is 41.9%.

Enabling refinement according to thread ids also incurs considerable overhead: six ad-
ditional programs time out. Among those programs where both approaches terminated
normally, the slowdown ranges between -5.0% and 517.0% with an average slowdown
of 153.4% and a median slowdown of 122.4%.

When comparing (MM-Oct-TID) to (MM-Oct-TID-C) on the other hand, the ob-
served slowdown is usually negligible (between -0.8% and 6.4%) with four outliers
where slowdowns of 14.2% (libfreenect), 21.3% (ctrace), ≥ 139.7% (sysbench-fixed),
and 214.0% (knot) were observed. Excluding those four outliers, the average slowdown
is 1.5%, and the median slowdown is 0.4%.

These results complement the earlier preliminary experiments [108] performed on a
subset of these benchmarks, where smaller runtime differences were observed.

Fig. 5.5 plots the runtimes of the different approaches against the number of logical
lines of code. Data points belonging to the same program are connected by a dashed
line. While there is once more no clear trend of how runtime changes as the number of
lines of code increases, Fig. 5.6 shows that, also here, the runtime scales linearly with
the number of encountered unknowns.

The bottom four bars of Fig. 5.7 show the accumulated runtime for those programs
where all configurations terminated normally.

Fig. 5.7 as a whole compares the runtimes of all the approaches described in this
thesis, providing an insight into (RQ1) and (RQ4).

Precision Comparison ((RQ5))

The Goblint and Concrat benchmark sets do not come pre-equipped with assertions.
We therefore evaluated the precision of our analyses on these benchmarks in two ways:

First, we performed an internal comparison, comparing abstract values at each pro-
gram point (joined over all contexts). For 37 programs at least two different approaches
terminated — including (MM-I) and (MM-Oct) in all cases. For 31 of these programs,
the configuration (MM-Oct) was more precise than (MM-I), whereas for dump1090, cava,
pianobar, siege, vanitygen, and zmap the results were incomparable. For the bench-
marks where there was an improvement, it ranged between 4.3% (for w83977af) and
95.7% (for snoopy) with an average improvement of 26.0%, and a median improvement
of 19.2%. For the benchmarks where the results were incomparable, when considering
individual program points, (MM-Oct) was more precise for between 18.0% and 47.1%
of them. For cava, pianobar, and vanitygen, there were program points where (MM-I)
was more precise (at most 1.6% of total program points); for all other benchmarks, there
were no such program points. For all benchmarks where overall precision was incompa-
rable, there also were individual program points where the results were incomparable
(between 0.1% and 33.9% of total program points). Altogether, this comparison between
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Figure 5.7: Accumulated runtime for all approaches presented in this thesis provide all
approaches terminated on the given benchmark. This subset of the complete
suite comprises around 86k LLoC.
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(MM-I) and (MM-Oct) is an indication that the analyses manage to establish mean-
ingful relational invariants, that go beyond relationships that are implied by interval
information.

For 7 programs, only (MM-I) and (MM-Oct) terminated normally. For the remaining
programs, the precision relationships were as follows:

• For 14 programs, (MM-Oct) was more precise than (MM-I), and there was no
precision difference between (MM-Oct), (MM-Oct-TID), and (MM-Oct-TID-C).

• For 9 programs, (MM-Oct-TID) was more precise than (MM-Oct). Here, the
fraction of more precise unknowns ranged between 0.1% (for sysbench-fixed)
and 25.7% (for libfreenect). The average improvement was 4.8%, and the median
improvement was 0.7%. For 8 of those programs, there was no precision difference
between (MM-Oct-TID) and (MM-Oct-TID-C). For sysbench-fixed, (MM-Oct-
TID-C) did not terminate normally within 15 min.

• For dump1090 and vanitygen, the results for (MM-Oct) and (MM-I) were incom-
parable, as discussed above. The results for (MM-Oct), (MM-Oct-TID), and
(MM-Oct-TID-C) did coincide for these programs.

• For wrk, (MM-I) was less precise than (MM-Oct) which was as precise as (MM-
Oct-TID). The configuration (MM-Oct-TID-C) did not terminate normally within
15 min for this program.

• For four programs, the relationship between the different results is more intricate.
The precision comparisons for these cases are highlighted in Table 5.16. Of
particular interest is the program fzy where enabling thread ids in the analysis
leads to a decrease in precision for 0.4% of program points. For ypbind, enabling
thread ids decreases the precision for 0.1% of program points, and, on the other
hand improves precision for 0.2% of program points. These two cases are the
only cases where the effect of enabling thread ids is not purely beneficial from a
precision perspective. level-ip is the only program from this set where a precision
difference between (MM-Oct-TID) and (MM-Oct-TID-C) can be observed. Here,
the clusters help increase precision for 1.4% of program points.

A summary of which approach provided the best result for how many programs is
provided in Table 5.15.

To be able to also relate the precision of the approaches from Section 4.1 with the ap-
proaches from Section 4.2, we automatically instrumented all benchmarks for which the
(MM-Oct-TID-C) configuration terminated normally with the assertions this approach
can establish at program points succeeding locking of a mutex. In this way, 29 annotated
programs were obtained. Each of these contains between 0 and about 2000 assertions.
On top of all the configurations from Section 4.2, we once again experimented with
(Protection-I) and (Protection-I-TID). As Duet already failed to produce valid results
for most of the litmus tests, we did not include it in this comparison.
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These evaluation results are summarized in Table 5.17. Both (MM-Oct-TID-C) and
(MM-Oct-TID) succeeded in (re-)establishing all assertions across all benchmarks. It is
of particular interest that many of the assertions can already be established by the non-
relational configurations (MM-I), (Protection-I), and (Protection-I-TID)— hinting at the
fact that a majority of the invariants are not truly relational. For the relational analyses,
enabling refinement according to thread ids yielded a significant improvement in proven
assertions. Interestingly, this is not the case for the protection-based approach, where the
precision remains the same, except for the program snoopy, where (Protection-I-TID)
fails to establish 15 invariants that (Protection-I) can establish.

5.3.3 Summary

To sum up the results w.r.t. (RQ4–5), enabling thread ids and the relational octagon
domain did — while costly when compared with non-relational approaches — yield a
significant improvement in precision. As the additional overhead of tracking all clusters
of size up to 2 instead of only monolithic clusters is often negligible, the (MM-Oct-
TID-C) configuration seems to be an attractive choice for the analysis of concurrent
C programs. It would be interesting to investigate to which degree the orthogonal
techniques of packing and online decomposition can be applied in the setting of this
analysis — to overcome the encountered scalability issues.

5.4 Threats to Validity

When it comes to how well the results of this experimental evaluation are expected to
generalize to other programs that do not form part of the benchmark suite, the following
threats to validity need to be considered:

• The selection of benchmarks might not be diverse enough to generalize. In
particular, as precision differences between the various non-relational analyses can
be observed on litmus examples with domains which do not require widening,

Table 5.15: Number of programs for which each approach considering clusters of globals
yielded the most precise result for the 28 programs on which all approaches
terminated. The number after the slash indicates for how many programs
no other approach yielded a more precise result, but there are incomparable
results The numbers in parentheses indicate the number of programs where
the best result was achieved by the approach (resp., no other approach
reached a more precise result), but not all approaches terminated.

(MM-I) (MM-Oct) (MM-Oct-TID) (MM-Oct-TID-C)

0/3 (+1/3) 15/3 (+5/3) 22/4 (+2/0) 23/4
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5 Experimental Evaluation

Table 5.16: Precision comparison for the 4 programs where the relationship between
precisions of analyses considering multiple globals is not straightforward.
The table shows the comparison between the results from the analysis corre-
sponding to the row and the one corresponding to the column. Incomparable
results are denoted by 6@A.
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ypbind cava fzy

(MM-I) A 6@A 6@A 6@A 6@A 6@A A A A
(MM-Oct) @ 6@A 6@A 6@A A A @ @ @
(MM-Oct-TID) 6@A 6@A = 6@A @ = @ A =
(MM-Oct-TID-C) 6@A 6@A = 6@A @ = @ A =

level-ip

(MM-I) A 6@A A
(MM-Oct) @ 6@A A
(MM-Oct-TID) 6@A 6@A A
(MM-Oct-TID-C) @ @ @
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5.4 Threats to Validity

Table 5.17: Summary of evaluation results on real-world benchmark enhanced with
invariants with individual programs grouped together. For each group the
number of programs and the total number of assertions are given. 3 indicates
that all assertions are proven, otherwise the number of proven assertions is
given.
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Goblint POSIX 6 3304 3221 3291 3 3 3221 3221
SV-COMP 7 190 3 3 3 3 3 3

Concrat 16 3962 3346 3910 3 3 3719 3704

it would seem plausible that there also exist real-world programs, where such
differences are observable. Such situations may be relatively rare, but in these cases,
the more involved techniques may be crucial to obtaining meaningful invariants.

• The Goblint analyzer comes with built-in support for single-threaded mode,
where the values are tracked flow-sensitively until a first thread is potentially
started. This support is deeply integrated into the framework and could not be
disabled for the experiments conducted here. This has some systematic impact on
the results: The approaches that use sets of protecting mutexes benefit to a greater
extent than other approaches, as accesses to globals are likely not protected by
mutexes while no threads have been started. As the set of write protecting mutexes
computed by Goblint does not account for accesses in single-threaded mode, the
set will more often be non-empty than when implemented exactly as presented
here. By the same token, this single-threaded mode decreases the potential effect
of refining according to thread ids, as the analysis does not need to rely on thread
ids to be able to distinguish writes that happen before the first additional thread is
started.

• Due to the difficulties comparing the results of context-sensitive analyses with
potentially different contexts, all comparisons were done after performing a join
over all contexts. This join loses information that may be of interest depending
on the application. For example, if the analysis establishes that a variable can
have only two different values that occur in different contexts, a compiler could
specialize this code. However, this information is lost in the join. As a result, the
joined values tend to underestimate precision differences between the approaches.
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• For the relational analyses, the problems associated with carry-over effects [12]
are not taken into account in this evaluation. This applies where abstract states at
program points were compared with each other. However, the approach where
programs were annotated with computed invariants does not suffer from this
issue, partly mitigating this threat to validity. Nevertheless, it would be interesting
to evaluate to which degree carry-over effects are present, perhaps by employing
an improved comparison algorithm as recently proposed by Ballou and Sherman
[12].

• The experiment runs were performed without systematic limiting of computational
resources as offered, e.g., by the Benchexec tool [17] making the reported runtimes
potentially unreliable. To remedy this, whenever runtime was measured, tasks
were executed sequentially with only the background processes of the operating
system running concurrently. Thus, any random fluctuations of runtimes likely
affect all approaches equally. Also, where we draw conclusions from runtimes,
the differences in runtime are significant and can thus not be explained by such
effects.

• As explained before, the widening/narrowing strategy employed by the solver
affects the results, as does the evaluation order. While nothing seems to hint
at the strategy employed by the TD solvers used for this evaluation particularly
(dis-)advantaging one of the approaches, it is perhaps important to remark that
the solver originally employed for the analyses proposed by Miné [83, 84] has
a different iteration order: There, threads are iterated to an (intermediate) local
fixpoint before the next thread is considered, whereas the solver of the Goblint

system may work on unknowns belonging to several threads at the same time.
It would be interesting to repeat the evaluation with different solvers and see to
what degree they affect the result.

We believe that all these concerns are sufficiently addressed in the design of our
experiments and that thus the conclusions we draw are well-supported.

5.5 Summary of Experimental Evaluation

To sum up the results of our experimental evaluation in a nutshell, we find that w.r.t.
(RQ1) the configuration (Protection) is the fastest across the board, also when compar-
ing settings where intervals and thread ids enabled. The other approaches are often
considerably slower — with the runtime difference within these approaches usually not
too high. For (RQ2), we observe that quite a high number of thread ids is identified, and
the number of thread ids determined to be unique is encouraging. W.r.t. (RQ3), we find
that, while other analyses are more precise, (Protection) offers the same precision on
the majority of benchmarks. For the configurations using intervals, the configuration
(Protection-I) is not only more scalable than the other analyses, but also often more
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precise. For the non-relational analyses, there is little benefit (and even some potential
harm) when enabling thread ids, making (Protection) and (Protection-I) perhaps the
most practically relevant configurations.

W.r.t. (RQ4–5), we find that enabling thread ids and the relational octagon domain —
while costly when compared with non-relational approaches — offers a significantly
improved precision. As the additional overhead of tracking all clusters of size up to 2 in-
stead of only monolithic clusters is often negligible, the (MM-Oct-TID-C) configuration
seems to be an attractive choice for the analysis of concurrent C programs.

Nevertheless, none of the configurations seems to be a silver bullet, indicating oppor-
tunities for future research, e.g., around automatically selecting the most promising
approach for a given program, or perhaps developing techniques to combine these
approaches such that more expensive techniques are only used locally where needed,
and the rest of the program is analyzed in a more coarse manner.
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6 Soundness Proofs for the Analyses

This chapter provides soundness proofs for the analyses presented in Chapter 4. In our
previous work [107, 108], we quickly sketch ideas for such soundness proofs. We also
have informally published appendices on ArXiv detailing some of these arguments.
Here, we provide more extensive and detailed proofs and also cover the extensions
developed in this work, such as, e.g., the notion of ego-lane digests or the extended
language also featuring signal and wait.

The proofs often require some form of induction over approximations to (least)
solutions of the concrete and abstract constraint systems, with intermediate steps being
taken to bring these closer together. This unfortunately renders them quite technical at
times. Readers who are in a hurry may want to skip the details of the proofs and only
read the statements of the theorems, propositions, and (selectively) the most interesting
cases in the inductive proofs, which we will attempt to highlight wherever possible.

The structure of this chapter follows the same structure as Chapter 4: Section 6.1
provides proofs for the analyses from Section 4.1 which consider globals in isolation.
The succeeding Section 6.2 provides proofs for the analyses proposed in Section 4.2
which consider clusters of globals.

6.1 Soundness Proofs for Analyses Considering Globals in
Isolation

To be able to provide soundness proofs for the Lock-Centered and Write-Centered
Reading analyses with ego-lane digests, we first define a few helper functions on local
traces that will be useful for both proofs.

For every node ū = (j, u, σ) ∈ V of a local trace t, we define the lockset Lt[ū] as the
set of mutexes which have been acquired by the thread with thread id σ self and not yet
released. This set can be defined inductively by keeping track of the lock and unlock
operations of the thread with thread id σ self, akin to how the digest computing locksets
is defined (Fig. 2.11). We abbreviate by Lt the lockset Lt[ū] where ū is the maximal node
of t, i.e., the lockset of the ego thread at the sink.

Recall that last_writeg t extracts the last write to g (or the call of initMT if none exists)
from a local trace t. We call a write occurring at an edge (ū, g = x, ū′) in the raw ego
trace, i.e., along the ego lane of the ego thread in the local trace, thread-local. If there is a
thread-local write to a global g in a local trace t, there also is a last thread-local write
to g in t. Let last_tl_writeg : T → E ∪ {⊥} be a function to extract the last thread-local
write to g from a local trace if it exists, and return ⊥ otherwise. For a set T of local
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traces, we define the set of values that are written at last thread-local writes to g by

eval_tlg T = {σ x | t ∈ T, last_tl_writeg t = ((j− 1, u, σ), g = x, ū′)}

Similarly, we call a lock at an edge (ū, lock(a), ū′) in the raw ego trace thread-local. If
there is a thread-local lock of a mutex a, there also is a last thread-local lock of a. Let
last_tl_locka : T → E ∪ {⊥} be a function to extract the last thread-local lock of a if it
exists, and return ⊥ otherwise. Analogously for last_tl_unlocka : T → E ∪ {⊥} and
the last thread-local unlock of a.

Additionally, we define a function min_lockset_since : T → V → UM that extracts
the upwards-closed set of minimal locksets the ego thread has held since a given node
of the raw ego trace. Again, min_lockset_since ( t, ū) can be computed inductively by
considering the raw ego trace only.

Furthermore, let init_v t : T → V ∪ {⊥} be a function to extract the node from a local
trace in which the call to initMT ends if it exists, and return ⊥ otherwise.

In both proofs, we will consider some ego-lane digest A and an appropriate definition of
compat]A. We consider the refined constraint system for the concrete semantics (Eq. (2.12))
instantiated with the considered actions from Section 2.4 and the product digest of
A and the lockset digest from Fig. 2.11. We remark that this product digest is once
more ego-lane-derived with its compatibility function compat]A considering only the
compatibility of A. This constraint system then has the following set of unknowns:

• [u, S, A] for u ∈ N , S ⊆M and A ∈ A,

• [a, S, A] for g ∈ G, a ∈ M, S ⊆M, w ⊆M and A ∈ A,

• [initMT, ∅, A] for A ∈ A,

• [return, S, A] for S ⊆M and A ∈ A, and

• [s, S, A] for s ∈ S , S ⊆M and A ∈ A.

where we (above and subsequently) abbreviate unlock(a) by a and signal(s) by s. In
the subsequent two proofs, let us refer to this constraint system by C and to the
corresponding right-hand sides by J·K.

As the unknowns for Write-Centered Reading with ego-lane digests perform more
splitting than the unknowns for Lock-Centered Reading with ego-lane digests, we will
show the soundness of both w.r.t. a modified constraint system over sets of local traces
where the unknowns match those for Write-Centered Reading with ego-lane digests.
Therefore, the proofs in this section are not in the same order in which the analyses are
presented in Section 4.1.
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6.1.1 Write-Centered Reading

Consider some ego-lane digest A and an appropriate definition of compat]A. Let us refer
to the constraint system of the analysis from Section 4.1.7 refined with A by C]wc. As a
first step, we construct a new constraint system Cwc over sets of local traces for which
the unknowns match those of C]wc — up to the unknowns used for thread returns. We
then show the equivalence of Cwc and C.
Cwc thus has the following set of unknowns:

• [u, S, A] for u ∈ N , S ⊆M, and A ∈ A,

• [g, a, S, w, A] for g ∈ G, a ∈ M, S ⊆M, w ⊆M, and A ∈ A,

• [i, A] for i ∈ Vtid and A ∈ A, and

• [s, A] for s ∈ S and A ∈ A.

The constraints of Cwc are defined as follows:

[u0, ∅, A] ⊇ fun _→ (∅, {t | t ∈ init, A = αA(t)})
for A ∈ init]A

[u′, S, A′] ⊇ J([u, S, A0], x = create(u1), u′)Kwc

for (u, x = create(u1), u′) ∈ E , A′ ∈ Ju, x = create(u1)K
]
A(A0)

[u′, S ∪ {a}, A′] ⊇ J([u, S, A0], lock(a), u′)Kwc

for (u, lock(a), u′) ∈ E , A′ ∈ ⋃A1∈A{Ju, lock(a)K]A(A0, A1)}
[u′, S, A′] ⊇ J([u, S, A0], act, u′)Kwc

for (u, act, u′) ∈ E , act ∈ Actobserving, not lock, A′ ∈ ⋃A1∈A{Ju, actK]A(A0, A1)}
[u′, S \ {a}, A′] ⊇ J([u, S, A0], unlock(a), u′), A′Kwc

for (u, unlock(a), u′) ∈ E , A′ ∈ Ju, unlock(a)K]A(A0)

[u′, S, A′] ⊇ J([u, S, A0], act, u′), A′Kwc

for (u, act, u′) ∈ E , act ∈ Actobservable, not unlock or initMT, A′ ∈ Ju, actK]A(A0)

[u′, S, A′] ⊇ J([u, S, A0], act, u′)Kwc

for (u, act, u′) ∈ E , act ∈ Actlocal, A′ ∈ Ju, actK]A(A0)

[u′, ∅, A′] ⊇ J([u, ∅, A0], initMT, u′)Kwc

for (u, initMT, u′) ∈ E , A′ ∈ Ju, initMTK]A(A0)

The right-hand sides of Cwc are then given by

J([u, S, A0], x = create(u1), u′)Kwc ηwc =

let T = J(u, x = create(u1), u′)KT (ηwc [u, S, A0]) in
({[u1, ∅, new]

A u u1 A0] 7→ new u1 (ηwc [u, S, A0])}, T)
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J([u, S, A0], lock(a), u′)Kwc ηwc =

let T1 =
⋃{ηwc [g, a, S′, w, A1] | g ∈ G, S′ ⊆M, w ⊆M, A1 ∈ A, compat]A A0 A1} in

let T2 = {t′ | t ∈ ηwc [u, S, A0], ī = init_v t, ī 6= ⊥, t′ =↓ī (t), compat]A A0 (αA t′)} in
let T = J(u, lock(a), u′)KT (ηwc [u, S, A0], T1 ∪ T2) in
(∅, T)

J([u, S, A0], unlock(a), u′), A′Kwc ηwc =

let T = J(u, unlock(a), u′)KT (ηwc [u, S, A0]) in
let ρ = {[g, a, S \ {a}, w, A′] 7→ {t} | t ∈ T, g ∈ G, w ⊆M,

((last_tl_writeg t = (ū, g = x, ū′) ∧ Lt[ū] ⊆ w) ∨ (last_tl_writeg t = ⊥))}
in
(ρ, T)

J([u, S, A0], return, u′), A′Kwc ηwc =

let T = J(u, return, u′)KT (ηwc [u, S, A0]) in
let ρ = {[i, A′] 7→ {t | t ∈ T, id t = i} | i ∈ Vtid} in
(ρ, T)

J([u, S, A0], x = join(x′), u′)Kwc ηwc =

let T1 =
⋃{ηwc [t(x′), A1] | t ∈ ηwc [u, S, A0], A1 ∈ A, compat]A A0 A1} in

let T = J(u, x = join(x′), u′)KT (ηwc [u, S, A0], T1) in
(∅, T)

J([u, S, A0], signal(s), u′), A′Kwc ηwc =

let T = J(u, signal(s), u′)KT (ηwc [u, S, A0]) in
let ρ = {[s, A′] 7→ T} in
(∅, T)

J([u, S, A0],wait(s), u′)Kwc ηwc =

let T1 =
⋃{ηwc [s, A1] | A1 ∈ A, compat]A A0 A1} in

let T = J(u,wait(s), u′)KT (ηwc [u, S, A0], T1) in
(∅, T)

J([u, S, A0], act, u′)Kwc ηwc =

let T = J(u, act, u′)KT (ηwc [u, S, A0]) in
(∅, T)

where act is either a local action or initMT.

Proposition 14. The right-hand side function of constraint system Cwc over the lattice mapping
(extended) unknowns to sets of local traces with the order as discussed in Section 2.2.2 is
Scott-continuous.

Proof. The proof here proceeds in the same manner as the proof of Proposition 10 in
Section 2.3. After collecting all right-hand sides into one constraint using the Scott-
continuous helper function flat[x], it remains to show that the individual right-hand sides
are a composition of Scott-continuous functions. This follows from the Scott-continuity
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of J·KT , new, and π[x] for [x] ∈ X, where the same insight into the right-hand side
for observable actions already used in the proof of Proposition 8 is used once again.
Furthermore, all arguments to J·KT are constructed in a way where either the union of
sets is taken, or the resulting set is constructed as the union of some function applied
to each element of the set in isolation, also rendering these functions Scott-continuous.
Then, the combined right-hand side is given as the least upper bound of (compositions
of) functions that are Scott-continuous, and is thus also Scott-continuous.

Proposition 15. The constraint system Cwc has a least solution which is obtained as the least-
upper bound of all Kleene iterates.

For a mapping η from unknowns of C to sets of local traces, we define a mapping
split[η] from unknowns of Cwc to sets of local traces as follows:

split[η][u, S, A] = η[u, S, A] (for u ∈ N , S ⊆M, A ∈ A)
split[η][g, a, S, w, A] = η[a, S, A] ∩ {t ∈ T | (for g ∈ G, a ∈ M, S ⊆M,

(last_tl_writeg t = (ū, g = x, ū′) w ⊆M, A ∈ A)
∧ Lt[ū′] ⊆ w)

∨ (last_tl_writeg t = ⊥)}
split[η][i, A] = {t ∈ ⋃S⊆M η[return, S, A] | (for i ∈ Vtid, A ∈ A)

id t = i}
split[η][s, A] =

⋃
S⊆M η[s, S, A] (for s ∈ S , S ⊆M, A ∈ A)

Conversely, we obtain

η[u, S, A] = split[η][u, S, A]

η[a, S, A] =
⋃

g∈G,w⊆M split[η][g, a, S, w, A]

η[return, S, A] = {t ∈ ⋃i∈Vtid
split[η][i, A] | Lt = S}

η[s, S, A] = {t ∈ split[η][s, A] | Lt = S}

and obtain a new mapping η′ extending it back to all unknowns of C by setting

η′[initMT, ∅, A] = uni[η][initMT, ∅, A]

= {t′ | t ∈ ⋃u∈N ,A′∈A,S⊆M split[η][u, S, A′], ī = init_v t, ī 6= ⊥, t′ =↓ī (t),
(αA t′) = A}

where we abbreviate the right-hand side by uni[η][initMT, ∅, A].

Proposition 16. The following two statements hold:

(A) If η is the least solution of C, split[η] is the least solution of Cwc.

(B) If split[η] is the least solution of Cwc, η′ as constructed above is the least solution of C.
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Proof. We prove both statements simultaneously by fixpoint induction: To simplify the
proof, we once again consider the contributions of constraints one at a time. Consider
the i−th approximation ηi to the least solution of C, and the i−th approximation ηi

wc to
the least solution of Cwc. Let us call property (1) that

(a) ηi
wc [u, S, A] = split[ηi] [u, S, A] (for u ∈ N , S ⊆M, A ∈ A)

(b) ηi
wc [g, a, S, w, A] = split[ηi][g, a, S, w, A] (for g ∈ G, a ∈ M, S ⊆M,

w ⊆M, A ∈ A)
(c) ηi

wc [i, A] = split[ηi][i, A] (for i ∈ Vtid, A ∈ A)
(d) ηi

wc[s, A] = split[ηi][s, A] (for s ∈ S , A ∈ A)
(e) ηi[initMT, ∅, A] = uni[ηi][initMT, ∅, A] (for A ∈ A)

For i = 0, the value of all unknowns in both constraint systems is ∅, and property (1)
holds trivially.

Next, we show that for constraints corresponding to a control-flow edge as well as the
constraint for initialization executed in lock-step, provided that property (1) holds before
the update, it still holds after the update. Considering the constraint’s contribution to
the unknown on the left and its side-effects (if any are triggered) suffices for this.

First, consider the constraints for initialization. They take identical form in both
constraint systems:

[u0, ∅, A] ⊇ fun _→ (∅, {t | t ∈ init, A = αA(t)}) for A ∈ init]A

As no unknown is accessed, only the contributions to the unknowns [u0, ∅, A] need
to be considered. These new contributions could potentially affect sub-properties (a)
and (e). If (a) holds, it still holds after the update, as the unknowns receive the same
new contribution. For subproperty (e), we remark that for all contributions t, last t = ⊥
and thus init_v t = ⊥. Therefore uni[ηi+1][initMT, ∅, A] = uni[ηi][initMT, ∅, A], and as
Cwc does not cause any side-effects, subproperty (e) also holds after the update. Thus,
if property (1) holds for the i-th approximations, and constraints of this form are
considered, it also holds for the (i + 1)-th approximations.

Next, consider the constraints for initMT. Consider an edge (u, initMT, u′) ∈ E and
digests A′, A0 such that A′ ∈ Ju, initMTK]A(A0). We remark that, by construction, the
lockset is empty when executing initMT. For Cwc, the constraints take the following
form:

[u′, ∅, A′] ⊇ J([u, ∅, A0], initMT, u′)Kwc

with right-hand side

J([u, ∅, A0], initMT, u′)Kwc ηwc = (∅, J(u, initMT, u′)KT (ηwc [u, ∅, A0]))
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For C, the constraints take the following form:

[u′, ∅, A′] ⊇ J([u, ∅, A0], initMT, [u′, ∅, A′])K

with right-hand side

J([u, ∅, A0], initMT, [u′, ∅, A′])K η = let T = J(u, initMT, u′)KT (η [u, ∅, A0]) in
({[initMT, ∅, A′] 7→ T}, T)

Provided property (1) holds for the i-th approximations, the unknowns [u′, ∅, A′] of
both constraint systems receive the same new contribution (subproperty (a)). Now,
for the additional contribution T via side-effect of C to [initMT, ∅, A′]: We first remark
that T = {t′ | t ∈ T, ī = init_v t, ī 6= ⊥, t′ =↓ī (t), (αA t′) = A′} holds here, as well as
split[ηi+1][u′, ∅, A′] = split[ηi][u′, ∅, A′] ∪ T. Thus, we have that

ηi+1[initMT, ∅, A′] = ηi[initMT, ∅, A′] ∪ T = uni[ηi][initMT, ∅, A′] ∪ T
= {t′ | t ∈ ⋃u∈N ,A′′∈A split[ηi][u, ∅, A′′], ī = init_v t, ī 6= ⊥, t′ =↓ī (t), (αA t′) = A′}∪

T
= {t′ | t ∈ ⋃{split[ηi][u, ∅, A′′] | u ∈ N , A′′ ∈ A, (u 6= u′ ∨ A′′ 6= A′)},

ī = init_v t, ī 6= ⊥, t′ =↓ī (t), (αA t′) = A′}∪
{t′ | t ∈ split[ηi][u′, ∅, A′], ī = init_v t, ī 6= ⊥, t′ =↓ī (t), (αA t′) = A′} ∪ T

= {t′ | t ∈ ⋃{split[ηi+1][u, ∅, A′′] | u ∈ N , A′′ ∈ A, (u 6= u′ ∨ A′′ 6= A′)},
ī = init_v t, ī 6= ⊥, t′ =↓ī (t), (αA t′) = A′}∪

{t′ | t ∈ (split[ηi][u′, ∅, A′] ∪ T), ī = init_v t, ī 6= ⊥, t′ =↓ī (t), (αA t′) = A′}
= {t′ | t ∈ ⋃u∈N ,A′′∈A split[ηi+1][u, ∅, A′′], ī = init_v t, ī 6= ⊥, t′ =↓ī (t),

(αA t′) = A′}
= uni[ηi+1][initMT, ∅, A′]

and subproperty (e) also holds after the update. Thus, if property (1) holds for the
i-th approximations, and constraints of this form are considered, it also holds for the
(i + 1)-th approximations.

Next, consider the constraints for local actions. Consider an edge (u, act, u′) ∈ E and
digests A′, A0 such that A′ ∈ Ju, actK]A(A0). For Cwc, the constraints take the following
form:

[u′, S, A′] ⊇ J([u, S, A0], act, u′)Kwc

with right-hand side

J([u, S, A0], act, u′)Kwc ηwc = (∅, J(u, act, u′)KT (ηwc [u, S, A0]))

For C, the constraints take the following form:

[u′, S, A′] ⊇ J([u, S, A0], act, u′)K

with right-hand side

J([u, S, A0], act, u′)K η = (∅, J(u, act, u′)KT (η [u, S, A0]))
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Provided property (1) holds for the i-th approximations, the unknowns [u′, S, A′] of
both constraint systems receive the same new contribution (subproperty (a)). Now
consider subproperty (e). As the action act is local, it is not initMT. Thus, for the new
contribution T to [u′, S, A′], and all A ∈ A,

{t′ | t ∈ T, ī = init_v t, ī 6= ⊥, t′ =↓ī (t), (αA t′) = A}
⊆ {t′ | t ∈ ηi

wc [u, S, A0], ī = init_v t, ī 6= ⊥, t′ =↓ī (t), (αA t′) = A}

and thus uni[ηi][initMT, ∅, A] = uni[ηi+1][initMT, ∅, A], which, as the constraint in C,
does not cause any side-effects, implies that subproperty (e) also holds after the update.
Thus, if property (1) holds for the i-th approximations, and constraints of this form are
considered, it also holds for the (i + 1)-th approximations.

Next, consider the constraints corresponding to thread creation. Consider an edge
(u, x = create(u1), u′) ∈ E and digests A′, A0 such that A′ ∈ Ju, x = create(u1)K

]
A(A0).

For Cwc, the constraints take the following form:

[u′, S, A′] ⊇ J([u, S, A0], x = create(u1), u′)Kwc

with right-hand side

J([u, S, A0], x = create(u1), u′)Kwc ηwc =

let T = J(u, x = create(u1), u′)KT (ηwc [u, S, A0]) in
({[u1, ∅, new]

A u u1 A0] 7→ new u1 (ηwc [u, S, A0])}, T)

For C, the constraints take the following form:

[u′, S, A′] ⊇ J([u, S, A0], x = create(u1), u′)K

with right-hand side

J([u, S, A0], x = create(u1), u′)K η =

let T = J(u, x = create(u1), u′)KT (η [u, S, A0]) in
({[u1, ∅, new]

A u u1 A0] 7→ new u1 (η [u, S, A0])}, T)

Provided property (1) holds for the i-th approximations, the unknowns on the left-hand
sides of both constraint systems receive the same new contribution, as do the unknowns
that receive side-effects (subproperty (a)). W.r.t. subproperty (e), the argument provided
for the case of local actions also applies here. Thus, if property (1) holds for the i-
th approximations, and constraints of this form are considered, it also holds for the
(i + 1)-th approximations.

Next, consider the constraints corresponding to lock. Consider an edge (u, lock(a), u′) ∈
E and digests A′, A0, s.t. ∀A1 ∈ A, Ju, lock(a)K]A(A0, A1) ∈ {{A′}, ∅}, which exists as
A here is ego-lane-derived. For Cwc, the constraints take the following form:

[u′, S ∪ {a}, A′] ⊇ J([u, S, A0], lock(a), u′)Kwc
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with right-hand side

J([u, S, A0], lock(a), u′)Kwc ηwc =

let T1 =
⋃{ηwc [g, a, S′, w, A1] | g ∈ G, S′ ⊆M, w ⊆M, A1 ∈ A, compat]A A0 A1} in

let T2 = {t′ | t ∈ ηwc [u, S, A0], ī = init_v t, ī 6= ⊥, t′ =↓ī (t), compat]A A0 (αA t′)} in
let T = J(u, lock(a), u′)KT (ηwc [u, S, A0], T1 ∪ T2) in
(∅, T)

For C, the constraints take the following form for all A1 where Ju, lock(a)K]A(A0, A1) =

{A′},
[u′, S ∪ {a}, A′] ⊇ J([u, S, A0], lock(a), u′), A1K

with right-hand side

J([u, S, A0], lock(a), u′), A1K η =

let T1 = J(u, lock(a), u′)KT (η [u, S, A0], η [initMT, ∅, A1]) in
let T2 =

⋃
S′⊆MJ(u, lock(a), u′)KT (η [u, S, A0], η [a, S′, A1]) in

(∅, T1 ∪ T2)

As a first step, we consider all contributions to [u, S ∪ {a}, A′] caused by C together in
order to relate them to the contributions of Cwc. These are then given by

⋃
A1∈A,Ju,lock(a)K]A(A0,A1)={A′}(J(u, lock(a), u′)KT

(
ηi [u, S, A0], ηi [initMT, ∅, A1]

)
∪⋃

S′⊆MJ(u, lock(a), u′)KT
(
ηi [u, S, A0], ηi [a, S′, A1]

)
)

=
⋃

A1∈A,compat]A A0 A1
(J(u, lock(a), u′)KT

(
ηi [u, S, A0], ηi [initMT, ∅, A1]

)
∪⋃

S′⊆MJ(u, lock(a), u′)KT
(
ηi [u, S, A0], ηi [a, S′, A1]

)
)

= J(u, lock(a), u′)KT (ηi [u, S, A0],
⋃

A1∈A,compat]A A0 A1
(ηi [initMT, ∅, A1]∪⋃

S′⊆M ηi [a, S′, A1]))

= J(u, lock(a), u′)KT (ηi
wc [u, S, A0],

⋃
A1∈A,compat]A A0 A1

(ηi [initMT, ∅, A1]∪⋃
S′⊆M ηi [a, S′, A1]))

where the first step exploits that the digest is ego-lane-derived, i.e., for all traces
additionally admitted as arguments by only requiring compat]A instead of the stronger
property, the right-hand side for the edge will yield the empty set. The second step
exploits the fact that J·KT is defined point-wise, and the last step uses the induction
hypothesis. Consider now the second argument to J·KT .

⋃
A1∈A,compat]A A0 A1

(ηi [initMT, ∅, A1] ∪
⋃

S′⊆M ηi [a, S′, A1])
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For the first part, consider

⋃
A1∈A,compat]A A0 A1

ηi [initMT, ∅, A1]

=
⋃

A1∈A,compat]A A0 A1
uni[ηi][initMT, ∅, A1]

=
⋃

A1∈A,compat]A A0 A1
{t′ | t ∈ ⋃u∈N ,A′∈A,S⊆M split[ηi][u, S, A′],

ī = init_v t, ī 6= ⊥, t′ =↓ī (t), (αA t′) = A1}
=

⋃
A1∈A,compat]A A0 A1

{t′ | t ∈ ⋃u∈N ,A′∈A,S⊆M ηi
wc[u, ∅, A′],

ī = init_v t, ī 6= ⊥, t′ =↓ī (t), (αA t′) = A1}

We remark that as J(u, lock(a), u′)KT (t0, t1) is only defined for t1 that end in unlock(a),
or those t1 that end in initMT and are a sub-trace of t0, it suffices to consider these here.

⋃
A1∈A,compat]A A0 A1

{t′ | t ∈ ⋃u∈N ,A′∈A,S′⊆M ηi
wc[u, S′, A′],

ī = init_v t, ī 6= ⊥, t′ =↓ī (t), (αA t′) = A1}∩
{t′ | t ∈ ηi

wc [u, S, A0], ī = init_v t, ī 6= ⊥, t′ =↓ī (t), compat]A A0 (αA t′)}
= {t′ | t ∈ ⋃u∈N ,A′∈A,S′⊆M ηi

wc[u, S′, A′], ī = init_v t, ī 6= ⊥, t′ =↓ī (t),
compat]A A0 (αA t′)}∩

{t′ | t ∈ ηi
wc [u, S, A0], ī = init_v t, ī 6= ⊥, t′ =↓ī (t), compat]A A0 (αA t′)}

= {t′ | t ∈ ηi
wc [u, S, A0], ī = init_v t, ī 6= ⊥, t′ =↓ī (t), compat]A A0 (αA t′)}

Thus, w.r.t. the resulting local traces where the second argument to J·KT ends in initMT,
the contributions of C and Cwc are identical. For the second half of the second argument
to J·KT , we have:

⋃
A1∈A,compat]A A0 A1

(
⋃

S′⊆M ηi [a, S′, A1])

=
⋃

A1∈A,compat]A A0 A1
(
⋃

S′⊆M
⋃

g∈G,w⊆M ηi
wc[g, a, S′, w, A1])

=
⋃{ηi

wc [g, a, S′, w, A1] | g ∈ G, S′ ⊆M, w ⊆M, A1 ∈ A, compat]A A0 A1}

Thus, the contributions of C and Cwc to the unknown [u, S ∪ {a}, A′] are identical if
property (1) holds for the i-th approximations (subproperty (a)). W.r.t. subproperty (e),
the argument provided for the case of local actions also applies here. Thus, if property
(1) holds for the i-th approximations, and constraints of this form are considered, it also
holds for the (i + 1)-th approximations.

Next, for constraints corresponding to unlock. Consider an edge (u, unlock(a), u′) ∈ E
and digests A′, A0 such that A′ ∈ Ju, unlock(a)K]A(A0). For Cwc, the constraints take the
following form:

[u′, S \ {a}, A′] ⊇ J([u, S, A0], unlock(a), u′), A′Kwc
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with right-hand side

J([u, S, A0], unlock(a), u′), A′Kwc ηwc =

let T = J(u, unlock(a), u′)KT (ηwc [u, S, A0]) in
let ρ = {[g, a, S \ {a}, w, A′] 7→ {t} | t ∈ T, g ∈ G, w ⊆M,

((last_tl_writeg t = (ū, g = x, ū′) ∧ Lt[ū] ⊆ w) ∨ (last_tl_writeg t = ⊥))}
in
(ρ, T)

For C, the constraints take the following form:

[u′, S \ {a}, A′] ⊇ J([u, S, A0], unlock(a), [u′, S \ {a}, A′])K

with right-hand side

J([u, S, A0], unlock(a), [u′, S \ {a}, A′])K η =

let T = J(u, unlock(a), u′)KT (η [u, S, A0]) in
({[a, S \ {a}, A′] 7→ T}, T)

Provided property (1) holds for the i-th approximations, the unknowns [u′, S \ {a}, A′]
of both constraint systems receive the same new contribution (subproperty (a)). W.r.t.
subproperty (e), the argument provided for the case of local actions also applies here.

For the side-effects, consider the constraint system C and the new contribution
T = J(u, unlock(a), u′)KT (ηi [u, S, A0]) to [a, S \ {a}, A′]. Now consider some g ∈ G, and
w ⊆M. The new contribution to split[ηi+1][g, a, S \ {a}, w, A′] is then given by

T ∩ {t ∈ T | (last_tl_writeg t = (ū, g = x, ū′) ∧ Lt[ū′] ⊆ w) ∨ (last_tl_writeg t = ⊥)}
= {t ∈ T | (last_tl_writeg t = (ū, g = x, ū′) ∧ Lt[ū′] ⊆ w) ∨ (last_tl_writeg t = ⊥)}

which is the same set of traces [g, a, S \ {a}, w, A′] receives via side-effect in Cwc (sub-
property (b)). Thus, if property (1) holds for the i-th approximations, and constraints of
this form are considered, it also holds for the (i + 1)-th approximations.

Next, consider the constraints corresponding to return. Consider an edge (u, return, u′) ∈
E and digests A′, A0 such that A′ ∈ Ju, returnK]A(A0). For Cwc, the constraints take the
following form:

[u′, S, A′] ⊇ J([u, S, A0], return, u′), A′Kwc

with right-hand side

J([u, S, A0], return, u′), A′Kwc ηwc =

let T = J(u, return, u′)KT (ηwc [u, S, A0]) in
let ρ = {[i, A′] 7→ {t | t ∈ T, id t = i} | i ∈ Vtid} in
(ρ, T)

For C, the constraints take the following form:

[u′, S, A′] ⊇ J([u, S, A0], return, [u′, S, A′])K
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with right-hand side

J([u, S, A0], return, [u′, S, A′])K η = let T = J(u, return, u′)KT (η [u, S, A0]) in
({[return, S, A′] 7→ T}, T)

Provided property (1) holds for the i-th approximations, the unknowns [u′, S, A′] of
both constraint systems receive the same new contribution (subproperty (a)). W.r.t.
subproperty (e), the argument provided for the case of local actions also applies here.

For the side-effects, consider the constraint system C and the new contribution
T = J(u, return, u′)KT (ηi [u, S, A0]) to [return, S, A′]. Now consider some i ∈ Vtid. The
new contribution to split[ηi+1][i, A′] is then given by

T ∩ {t ∈ T | id t = i} = {t ∈ T | id t = i}

which is the same set of traces [i, A′] receives via side-effect in Cwc (subproperty (c)).
Thus, if property (1) holds for the i-th approximations, and constraints of this form are
considered, it also holds for the (i + 1)-th approximations.

Next, consider the constraints corresponding to join. Consider an edge (u, x =

join(x′), u′) ∈ E and digests A′, A0, s.t. ∀A1 ∈ A, Ju, x = join(x′)K]A(A0, A1) ∈ {{A′}, ∅},
which exists as A here is ego-lane-derived. For Cwc, the constraints take the following
form:

[u′, S, A′] ⊇ J([u, S, A0], x = join(x′), u′)Kwc

with right-hand side

J([u, S, A0], x = join(x′), u′)Kwc ηwc =

let T1 =
⋃{ηwc [t(x′), A1] | t ∈ ηwc [u, S, A0], A1 ∈ A, compat]A A0 A1} in

let T = J(u, x = join(x′), u′)KT (ηwc [u, S, A0], T1) in
(∅, T)

For C, the constraints for all digests A1 where Ju, x = join(x′)K]A(A0, A1) = {A′} take
the following form,

[u′, S, A′] ⊇ J([u, S, A0], x = join(x′), u′), A1K

with right-hand side

J([u, S, A0], x = join(x′), u′), A1K η =

let T =
⋃

S′⊆MJ(u, x = join(x′), u′)KT (η [u, S, A0], η [return, S′, A1]) in
(∅, T)

As a first step, we consider all contributions to [u, S, A′] caused by C together in order to
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relate them to the contributions of Cwc. These are then given by

⋃
A1∈A,Ju,x=join(x′)K]A(A0,A1)={A′}

(
⋃

S′⊆MJ(u, x = join(x′), u′)KT
(
ηi [u, S, A0], ηi [return, S′, A1]

)
)

=
⋃

A1∈A,compat]A A0 A1
(
⋃

S′⊆MJ(u, x = join(x′), u′)KT
(
ηi [u, S, A0], ηi [return, S′, A1]

)
)

= J(u, x = join(x′), u′)KT (ηi [u, S, A0],
⋃

A1∈A,compat]A A0 A1
(
⋃

S′⊆M ηi [return, S′, A1]))

= J(u, x = join(x′), u′)KT (ηi
wc [u, S, A0],

⋃
A1∈A,compat]A A0 A1

(
⋃

S′⊆M ηi [return, S′, A1]))

where the first step exploits that the digest is ego-lane-derived, i.e., for all traces
additionally admitted as arguments by only requiring compat]A instead of the stronger
property, the right-hand side for the edge will yield the empty set. The second step
exploits the fact that J·KT is defined point-wise, and the last step uses the induction
hypothesis. Consider now the second argument to J·KT .

⋃
A1∈A,compat]A A0 A1

(
⋃

S′⊆M ηi [return, S′, A1])

We thus have ⋃
A1∈A,compat]A A0 A1

(
⋃

S′⊆M ηi [return, S′, A1])

=
⋃

A1∈A,compat]A A0 A1
(
⋃

S′⊆M{t ∈
⋃

j∈Vtid
ηi

wc [j, A1] | Lt = S′}
=

⋃
A1∈A,compat]A A0 A1

(
⋃

j∈Vtid
ηi

wc [j, A1])

By contrast, the second argument to J·KT in Cwc is given by

⋃{ηwc [t(x′), A1] | t ∈ ηwc [u, S, A0], A1 ∈ A, compat]A A0 A1}

It thus remains to show that excluding those traces from the second argument that have
a thread id that does not appear as the value of variable x′ at the sink of any of the traces
in the first argument does not change the result. First, we remark that, by construction,
∀t ∈ ηi

wc [j, A1] : id t = j. Consider now a local trace t ∈ ηi
wc [u, S, A0] and some local trace

t′ ∈ ηi
wc [j, A1] where (u, σ) = sink t and σ x′ 6= j. Then J(u, x = join(x′), u′)KT (t, t′) = ∅

by the consistency condition on the join order→j (see Section 2.5). We thus have

J(u, x = join(x′), u′)KT (ηi
wc [u, S, A0],⋃{ηwc [t(x′), A1] | t ∈ ηwc [u, S, A0], A1 ∈ A, compat]A A0 A1})

= J(u, x = join(x′), u′)KT (ηi
wc [u, S, A0],

⋃
A1∈A,compat]A A0 A1

(
⋃

j∈Vtid
ηi

wc [j, A1]))

Therefore, provided property (1) holds for the i-th approximations, the unknowns
[u′, S, A′] of both constraint systems receive the same new contribution (subproperty
(a)). W.r.t. subproperty (e), the argument provided for the case of local actions also
applies here. Thus, if property (1) holds for the i-th approximations, and constraints of
this form are considered, it also holds for the (i + 1)-th approximations.
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Next, consider the constraints corresponding to signal for a condition variable s. Con-
sider an edge (u, signal(s), u′) ∈ E and digests A′, A0 such that A′ ∈ Ju, signal(s)K]A(A0).
For Cwc, the constraints take the following form:

[u′, S, A′] ⊇ J([u, S, A0], signal(s), u′), A′Kwc

with right-hand side

J([u, S, A0], signal(s), u′), A′Kwc ηwc =

let T = J(u, signal(s), u′)KT (ηwc [u, S, A0]) in
let ρ = {[s, A′] 7→ T} in
(ρ, T)

For C, the constraints take the following form:

[u′, S, A′] ⊇ J([u, S, A0], signal(s), [u′, S, A′])K

with right-hand side

J([u, S, A0], signal(s), [u′, S, A′])K η = let T = J(u, signal(s), u′)KT (η [u, S, A0]) in
({[s, S, A′] 7→ T}, T)

Provided property (1) holds for the i-th approximations, the unknowns [u′, S, A′] of
both constraint systems receive the same new contribution (subproperty (a)). W.r.t.
subproperty (e), the argument provided for the case of local actions also applies here.

For the side-effects, consider the constraint system C and the new contribution T =

J(u, signal(s), u′)KT (ηi [u, S, A0]) to [s, S, A′]. The new contribution to split[ηi+1][s, A′]
is then given by T which is the same set of traces [s, A′] receives via side-effect in
Cwc (subproperty (d)). Thus, if property (1) holds for the i-th approximations, and
constraints of this form are considered, it also holds for the (i + 1)-th approximations.

Lastly, consider the constraints corresponding to wait. Consider an edge (u,wait(s), u′) ∈
E and digests A′, A0, s.t. ∀A1 ∈ A, Ju,wait(s)K]A(A0, A1) ∈ {{A′}, ∅}, which exists as A
here is ego-lane-derived. For Cwc, the constraints take the following form:

[u′, S, A′] ⊇ J([u, S, A0],wait(s), u′)Kwc

with right-hand side

J([u, S, A0],wait(s), u′)Kwc ηwc =

let T1 =
⋃{ηwc [s, A1] | A1 ∈ A, compat]A A0 A1} in

let T = J(u,wait(s), u′)KT (ηwc [u, S, A0], T1) in
(∅, T)

For C, the constraints take the following form for all A1 where Ju,wait(s)K]A(A0, A1) =

{A′},
[u′, S, A′] ⊇ J([u, S, A0],wait(s), u′), A1K
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with right-hand side

J([u, S, A0],wait(s), u′), A1K η =

let T =
⋃

S′⊆MJ(u,wait(s), u′)KT (η [u, S, A0], η [s, S′, A1]) in
(∅, T)

As a first step, we consider all contributions to [u, S, A′] caused by C together in order to
relate them to the contributions of Cwc. These are then given by

⋃
A1∈A,Ju,wait(s)K]A(A0,A1)={A′}(

⋃
S′⊆MJ(u,wait(s), u′)KT

(
ηi [u, S, A0], ηi [s, S′, A1]

)
)

=
⋃

A1∈A,compat]A A0 A1
(
⋃

S′⊆MJ(u,wait(s), u′)KT
(
ηi [u, S, A0], ηi [s, S′, A1]

)
)

= J(u,wait(s), u′)KT (ηi [u, S, A0],
⋃

A1∈A,compat]A A0 A1
(
⋃

S′⊆M ηi [s, S′, A1]))

= J(u,wait(s), u′)KT (ηi
wc [u, S, A0],

⋃
A1∈A,compat]A A0 A1

(
⋃

S′⊆M ηi [s, S′, A1]))

where the first step exploits that the digest is ego-lane-derived, i.e., for all traces
additionally admitted as arguments by only requiring compat]A instead of the stronger
property, the right-hand side for the edge will yield the empty set. The second step
exploits the fact that J·KT is defined point-wise, and the last step uses the induction
hypothesis. Consider now the second argument to J·KT .

⋃
A1∈A,compat]A A0 A1

(
⋃

S′⊆M ηi [s, S′, A1])

We thus have ⋃
A1∈A,compat]A A0 A1

(
⋃

S′⊆M ηi [s, S′, A1])

=
⋃

A1∈A,compat]A A0 A1
(
⋃

S′⊆M{t ∈ ηi
wc [s, A1] | Lt = S′}

=
⋃

A1∈A,compat]A A0 A1
(ηi

wc [s, A1])

which is the second argument to J·KT in Cwc. Therefore, provided property (1) holds
for the i-th approximations, the unknowns [u′, S, A′] of both constraint systems receive
the same new contribution (subproperty (a)). W.r.t. subproperty (e), the argument
provided for the case of local actions also applies here. Thus, if property (1) holds for
the i-th approximations, and constraints of this form are considered, it also holds for the
(i + 1)-th approximations.

Therefore, by induction hypothesis, if property (1) holds for the i-th approximations,
and any of the constraints are considered property (1) also holds for the (i + 1)-th
approximation. This concludes the case distinction and the proof of Proposition 16.

The next proposition needed for the soundness proof of Write-Centered Reading
indicates that the new unknown [g, a, S, w, A] collects a superset of local traces whose
last write to the global g can be read by a thread satisfying the specific assumptions
(W0) through (W5) below.
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Proposition 17. Consider the i-th approximation ηi
wc to the least solution ηwc of constraint

system Cwc, a control-flow edge (u, x = g, u′) of the program, and a local trace t ∈ ηi [u′, S, A]

in which the last action is x = g, that ends in ū′ = (j, u′, σ), i.e., t =↓ū′ (t). Let P =

min_lockset_since t v̄′ denote the upwards-closed set of minimal locksets held by the ego thread
since the endpoint v̄′ of its last thread-local write to g, or {∅} if there is no thread-local write to
g in t.

Then, the value d = σ x that is read for g,

• is the initial value 0 of g; or

• is produced by a write to g that is the last thread-local write to g in t; or

• is produced by a write to g that is the last thread-local write to g in some local trace
stored at ηi′

wc [g, a, S′, w′, A′] for some i′ < i i.e.,

d ∈ eval_tlg (η
i′
wc [g, a, S′, w′, A′])

where

(W0) a ∈ S,

(W1) w′ ⊆M,

(W2) S ∩ S′ = ∅,

(W3) ∃S′′ ∈ P : S′′ ∩ w′ = ∅,

(W4) ∃S′′′ ∈ P : a /∈ S′′′, and

(W5) compat]A A A′

Proof. The proof is by fixpoint induction: We prove that the values (that are not the
initial values of globals) read non-thread-locally for a global g at some (u, x = g, u′)
during the computation of ηi

wc are the last thread-local writes of a local trace t′ ending in
an unlock operation that is side-effected to an appropriate ηi′

wc [g, a, S′, w′, A′] in some
prior iteration i′ < i for some a, S′, w′, and A′ satisfying (W0) through (W5).

This property holds for i = 0, as in η0
wc, all unknowns have the value ∅, and, therefore,

no reads from globals or unlocks can happen.
For the induction step i > 0, there are two proof obligations: First, that the property

holds for all reads from a global, and, additionally, that all traces ending in an unlock
operation are once more side-effected to appropriate unknowns in this iteration.

For the first obligation, consider a local trace t ∈ ηi
wc [u′, S, A] where the last action

is x = g and the result of last_writeg t. Recall that last_writeg t returns either the edge
along which the last write to g happened or the edge corresponding to initMT in case g
has not been written. In the latter case, the value read for g is the initial value 0 of g,
and the proposition holds. Now consider the case where there is a write to g in t:

last_writeg t = ((j′ − 1, uj′−1, σj′−1), g = x′, ū′′) = l.
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Let i0 = id t and i1 = σj−1 self the thread ids of the reading ego thread and the thread
performing the last write, respectively. We distinguish two cases:
Case 1: i0 = i1. The last write is thread-local to t (and l is therefore also the last thread-
local write to g in t) and the proposition holds.
Case 2: i0 6= i1. The last write is not thread-local. Let wl the set of locks held on that
last write to g, i.e., Lt[ū′′]. Consider the maximal sub-trace t′ of t with id(t′) = i1 so that
last(t′) unlocks some mutex in S. Let this mutex be a. Such a sub-trace must exist since
accessing g is necessarily protected by mg. Let S′ denote the background lockset held
at this last action in t′, and let A′ = αA′ t′. t′ was first produced during some earlier
iteration i′ < i. By induction hypothesis, we may assume this t′ was side-effected to
ηi′

wc[g, a, S′, w′′, A′] during the i′-th iteration, for all w′′ ⊇ wl . Therefore, the read value d
is given by

d = σj−1 x′ ∈ eval_tlg (η
i′
wc [g, a, S′, w′, A′]) ⊆ eval_tlg (η

i
wc [g, a, S′, w′, A′])

It remains to prove that then the conditions hold for a, S′, w′, A′:

(W0) a ∈ S (by construction above)

(W1) w′ = wl ⊆M (by construction of the constraint for edges with unlock operations
in Cwc)

(W2) S ∩ S′ = ∅
Assume that this were not the case, i.e., ∃c ∈ M : c ∈ S ∩ S′. Then thread i1 holds
the lock of mutex c at the sink of every super-trace t′′ of t′ with id(t′′) = i1 that is
still a sub-trace of t. By construction, we know c is not released in any t′′. Thus,
thread i0 cannot acquire c — which would be necessary to hold S at the sink of t.
Contradiction.

(W3) ∃S′′ ∈ P g, S′′ ∩ w′ = ∅
Let l′ = last_tl_writeg t the last thread-local write to g in t. If there is no last
thread-local write, i.e., l′ = ⊥, then P g = {∅}, and the condition holds. Otherwise,
assume for a contradiction that i0 has always maintained a non-empty lockset
intersection with w′ since l′, i.e., since action l′ thread i0 has at each point held one
of the locks held when the write l was performed. Then l can not have happened
after l′, and l cannot be the last write to g in t.

(W4) ∃S′′′ ∈ P g, a /∈ S′′′

Let l′ = last_tl_writeg t the last thread-local write to g in t. If there is no last
thread-local write, i.e., l′ = ⊥, then P g = {∅}, and the condition holds. Otherwise,
assume for a contradiction that a ∈ S′′′ for all S′′′ ∈ P g. Since a is unlocked by i1
after l, l can not have happened after l′ and l can not be the last write to g in t.

(W5) compat]A A A′

We distinguish two cases: First, the case in which the local trace t′ is incorporated
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unlock(a) A′

lock(a) unlock(a)

lock(a)

A1

unlock(a) lock(a) x = g

A

lock(a) unlock(a)

Figure 6.1: Illustration for the case (W5) where t′ is not directly incorporated into the
creation-extended ego lane of i0, where the red edges represent →a, the
dashed edge represents some other dependency, and the area shaded in
green corresponds to t′′.

into the creation-extended ego lane of i0 at some operation lock(a) with digest infor-
mation A0. Then compat]A A0 A′ and by repeated application of Eq. (2.17) therefore
also compat]A A A′.

Now consider the other case, i.e., t′ is not directly incorporated into the creation-
extended ego lane of i0. We remark that, as lock and unlock operations are totally
ordered, there is a first operation lock(a) along the creation-extended ego lane of i0,
at which a supertrace of t′ is incorporated. Let us refer to the subtrace ending in
this lock(a) in the creation-extended ego lane of i0 by t′′ and now denote the digest
information for the predecessor node ū1 of the lock by A1. An illustration of this
situation with t′′ highlighted is given in Fig. 6.1.

The idea now is to construct a local trace of a modified program such that this lock
operation becomes the direct (instead of only indirect) successor of the unlock(a)
in t′. Here, we exploit that, instead of giving a grammar, we defined our programs
in terms of control-flow graphs and did not require these control-flow graphs to
have at most two successors per program point. Thus, it is possible to modify a
program in a way that the digest associated with some program point remains the
same, but the program behavior after that program point may change, by adding
new edges that introduce non-determinism.

For now, consider the case where a 6≡ mg. We now replace all uses of a succeeding
the unlock(a) in t′ with uses of a fresh mutex ā, except for the last lock(a) in t′′

which remains unmodified and receives a new successor lock(ā). Additionally,
after the unlock(a) in t′ we insert new operations lock(ā) and unlock(ā) and adapt
the mutex order→ā to reflect that this lock(ā) is the first lock operation of ā and
that the mutex order for the renamed mutex a follows the original order for a,
except that the last lock of ā is the newly inserted node. Then, directly connect the
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unlock(a) A′ lock(ā) unlock(ā)

lock(ā) unlock(ā)

lock(a)

A1

lock(ā)

Figure 6.2: Example trace t′′ from Fig. 6.1 adapted so it is a local trace of a modified
program where t′ (with digest A′) is directly incorporated into the ego lane
of i0 at an edge with predecessor digest A1. Modification from the original
t′′ are given in blue. The red edges now represent→ā, the dashed line still
represents some other dependency, and the green dashed edge is the new
direct dependency for→a.

unlock(a) in t′ to the last lock(a) in t′′. This construction is exemplified in Fig. 6.2.

The resulting local trace is a valid local trace of some program (which can be
extracted from the local trace), and we have that the digest for ū1 in the new local
trace is still A1, as the digests are ego-lane-derived, and the modification does not
affect the creation-extended ego lane of i0 up to this point. Similarly, the digest
associated with the unlock(a) in t′ is still A′. As the operation lock(a) now directly
incorporates t′, we have J(u, lock(a), u1)K

]
A(A1, A′) 6= ∅, and thus compat]A A1 A′.

Now consider again the unmodified local trace: As compat]A A1 A′, and A is
ego-lane-derived, we also have compat]A A A′.

For the case where a ≡ mg, the argument proceeds similarly, with the difference
that further modifications are needed to ensure mg still surrounds all accesses to g.
As the last write to g occurs in t′, there are no further write operations between
this write and the currently considered read. Also, there are no further reads
along the creation-extended ego lane of i0 before the lock(mg) in which t′′ ends.
All reads x = g ordered between these are then replaced by actions x =?, while
the successor state remains unmodified. This corresponds to randomly choosing
the value that g has in the unmodified program. With this additional modification,
a local trace as constructed above with the random value set to the value that g
would have, once again is a valid local trace of some program (which can be read
off the local trace), and mg still directly surrounds all accesses to g. Also, the digest
A′ associated with t′ and the digest A1 associated with ū1 remain unmodified as
the digest is ego-lane-derived. The operation lock(mg) now directly incorporates
t′, and we have J(u, lock(mg), u1)K

]
A(A1, A′) 6= ∅, and thus compat]A A1 A′, and —
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by the same argument as in the other case — also compat]A A A′.

It now remains to show that any trace t with last(t) = unlock(a), a ∈ M ending in
(j, u, σ), i.e., t = (j, u, σ) ↓t, produced in this iteration i is side-effected to the unknowns
ηi

wc [g, a, S, w, αA(t)] for S = Lt[(j, u, σ)] and w′l ⊆ w ⊆M, where w′l is the set of mutexes
held when writing to g for the last time thread-locally in t, if g was written to at all.
This, however, follows directly from the construction of Cwc.

Our goal is to relate solutions of the constraint systems Cwc and C]wc to each other. While
the sets of unknowns of these two systems (except for the unknowns related to thread
returns, which depend on the abstraction) are the same, the side-effects to unknowns
are still not fully comparable. Therefore, we modify the side-effects produced by C]wc for
unlock operations to obtain yet another constraint system C] ′wc, which we abbreviate by
C] in this section. All right-hand-side functions remain the same except for unlock(a)
which is now given by:

J[u, S, A0], unlock(a), A′K]η = let (W, P, σ) = η [u, S, A0] in
let P′ = {g 7→ P g t {S \ {a}} | g ∈ G} in
let ρ = {[g, a, S \ {a}, w, A′] 7→ σ g
| g ∈ G, w′ ∈W g, w′ ⊆ w} in

(ρ, (W, P′, σ))

Instead of only side-effecting to minimal sets w′ of locks held on a write to g, the value
now is side-effected to all supersets w of such minimal elements. This modification of
the constraint system only changes the values computed for unknowns associated with
global variables, but not those for all other unknowns: Upon reading, all [g, a, S, w, A]

are consulted where there is an empty intersection of w and some P g. If this is the
case for w, it also holds for w′ ⊆ w. Accordingly, the values additionally published to
[g, a, S, w, A] because of the modified side-effects, are already read from [g, a, S, w′, A]

directly in C]wc. More formally, for η]
wc a solution of C]wc, define η] by

η][u, S, A] = η]
wc[u, S, A] (for u ∈ N , S ⊆M, A ∈ A)

η][g, a, S, w, A] =
⊔{η]

wc [g, a, S, w′, A] | w′ ⊆ w} (for g ∈ G, a ∈ M, S ⊆M,
w ⊆M, A ∈ A)

η][i, A] = η]
wc[i, A] (for i ∈ SV ]tid

, A ∈ A)
η][s, A] = η]

wc[s, A] (for s ∈ S , A ∈ A)

Then, we have:

Proposition 18. η] as constructed above is a solution of C].

Proof. The proof of Proposition 18 is by verifying for each edge (u, act, v) of the control-
flow graph, each possible lockset S and appropriate digests, that the constraint is satisfied.
This is of particular interest for constraints corresponding to edges (u, unlock(a), u′)
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that cause additional side-effects in C], and for constraints corresponding to edges
(u, x = g, u′) where the values of these unknowns receiving novel side-effects are
accessed. For the additional side-effects of unlock(a), we easily verify that the additional
side-effects in C] are accounted for by the construction of η].

Now, for an edge (u, x = g, u′) and A0, A′ ∈ A where Ju, x = gK]A(A0) = {A1}, and
lockset S:

[u′, S, A1] w J[u, S, A0], x = gK]

where

J[u, S, A0], x = gK]η] = let (W, P, σ) = η] [u, S, A0] in
let d = σ g t⊔{η][g, a, S′, w, A′] | a ∈ S, S ∩ S′ = ∅,
∃S′′ ∈ P g : S′′ ∩ w = ∅,
∃S′′′ ∈ P g : a /∈ S′′′,
A′ ∈ A, compat]A A0 A′} in

(∅, (W, P, σ⊕ {x 7→ d}))
J[u, S, A0], x = gK]wcη]

wc = let (W, P, σ) = η]
wc [u, S, A0] in

let d = σ g t⊔{η]
wc[g, a, S′, w, A′] | a ∈ S, S ∩ S′ = ∅,

∃S′′ ∈ P g : S′′ ∩ w = ∅,
∃S′′′ ∈ P g : a /∈ S′′′,
A′ ∈ A, compat]A A0 A′} in

(∅, (W, P, σ⊕ {x 7→ d}))

As η] [u, S, A0] = η]
wc [u, S, A0], and η][g, a, S, w, A] =

⊔{η]
wc [g, a, S, w′, A] | w′ ⊆ w} it

thus suffices to show⊔{⊔{ η]
wc [g, a, S, w′, A] | w′ ⊆ w} | a ∈ S, S ∩ S′ = ∅, ∃S′′ ∈ P g : S′′ ∩ w = ∅,

∃S′′′ ∈ P g : a /∈ S′′′, A′ ∈ A, compat]A A0 A′}
v ⊔{ η]

wc[g, a, S′, w, A′] | a ∈ S, S ∩ S′ = ∅, ∃S′′ ∈ P g : S′′ ∩ w = ∅,
∃S′′′ ∈ P g : a /∈ S′′′, A′ ∈ A, compat]A A0 A′}

which holds as in case w ∩ S′′ = ∅ for any w′ ⊆ w, w′ ∩ S′′ = ∅ also holds and the
value of the corresponding unknown is thus included in the second least upper bound
as well. As a consequence, the new contribution to η] [u′, S, A1] for this constraint is
subsumed by the contribution in C]wc, which in turn is subsumed by η]

wc [u′, S, A1] as η]
wc

is a solution of C]wc. As η] [u′, S, A1] = η]
wc [u′, S, A1] and this constraint does not cause

any side-effects, it is satisfied.

It thus remains to relate solutions of Cwc and solutions of C] ′wc to each other. As a
first step, we define a function β that extracts from a local trace t for each global g the
minimal lockset W g held at the last thread-local write to g, as well as all minimal locksets
P g since the last thread-local write to g. Additionally, it extracts a map σ that contains
the values of the locals at the sink of t as well as the last-written thread-local values of
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globals. Thus, we define

β t = (W, P, σ) where

W = {g 7→ {Lt[ū′]} | g ∈ G, (_, g = x, ū′) = last_tl_writeg t}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t}

P = {g 7→ min_lockset_since t ū′ | g ∈ G, (_, g = x, ū′) = last_tl_writeg t}
∪ {g 7→ {∅} | g ∈ G,⊥ = last_tl_writeg t}

σ = {x 7→ {t(x)} | x ∈ X}
∪ {g 7→ {0} | g ∈ G,⊥ = last_writeg t}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t,⊥ 6= last_writeg t}
∪ {g 7→ {σj−1 x} | g ∈ G,

((j− 1, uj−1, σj−1), g = x, _) = last_tl_writeg t}

(6.1)

The abstraction function β is used to specify concretization functions for the values of
unknowns [u, S, A] for program points, currently held locksets, and digests as well as
for the other unknowns.

γu,S,A(P], W], σ]) = {t ∈ T | loc t = u, Lt = S, αA t = A, β t = (W, P, σ),
σ ⊆ γ̄V̄ ] ◦ σ], W vW], P v P]}

where ⊆ on maps is understood to be defined point-wise, and v for W and P is defined
point-wise as well. We will also subsequently abbreviate γ̄V̄ ] by γ̄. Furthermore, we
have

γg,a,S,w,A(v) = {t ∈ T | last t = unlock(a), Lt = S, αA t = A,
(_, _, σj−1), g = x, ū′) = last_tl_writeg t,
σj−1 x ∈ γV ](v), w ⊆ Lt[ū′]}

∪ {t ∈ T | last t = unlock(a), Lt = S, αA t = A,
last_tl_writeg t = ⊥}

γi,A(v) = {t ∈ T | last t = return, αA t = A, id t = i, t(ret) ∈ γV ](v)}
γs,A(P], W], σ]) = {t ∈ T | last t = signal(s), αA t = A, β t = (W, P, σ),

σ ⊆ γ̄ ◦ σ], W vW], P v P]}

Let η] be a solution of C]. We then construct from it a mapping η′wc by:

η′wc[u, S, A] = γu,S,A(η
] [u, S, A]) u ∈ N , S ⊆M, A ∈ A

η′wc[g, a, S, w, A] = γg,a,S,w,A(η
] [g, a, S, w, A]) g ∈ G, a ∈ M, S ⊆M,

w ⊆M, A ∈ A
η′wc[i, A] =

⋃{γi,A(η
] [i], A]) | i ∈ Vtid, A ∈ A
i] ∈ SV ]tid

, i ∈ (γV ]tid
{i]})}

η′wc[s, A] = γs,A(η
] [s, A]) s ∈ S , A ∈ A

Altogether, correctness of C]wc follows from the following theorem:
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Theorem 17. Every solution of C]wc is sound w.r.t. the local trace semantics.

Proof. Recall from Proposition 16, that the least solution of Cwc is sound w.r.t. the local
trace semantics as specified by the constraint system C. By Proposition 18, which relates
solutions of C]wc to solutions of C] (which in this section is an abbreviation for C] ′wc), it
thus suffices to prove that the mapping η′wc as constructed from a solution of C] above,
is a solution of the constraint system Cwc. For that, we verify by fixpoint induction that
for the i-th approximation ηi to the least solution η of Cwc, ηi ⊆ η′wc holds.

To this end, we first consider the constraints for initialization, the start point u0 and the
empty lockset. We verify that for all A ∈ init]A:

(∅, {t | t ∈ init, A = αA(t)}) ⊆ (η′wc, η′wc [u0, ∅, A])

As no side-effects are triggered, it suffices to check that {t | t ∈ init, A = αA(t)} ⊆
η′wc [u0, ∅, A] holds.

init(A)] _ = let W] = {g 7→ ∅ | g ∈ G} in
let P] = {g 7→ {∅} | g ∈ G} in
let σ] = {x 7→ > | x ∈ X \ {self}} ∪ {self 7→ Ji0K

]
Exp>}

∪{g 7→ J0K]Exp> | g ∈ G}
in
(∅, (W], P], σ]))

Let η] [u0, ∅, A] = (W]′ , P]′ , σ]′) the value provided by η] for the start point and the
empty lockset. Since η] is a solution of C], W] v W]′ , P] v P]′ , and σ] v σ]′ all hold.
Then, by definition:

η′wc[u0, ∅, A] = γu0,∅,A(W]′ , P]′ , σ]′)

= {t ∈ T | loc t = u0, Lt = ∅, αA t = A, β t = (W, P, σ),
σ ⊆ γ̄ ◦ σ]′ , W vW]′ , P v P]′}

For every trace t ∈ {t | t ∈ init, A = αA(t)}, let

β t = (W, P, σ) where

W = {g 7→ {Lt[ū′]} | g ∈ G, (_, g = x, ū′) = last_tl_writeg t}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t}

= {g 7→ ∅ | g ∈ G}
P = {g 7→ min_lockset_since t ū′ | g ∈ G, (_, g = x, ū′) = last_tl_writeg t}

∪ {g 7→ {∅} | g ∈ G,⊥ = last_tl_writeg t}
= {g 7→ {∅} | g ∈ G}

σ = {x 7→ {t(x)} | x ∈ X}
∪ {g 7→ {0} | g ∈ G,⊥ = last_writeg t}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t,⊥ 6= last_writeg t}
∪ {g 7→ {σj−1 x} | g ∈ G, ((j− 1, uj−1, σj−1), g = x, _) = last_tl_writeg t}

= {x 7→ {t(x)} | x ∈ X} ∪ {g 7→ {0} | g ∈ G}
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Thus, W = W] vW]′ , P = P] v P]′ , and

σ = {x 7→ {t(x)} | x ∈ X} ∪ {g 7→ {0} | g ∈ G}
⊆ γ̄ ◦ ({x 7→ > | x ∈ X \ {self}} ∪ {self 7→ Ji0K

]
Exp>} ∪ {g 7→ J0K]Exp> | g ∈ G})

= γ̄ ◦ σ] ⊆ γ̄ ◦ σ]′

Altogether t ∈ η′wc [u0, ∅, A] holds for all t ∈ {t | t ∈ init, A = αA(t)}.

Next, consider the constraints for initMT. Consider an edge (u, initMT, u′) ∈ E and
digests A′, A0 such that A′ ∈ Ju, initMTK]A(A0). We remark that, by construction, the
lockset is empty when executing initMT. We verify that

J([u, ∅, A0], initMT, u′)Kwc ηi−1 ⊆ (η′wc, η′wc [u′, ∅, A′])

We have

J([u, ∅, A0], initMT, u′)Kwc η = (∅, J(u, initMT, u′)KT (η [u, ∅, A0]))

J[u, ∅, A0], initMTK]η] =
(
∅, η] [u, ∅, A0]

)
Let η] [u, ∅, A0] = (W], P], σ]) and η] [u′, ∅, A′] = (W]′ , P]′ , σ]′) the value provided by
η] for the endpoint of the given control-flow edge, the empty lockset, and the resulting
digest. Since η] is a solution of C], W] v W]′ , P] v P]′ , and σ] v σ]′ hold. Then, by
definition:

η′wc[u′, ∅, A′] = γu′,∅,A′(W]′ , P]′ , σ]′)

= {t ∈ T | loc t = u′, Lt = ∅, αA t = A′, β t = (W, P, σ),
σ ⊆ γ̄ ◦ σ]′ , W vW]′ , P v P]′}

For every trace t ∈ ηi−1 [u, ∅, A0], let β t = (W, P, σ). By induction hypothesis, W vW],
P v P], and σ ⊆ γ̄ ◦ σ]. Let t′ = J(u, initMT, u′)KT {t}. Then loc t′ = u′, Lt′ = ∅,
αA t′ = A′, and

β t′ = (W ′, P′, σ′) where

W ′ = {g 7→ {Lt′ [v̄′]} | g ∈ G, (_, g = x, v̄′) = last_tl_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′}

= W

P′ = {g 7→ min_lockset_since t′ v̄′ | g ∈ G, (_, g = x, v̄′) = last_tl_writeg t′}
∪ {g 7→ {∅} | g ∈ G,⊥ = last_tl_writeg t′}

= P

σ′ = {x 7→ {t′(x)} | x ∈ X}
∪ {g 7→ {0} | g ∈ G,⊥ = last_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′,⊥ 6= last_writeg t′}
∪ {g 7→ {σj−1 x} | g ∈ G, ((j− 1, uj−1, σj−1), g = x, _) = last_tl_writeg t′}

= σ
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Thus, W ′ = W v W] v W]′ , P′ = P v P] v P]′ , and σ′ = σ ⊆ γ̄ ◦ σ] ⊆ γ̄ ◦ σ]′ .
Altogether, t′ ∈ η′wc [u′, ∅, A′] holds for all t ∈ ηi−1 [u, ∅, A0]. We conclude that the
return value of J([u, ∅, A0], initMT, u′)Kwc ηi−1 is subsumed by the value η′wc [u′, ∅, A′]
and since the constraint causes no side-effects, the claim holds.

Next, consider the constraints for a read from a global x = g. Consider an edge
(u, x = g, u′) ∈ E and digests A′, A0 such that A′ ∈ Ju, x = gK]A(A0). We verify that

J([u, S, A0], x = g, u′)Kwc ηi−1 ⊆ (η′wc, η′wc [u′, S, A′])

We have

J([u, S, A0], x = g, u′)Kwc η = (∅, J(u, x = g, u′)KT (η [u, S, A0]))

J[u, S, A0], x = gK]η] = let (W], P], σ]) = η] [u, S, A0] in
let d = σ g t⊔{η][g, a, S′, w, A′] | a ∈ S, S ∩ S′ = ∅,
∃S′′ ∈ P] g : S′′ ∩ w = ∅,
∃S′′′ ∈ P] g : a /∈ S′′′,
A′ ∈ A, compat]A A0 A′} in

let σ]′′ = σ] ⊕ {x 7→ d} in
(∅, (W], P], σ]′′))

Let η] [u, S, A0] = (W], P], σ]) and η] [u′, S, A′] = (W]′ , P]′ , σ]′) the value provided by C]
for the end point of the given control-flow edge and lockset and digest. Since η] is a
solution of C], W] vW]′ , P] v P]′ , and σ]′′ v σ]′ hold. Then, by definition:

η′wc[u′, S, A′] = γu′,S,A′(W]′ , P]′ , σ]′)

= {t ∈ T | loc t = u′, Lt = S, αA t = A′, β t = (W, P, σ),
σ ⊆ γ̄ ◦ σ]′ , W vW]′ , P v P]′}

For every trace t ∈ ηi−1 [u, S, A0], let β t = (W, P, σ). By induction hypothesis, W vW],
P v P], and σ ⊆ γ̄ ◦ σ]. Let t′ = J(u, x = g, u′)KT {t}. Then loc t′ = u′, Lt′ = S,
αA t′ = A′, and

β t′ = (W ′, P′, σ′) where

W ′ = {g′ 7→ {Lt′ [v̄′]} | g′ ∈ G, (_, g′ = x′, v̄′) = last_tl_writeg′ t
′}

∪ {g′ 7→ ∅ | g′ ∈ G,⊥ = last_tl_writeg′ t
′}

= W

P′ = {g′ 7→ min_lockset_since t′ v̄′ | g′ ∈ G, (_, g′ = x′, v̄′) = last_tl_writeg′ t
′}

∪ {g′ 7→ {∅} | g′ ∈ G,⊥ = last_tl_writeg′ t
′}

= P

171



6 Soundness Proofs for the Analyses

σ′ = {x′ 7→ {t′(x′)} | x′ ∈ X}
∪ {g′ 7→ {0} | g′ ∈ G,⊥ = last_writeg′ t

′}
∪ {g′ 7→ ∅ | g′ ∈ G,⊥ = last_tl_writeg′ t

′,⊥ 6= last_writeg′ t
′}

∪ {g′ 7→ {σj−1 x′} | g′ ∈ G, ((j− 1, uj−1, σj−1), g′ = x′, _) = last_tl_writeg′ t
′}

= σ⊕ {x 7→ {t′(x)}}

= σ⊕
{
{x 7→ {σj′−1 x′}} if last_writeg t′ = ((j′ − 1, uj′−1, σj′−1), g = x′, _)

{x 7→ {0}} if last_writeg t′ = ⊥

= σ⊕
{
{x 7→ {σj′−1 x′}} if last_writeg t = ((j′ − 1, uj′−1, σj′−1), g = x′, _)

{x 7→ {0}} if last_writeg t = ⊥

Thus, W = W ′ v W] v W]′ and P = P′ v P] v P]′ . Also σ y = σ′ y and therefore,
σ′ y ⊆ (γ̄ ◦ σ]′) y for y 6≡ x. For y ≡ x, we consider three cases:

• There is no write to g (last_writeg t = ⊥): Then σ g = {0} ⊆ (γ̄ σ]) g, thus
σ′ x ⊆ (γ̄ ◦ σ]′′) x and accordingly, σ′ ⊆ γ̄ ◦ σ]′ .

• The last write to g is thread-local (last_writeg t = last_tl_writeg t): Then σ g =

{σj′−1 x′} ⊆ (γ̄ ◦ σ]) g, thus σ′ x ⊆ (γ̄ ◦ σ]′′) x and accordingly, σ′ ⊆ γ̄ ◦ σ]′ .

• The last write to g is non-thread-local.

σ′ x ⊆ ⋃{eval_tlg (η
i−1 [g, a, S′, w, A′]) | a ∈ S, S ∩ S′ = ∅, w ⊆M,

∃S′′ ∈ P : S′′ ∩ w = ∅, ∃S′′′ ∈ P : a /∈ S′′′,
compat]A A0 A′} (By Proposition 17)

⊆ ⋃{eval_tlg (η
′
wc [g, a, S′, w, A′]) | a ∈ S, S ∩ S′ = ∅, w ⊆M,

∃S′′ ∈ P : S′′ ∩ w = ∅, ∃S′′′ ∈ P : a /∈ S′′′,
compat]A A0 A′} (By Induction Hypothesis)

⊆ ⋃{eval_tlg (γg,a,S′,w,A′(η
] [g, a, S′, w, A′])) | a ∈ S, S ∩ S′ = ∅, w ⊆M,

∃S′′ ∈ P : S′′ ∩ w = ∅, ∃S′′′ ∈ P : a /∈ S′′′, compat]A A0 A′}
⊆ ⋃{γV ](η] [g, a, S′, w, A′]) | a ∈ S, S ∩ S′ = ∅, w ⊆M,

∃S′′ ∈ P : S′′ ∩ w = ∅, ∃S′′′ ∈ P : a /∈ S′′′, compat]A A0 A′}
⊆ γV ](

⊔{η] [g, a, S′, w, A′] | a ∈ S, S ∩ S′ = ∅, w ⊆M,
∃S′′ ∈ P : S′′ ∩ w = ∅, ∃S′′′ ∈ P : a /∈ S′′′, compat]A A0 A′})

⊆ γV ](σ
] g t⊔{η] [g, a, S′, w, A′] | a ∈ S, S ∩ S′ = ∅, w ⊆M,
∃S′′ ∈ P : S′′ ∩ w = ∅, ∃S′′′ ∈ P : a /∈ S′′′, compat]A A0 A′})

= γV ](σ
]′′ x) = (γ̄ ◦ σ]′′) x

⊆ (γ̄ ◦ σ]′) x

and thus σ′ ⊆ γ̄ ◦ σ]′′ ⊆ γ̄ ◦ σ]′ .

Altogether, t′ ∈ η′wc [u′, S, A′] holds for all t ∈ ηi−1 [u, S, A0]. We conclude that the return
value of J([u, S, A0], x = g, u′)Kwc ηi−1 is subsumed by the value η′wc [u′, S, A′] and since
the constraint causes no side-effects, the claim holds.
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Next, consider the constraints for a write to a global g = x. Consider an edge (u, g =

x, u′) ∈ E and digests A′, A0 such that A′ ∈ Ju, g = xK]A(A0). We verify that

J([u, S, A0], g = x, u′)Kwc ηi−1 ⊆ (η′wc, η′wc [u′, S, A′])

We have

J([u, S, A0], g = x, u′)Kwc η = (∅, J(u, g = x, u′)KT (η [u, S, A0]))

J[u, S, A0], g = xK]η] = let (W], P], σ]) = η] [u, S, A0] in
let W]′′ = W] ⊕ {g 7→ {S}} in
let P]′′ = P] ⊕ {g 7→ {S}} in
let σ]′′ = σ] ⊕ {g 7→ σ] x} in
(∅, (W]′′ , P]′′ , σ]′′))

Let η] [u, S, A0] = (W], P], σ]) and η] [u′, S, A′] = (W]′ , P]′ , σ]′) the value provided by C]
for the end point of the given control-flow edge and lockset and digest. Since η] is a
solution of C], W] vW]′ , P] v P]′ , and σ]′′ v σ]′ hold. Then, by definition:

η′wc[u′, S, A′] = γu′,S,A′(W]′ , P]′ , σ]′)

= {t ∈ T | loc t = u′, Lt = S, αA t = A′, β t = (W, P, σ),
σ ⊆ γ̄ ◦ σ]′ , W vW]′ , P v P]′}

For every trace t ∈ ηi−1 [u, S, A0], let β t = (W, P, σ). By induction hypothesis, W vW],
P v P], and σ ⊆ γ̄ ◦ σ]. Let t′ = J(u, g = x, u′)KT {t}. Then loc t′ = u′, Lt′ = S,
αA t′ = A′, and

β t′ = (W ′, P′, σ′) where

W ′ = {g′ 7→ {Lt′ [v̄′]} | g′ ∈ G, (_, g′ = x, v̄′) = last_tl_writeg′ t
′}

∪ {g′ 7→ ∅ | g′ ∈ G,⊥ = last_tl_writeg′ t
′}

= W ⊕ {g 7→ {Lt′ [v̄′]} | (_, g = x′, v̄′) = last_tl_writeg t′}
= W ⊕ {g 7→ {S}}

P′ = {g′ 7→ min_lockset_since t′ v̄′ | g′ ∈ G, (_, g′ = x′, v̄′) = last_tl_writeg′ t
′}

∪ {g′ 7→ {∅} | g′ ∈ G,⊥ = last_tl_writeg′ t
′}

= P⊕ {g 7→ min_lockset_since t′ v̄′} | (_, g = x′, v̄′) = last_tl_writeg t′}
= P⊕ {g 7→ {S}}

σ′ = {x′ 7→ {t′(x′)} | x′ ∈ X}
∪ {g′ 7→ {0} | g′ ∈ G,⊥ = last_writeg′ t

′}
∪ {g′ 7→ ∅ | g′ ∈ G,⊥ = last_tl_writeg′ t

′,⊥ 6= last_writeg′ t
′}

∪ {g′ 7→ {σj−1 x′} | g′ ∈ G, ((j− 1, uj−1, σj−1), g′ = x′, _) = last_tl_writeg′ t
′}

= σ⊕ {g 7→ {σj−1 x′} | g′ ∈ ((j− 1, uj−1, σj−1), g = x′, _) = last_tl_writeg t′}
= σ⊕ {g 7→ {t′(x)}}
= σ⊕ {g 7→ σ x}
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Thus,

W ′ = W ⊕ {g 7→ {S}} vW] ⊕ {g 7→ {S}} = W]′′ vW]′

P′ = P⊕ {g 7→ {S}} v P] ⊕ {g 7→ {S}} = P]′′ v P]′

σ′ = σ⊕ {g 7→ σ x} ⊆ γ̄ ◦ (σ] ⊕ {g 7→ σ] x}) = γ̄ ◦ σ]′′ ⊆ γ̄ ◦ σ]′

Altogether, t′ ∈ η′wc [u′, S, A′] holds for all t ∈ ηi−1 [u, S, A0]. We conclude that the return
value of J([u, S, A0], g = x, u′)Kwc ηi−1 is subsumed by the value η′wc [u′, S, A′] and since
the constraint causes no side-effects, the claim holds.

Next, consider the constraints for assignments involving local variables x = e. Con-
sider an edge (u, x = e, u′) ∈ E and digests A′, A0 such that A′ ∈ Ju, x = eK]A(A0). We
verify that

J([u, S, A0], x = e, u′)Kwc ηi−1 ⊆ (η′wc, η′wc [u′, S, A′])

We have

J([u, S, A0], x = e, u′)Kwc η = (∅, J(u, x = e, u′)KT (η [u, S, A0]))

J[u, S, A0], x = eK]η] = let (W], P], σ]) = η] [u, S, A0] in
let σ]′′ = if e ≡ ? then σ]

∣∣
Vars\{x}

else σ] ⊕ {x 7→ JeK]Exp σ]}
in
(∅, (W], P], σ]′′))

Let η] [u, S, A0] = (W], P], σ]) and η] [u′, S, A′] = (W]′ , P]′ , σ]′) the value provided by C]
for the end point of the given control-flow edge and lockset and digest. Since η] is a
solution of C], W] vW]′ , P] v P]′ , and σ]′′ v σ]′ hold. Then, by definition:

η′wc[u′, S, A′] = γu′,S,A′(W]′ , P]′ , σ]′)

= {t ∈ T | loc t = u′, Lt = S, αA t = A′, β t = (W, P, σ),
σ ⊆ γ̄ ◦ σ]′ , W vW]′ , P v P]′}

For every trace t ∈ ηi−1 [u, S, A0], let β t = (W, P, σ). By induction hypothesis, W vW],
P v P], and σ ⊆ γ̄ ◦ σ]. Let t′ = J(u, x = e, u′)KT {t}. Then loc t′ = u′, Lt′ = S, αA t′ = A′,
and

β t′ = (W ′, P′, σ′) where

W ′ = {g′ 7→ {Lt′ [v̄′]} | g′ ∈ G, (_, g′ = x′, v̄′) = last_tl_writeg′ t
′}

∪ {g′ 7→ ∅ | g′ ∈ G,⊥ = last_tl_writeg′ t
′}

= W

P′ = {g′ 7→ min_lockset_since t′ v̄′ | g′ ∈ G, (_, g′ = x′, v̄′) = last_tl_writeg′ t
′}

∪ {g′ 7→ {∅} | g′ ∈ G,⊥ = last_tl_writeg′ t
′}

= P
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σ′ = {x′ 7→ {t′(x′)} | x′ ∈ X}
∪ {g 7→ {0} | g ∈ G,⊥ = last_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′,⊥ 6= last_writeg t′}
∪ {g 7→ {σj−1 x′} | g ∈ G, ((j− 1, uj−1, σj−1), g = x′, _) = last_tl_writeg t′}

= σ⊕ {x 7→ {t′(x)}}
= σ⊕ {x 7→ JeKExp σ}

In case e 6≡ ?, we have

σ⊕ {x 7→ {t′(x)}} = σ⊕ {x 7→ JeKExp σ}

where JeKExp is appropriately lifted to work on maps from variables to singleton sets of
values instead of on maps to values directly. In case of e ≡ ?, we have

σ⊕ {x 7→ {t′(x)}} ∈ {σ⊕ {x 7→ v} | v ∈ Vτ}

where τ corresponds to the type of x. Thus, W = W ′ vW] vW]′ and P = P′ v P] v P]′ .
Also σ y = σ′ y and therefore, σ′ y ⊆ (γ̄ ◦ σ]′) y for y 6≡ x. For y ≡ x and e 6≡ ?, we have

σ′ x = JeKExp σ ⊆ γV ](JeK]Exp σ]) = (γ̄ ◦ (σ] ⊕ {x 7→ JeK]Exp σ]})) x
= (γ̄ ◦ σ]′′) x
⊆ (γ̄ ◦ σ]′) x

as JeK]Exp is a sound abstraction of JeKExp . For y ≡ x and e ≡ ?, on the other hand, we
have

σ′ x ∈ Vτ = (γ̄ ◦ (σ]
∣∣∣
Vars\{x}

)) x = (γ̄ ◦ σ]′′) x ⊆ (γ̄ ◦ σ]′) x

Thus, we have σ′ ⊆ γ̄ ◦σ]′ and altogether, t′ ∈ η′wc [u′, S, A′] holds for all t ∈ ηi−1 [u, S, A0].
We conclude that the return value of J([u, S, A0], x = e, u′)Kwc ηi−1 is subsumed by the
value η′wc [u′, S, A′] and since the constraint causes no side-effects, the claim holds.

Next, consider the constraints for a guard involving local variables Pos(e). Consider an
edge (u,Pos(e), u′) ∈ E and digests A′, A0 such that A′ ∈ Ju, Pos(e)K]A(A0). We verify
that

J([u, S, A0],Pos(e), u′)Kwc ηi−1 ⊆ (η′wc, η′wc [u′, S, A′])

We have

J([u, S, A0],Pos(e), u′)Kwc η = (∅, J(u,Pos(e), u′)KT (η [u, S, A0]))

J[u, S, A0],Pos(e)K]η] = let (W], P], σ]) = η] [u, S, A0] in
let σ]′′ = J?(e 6= 0)K]V̄ ]σ

] in
if σ]′′ = ⊥ then

(∅,⊥)
else

(∅, (W], P], σ]′′))
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Let η] [u, S, A0] = (W], P], σ]) and η] [u′, S, A′] = (W]′ , P]′ , σ]′) the value provided by C]
for the end point of the given control-flow edge and lockset and digest. Since η] is a
solution of C], we either have σ]′′ = ⊥ or W] vW]′ , P] v P]′ , and σ]′′ v σ]′ hold. Then,
by definition:

η′wc[u′, S, A′] = γu′,S,A′(W]′ , P]′ , σ]′)

= {t ∈ T | loc t = u′, Lt = S, αA t = A′, β t = (W, P, σ),
σ ⊆ γ̄ ◦ σ]′ , W vW]′ , P v P]′}

For every trace t ∈ ηi−1 [u, S, A0], let β t = (W, P, σ). By induction hypothesis, W vW],
P v P], and σ ⊆ γ̄ ◦ σ]. Then J(u,Pos(e), u′)KT {t} yields a non-empty set for those t
where sink t = (_, σ) and JeKExp σ 6= 0. If this is the case, let t′ = J(u,Pos(e), u′)KT {t}.
Then loc t′ = u′, Lt′ = S, αA t′ = A′, and

β t′ = (W ′, P′, σ′) where

W ′ = {g′ 7→ {Lt′ [v̄′]} | g′ ∈ G, (_, g′ = x′, v̄′) = last_tl_writeg′ t
′}

∪ {g′ 7→ ∅ | g′ ∈ G,⊥ = last_tl_writeg′ t
′}

= W

P′ = {g′ 7→ min_lockset_since t′ v̄′ | g′ ∈ G, (_, g′ = x′, v̄′) = last_tl_writeg′ t
′}

∪ {g′ 7→ {∅} | g′ ∈ G,⊥ = last_tl_writeg′ t
′}

= P

σ′ = {x′ 7→ {t′(x′)} | x′ ∈ X}
∪ {g 7→ {0} | g ∈ G,⊥ = last_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′,⊥ 6= last_writeg t′}
∪ {g 7→ {σj−1 x′} | g ∈ G, ((j− 1, uj−1, σj−1), g = x′, _) = last_tl_writeg t′}

= σ

It thus remains to show that if such a t′ exists, σ]′′ 6= ⊥ holds, and that then W v W]′ ,
P v P]′ , and σ ⊆ γ̄ ◦ σ]′ holds. The first part follows directly from the soundness of
J?(e 6= 0)K]V̄ ] , as σ ⊆ γ̄ ◦ σ] and JeKExp σ 6= 0 implies ⊥ 6= σ ⊆ γ̄ ◦ (J?(e 6= 0)K]V̄ ]σ

]) = σ]′′ .
Then, as σ]′′ 6= ⊥, we have σ]′′ v σ]′ , W] vW]′ , and P] v P]′ and altogether W = W ′ v
W] v W]′ , P = P′ v P] v P]′ , and σ′ = σ ⊆ γ̄ ◦ σ]′ . Thus, t′ ∈ η′wc [u′, S, A′] holds for
all t ∈ ηi−1 [u, S, A0]. We conclude that the return value of J([u, S, A0],Pos(e), u′)Kwc ηi−1

is subsumed by the value η′wc [u′, S, A′] and since the constraint causes no side-effects,
the claim holds. The proof for negative guards Neg(e) is analogous.

Next, consider the constraints corresponding to locking a mutex a. Consider an
edge (u, lock(a), u′) ∈ E and digests A′, A0 and all appropriate A1 such that A′ ∈
Ju, lock(a)K]A(A0, A1). We verify that

J([u, S, A0], lock(a), u′)Kwc ηi−1 ⊆ (η′wc, η′wc [u′, S ∪ {a}, A′])
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We have

J([u, S, A0], lock(a), u′)Kwc η =

let T1 =
⋃{η [g, a, S′, w, A1] | g ∈ G, S′ ⊆M, w ⊆M, A1 ∈ A, compat]A A0 A1} in

let T2 = {t′ | t ∈ η [u, S, A0], ī = init_v t, ī 6= ⊥, t′ =↓ī (t), compat]A A0 (αA t′)} in
let T = J(u, lock(a), u′)KT (η [u, S, A0], T1 ∪ T2) in
(∅, T)

J[u, S, A0], lock(a)K]η] = (∅, η] [u, S, A0])

Let η] [u, S, A0] = (W], P], σ]) and η] [u′, S ∪ {a}, A′] = (W]′ , P]′ , σ]′) the value provided
by C] for the end point of the given control-flow edge and lockset and digest. Since η] is
a solution of C], W] vW]′ , P] v P]′ , and σ] v σ]′ hold. Then, by definition:

η′wc[u′, S ∪ {a}, A′] = γu′,S∪{a},A′(W]′ , P]′ , σ]′)

= {t ∈ T | loc t = u′, Lt = S ∪ {a}, αA t = A′, β t = (W, P, σ),
σ ⊆ γ̄ ◦ σ]′ , W vW]′ , P v P]′}

For every trace t ∈ ηi−1 [u, S, A0], let β t = (W, P, σ). By induction hypothesis, W vW],
P v P], and σ ⊆ γ̄ ◦ σ]. Let

t′ ∈ J(u, lock(a), u′)KT ({t},⋃{η [g, a, S′, w, A1] | g ∈ G, S′ ⊆M, w ⊆M, A1 ∈ A, compat]A A0 A1}
∪{t′′ | t′ ∈ η [u, S, A0], ī = init_v t′, ī 6= ⊥, t′′ =↓ī (t

′), compat]A A0 (αA t′′)})
= J(u, lock(a), u′)KT ({t},⋃{η [g, a, S′, w, A1] | g ∈ G, S′ ⊆M, w ⊆M, A1 ∈ A, compat]A A0 A1}

∪{t′ | ī = init_v t, ī 6= ⊥, t′ =↓ī (t)})
where the equality exploits that for a given local trace t and a first lock of a, the second
trace which contains the observed initMT must be a sub-trace of t. Then loc t′ = u′,
Lt′ = S ∪ {a}, αA t′ = A′, and

β t′ = (W ′, P′, σ′) where

W ′ = {g 7→ {Lt′ [v̄′]} | g ∈ G, (_, g = x, v̄′) = last_tl_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′}

= W

P′ = {g 7→ min_lockset_since t′ v̄′ | g ∈ G, (_, g = x, v̄′) = last_tl_writeg t′}
∪ {g 7→ {∅} | g ∈ G,⊥ = last_tl_writeg t′}

= P

σ′ = {x 7→ {t′(x)} | x ∈ X}
∪ {g 7→ {0} | g ∈ G,⊥ = last_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′,⊥ 6= last_writeg t′}
∪ {g 7→ {σj−1 x′} | g ∈ G, ((j− 1, uj−1, σj−1), g = x′, _) = last_tl_writeg t′}

= σ⊕ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′,⊥ 6= last_writeg t′}
⊆ σ
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Thus, W = W ′ v W] v W]′ , P = P′ v P] v P]′ , and σ′ ⊆ σ ⊆ γ̄ ◦ σ] ⊆ γ̄ ◦ σ]′ .
Altogether, t′ ∈ η′wc [u′, S ∪ {a}, A′] holds for all t ∈ ηi−1 [u, S, A0]. We conclude that
the return value of J([u, S, A0], lock(a), u′)Kwc ηi−1 is subsumed by the value η′wc [u′, S ∪
{a}, A′] and since the constraint causes no side-effects, the claim holds.

Next, consider the constraints unlocking some mutex a. Consider an edge of the form
(u, unlock(a), u′) ∈ E and digests A′, A0 such that A′ ∈ Ju, unlock(a)K]A(A0). We verify
that

J([u, S, A0], unlock(a), u′), A′Kwc ηi−1 ⊆ (η′wc, η′wc [u′, S \ {a}, A′])

We have

J([u, S, A0], unlock(a), u′), A′Kwc η =

let T = J(u, unlock(a), u′)KT (η [u, S, A0]) in
let ρ = {[g, a, S \ {a}, w, A′] 7→ {t} | t ∈ T, g ∈ G, w ⊆M,

((last_tl_writeg t = (ū, g = x, ū′) ∧ Lt[ū] ⊆ w) ∨ (last_tl_writeg t = ⊥))}
in
(ρ, T)

J[u, S, A0], unlock(a), A′K]η] =

let (W], P], σ]) = η] [u, S, A0] in
let P]′′ = {g 7→ P] g t {S \ {a}} | g ∈ G} in
let ρ] = {[g, a, S \ {a}, w, A′] 7→ σ] g | g ∈ G, w′ ∈W] g, w′ ⊆ w} in
(ρ], (W], P]′′ , σ]))

Let η] [u, S, A0] = (W], P], σ]) and η] [u′, S \ {a}, A′] = (W]′ , P]′ , σ]′) the value provided
by C] for the end point of the given control-flow edge and lockset and digest. Since η] is
a solution of C], W] vW]′ , P]′′ v P]′ , and σ] v σ]′ hold. Then, by definition:

η′wc[u′, S \ {a}, A′] = γu′,S\{a},A′(W]′ , P]′ , σ]′)

= {t ∈ T | loc t = u′, Lt = S \ {a}, αA t = A′, β t = (W, P, σ),
σ ⊆ γ̄ ◦ σ]′ , W vW]′ , P v P]′}

For every trace t ∈ ηi−1 [u, S, A0], let β t = (W, P, σ). By induction hypothesis, W vW],
P v P], and σ ⊆ γ̄ ◦ σ]. Let t′ = J(u, unlock(a), u′)KT {t}. Then loc t′ = u′, Lt′ = S \ {a},
αA t′ = A′, and

β t′ = (W ′, P′, σ′) where

W ′ = {g 7→ {Lt′ [v̄′]} | g ∈ G, (_, g = x, v̄′) = last_tl_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′}

= W

178



6.1 Soundness Proofs for Analyses Considering Globals in Isolation

P′ = {g 7→ min_lockset_since t′ v̄′ | g ∈ G, (_, g = x, v̄′) = last_tl_writeg t′}
∪ {g 7→ {∅} | g ∈ G,⊥ = last_tl_writeg t′}

= {g 7→ (min_lockset_since t v̄′ t {S \ {a}}) |
g ∈ G, (_, g = x, v̄′) = last_tl_writeg t′}

∪ {g 7→ {∅} | g ∈ G,⊥ = last_tl_writeg t′}
= {g 7→ (P g t {S \ {a}}) | g ∈ G}

σ′ = {x 7→ {t′(x)} | x ∈ X}
∪ {g 7→ {0} | g ∈ G,⊥ = last_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′,⊥ 6= last_writeg t′}
∪ {g 7→ {σj−1 x′} | g ∈ G, ((j− 1, uj−1, σj−1), g = x′, _) = last_tl_writeg t′}

= σ

Thus, W ′ = W vW] vW]′ , σ′ = σ ⊆ γ̄ ◦ σ] ⊆ γ̄ ◦ σ]′ , and

P′ = {g 7→ (P g t {S \ {a}}) | g ∈ G}
v {g 7→ (P] g t {S \ {a}}) | g ∈ G} = P]′′ v P]′

Altogether, t′ ∈ η′wc [u′, S \ {a}, A′] holds for all t ∈ ηi−1 [u, S, A0]. We conclude that the
return value of J([u, S, A0], unlock(a), u′), A′Kwc ηi−1 is subsumed by the value η′wc [u′, S \
{a}, A′] Next, we consider the side-effects of the corresponding right-hand-side functions.
For each g ∈ G, we distinguish two cases for t′:

• last_tl_writeg t′ = ⊥: Then side-effects {[g, a, S \ {a}, w, A′] 7→ {t′} | w ⊆M} are
caused. These are accounted for by construction of η′wc:

t′ ∈ {t ∈ T | last t = unlock(a), Lt = S \ {a}, αA t = A, last_tl_writeg t = ⊥}
⊆ η′wc [g, a, S \ {a}, w, A]

• last_tl_writeg t′ = ((j− 1, uj−1, σj−1), g = x, ū′) with (j− 1, uj−1, σj−1) = ū: Then
the side-effects caused to unknowns associated with g in Cwc and C], respectively,
are given by

ρ′ = {[g, a, S \ {a}, w, A′] 7→ {t′} | Lt[ū] ⊆ w}
ρ]
′

= {[g, a, S \ {a}, w′′, A′] 7→ σ] g | w′ ∈W] g, w′ ⊆ w′′}

We have σ g = {σj−1 x} ⊆ (γ̄ ◦ σ])g and as W v W], there is w′ ∈ W] g where
w′ ⊆ Lt[ū′]. Thus, we have

t′ ∈ γg,a,S\{a},w,A′(σ
] g) ⊆ η′wc [g, a, S \ {a}, w, A′]

for all w such that Lt[ū] ⊆ w where we used that σ] g v η] [g, a, S \ {a}, w, A′]
holds as η] is a solution of C].

Hence, all side-effects for unlock(a) of Cwc are accounted for in η′wc, and the claim holds.
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Next, consider the constraints corresponding to starting a new thread. Consider an edge
(u, x = create(u1), u′) ∈ E and digests A′, A0 such that A′ ∈ Ju, x = create(u1)K

]
A(A0).

We verify that

J([u, S, A0], x = create(u1), u′)Kwc ηi−1 ⊆ (η′wc, η′wc [u′, S, A′])

We have

J([u, S, A0], x = create(u1), u′)Kwc η =

let T = J(u, x = create(u1), u′)KT (η [u, S, A0]) in
let ρ = {[u1, ∅, new]

A u u1 A0] 7→ new u1 (η [u, S, A0])} in
(ρ, T)

J[u, S, A0], x = create(u1)K]η] = let (W], P], σ]) = η] [u, S, A0] in
let W]

ρ = {g 7→ ∅ | g ∈ G} in
let P]

ρ = {g 7→ {∅} | g ∈ G} in
let i = ν] u σ] u1 in
let σ]

ρ = σ] ⊕
(
({self 7→ i}) ∪

{
g 7→

(
σ g u J0K]Exp>

)
| g ∈ G

})
in

let ρ] = {[u1, ∅, new]
A u u1 A0] 7→ (W]

ρ , P]
ρ , σ]

ρ)} in
let σ]′′ = σ] ⊕ {x 7→ i} in
(ρ], (W], P], σ]′′))

where we, for notational convenience, denote by new]
A u u1 A0 the only element of this

singleton set. Let η] [u, S, A0] = (W], P], σ]) and η] [u′, S, A′] = (W]′ , P]′ , σ]′) the value
provided by C] for the end point of the given control-flow edge and lockset and digest.
Since η] is a solution of C], W] vW]′ , P] v P]′ , and σ]′′ v σ]′ hold. Then, by definition:

η′wc[u′, S, A′] = γu′,S,A′(W]′ , P]′ , σ]′)

= {t ∈ T | loc t = u′, Lt = S, αA t = A′, β t = (W, P, σ),
σ ⊆ γ̄ ◦ σ]′ , W vW]′ , P v P]′}

For every trace t ∈ ηi−1 [u, S, A0], let β t = (W, P, σ). By induction hypothesis, W vW],
P v P], and σ ⊆ γ̄ ◦ σ]. Let t′ = J(u, x = create(u1), u′)KT {t}. Then loc t′ = u′, Lt′ = S,
αA t′ = A′, and

β t′ = (W ′, P′, σ′) where

W ′ = {g 7→ {Lt′ [v̄′]} | g ∈ G, (_, g = x′, v̄′) = last_tl_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′}

= W

P′ = {g 7→ min_lockset_since t′ v̄′ | g ∈ G, (_, g = x′, v̄′) = last_tl_writeg t′}
∪ {g 7→ {∅} | g ∈ G,⊥ = last_tl_writeg t′}

= P
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σ′ = {x′ 7→ {t′(x′)} | x′ ∈ X}
∪ {g 7→ {0} | g ∈ G,⊥ = last_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′,⊥ 6= last_writeg t′}
∪ {g 7→ {σj−1 x′} | g ∈ G, ((j− 1, uj−1, σj−1), g = x′, _) = last_tl_writeg t′}

= σ⊕ {x 7→ {ν(t)}}
Thus W ′ = W vW] vW]′ , P′ = P v P] v P]′ , and as ν(t) ∈ γV ]tid

(ν] u σ] u1) by (3.2),

σ′ = σ⊕ {x 7→ {ν(t)}} ⊆ γ̄ ◦ (σ] ⊕ {x 7→ ν] u σ] u1}) = γ̄ ◦ σ]′′

⊆ γ̄ ◦ σ]′

Altogether, t′ ∈ η′wc [u′, S, A′] holds for all t ∈ ηi−1 [u, S, A0]. We conclude that the return
value of J([u, S, A0], x = create(u1), u′)Kwc ηi−1 is subsumed by the value η′wc [u′, S, A′].

Next, we consider the side-effects of the corresponding right-hand-side functions for
a t as considered previously.

ρ = {[u1, ∅, new]
A u u1 A0] 7→ new u1 {t}}

ρ] = {[u1, ∅, new]
A u u1 A0] 7→ (W]

ρ , P]
ρ , σ]

ρ)}

Let η] [u1, ∅, new]
A u u1 A0] = (W]′

ρ , P]′
ρ , σ]′

ρ ) the value provided by C] for the unknown

receiving the side-effect. Since η] is a solution of C], W]
ρ v W]′

ρ , P]
ρ v P]′

ρ , and σ]
ρ v σ]′

ρ

hold. By definition:

η′wc[u1, ∅, new]
A u u1 A0] = γu′,S,new]

A u u1 A0
(W]′ , P]′ , σ]′)

= {t ∈ T | loc t = u′, Lt = ∅, αA t = new]
A u u1 A0, β t = (W, P, σ),

σ ⊆ γ̄ ◦ σ]′
ρ , W vW]′

ρ , P v P]′
ρ }

Let t′′ = new u1 {t}. Then, loc t′′ = u1, Lt′′ = ∅, αA t′′ = new]
A u u1 A0, and

β t′′ = (Wρ, Pρ, σρ) where

Wρ = {g 7→ {Lt′′ [v̄′]} | g ∈ G, (_, g = x′, v̄′) = last_tl_writeg t′′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′′}

= {g 7→ ∅ | g ∈ G}
Pρ = {g 7→ min_lockset_since t′′ v̄′ | g ∈ G, (_, g = x′, v̄′) = last_tl_writeg t′′}

∪ {g 7→ {∅} | g ∈ G,⊥ = last_tl_writeg t′′}
= {g 7→ {∅} | g ∈ G}

σρ = {x′ 7→ {t′′(x′)} | x′ ∈ X}
∪ {g 7→ {0} | g ∈ G,⊥ = last_writeg t′′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′′,⊥ 6= last_writeg t′′}
∪ {g 7→ {σj−1 x′} | g ∈ G, ((j− 1, uj−1, σj−1), g = x′, _) = last_tl_writeg t′′}

= σ⊕ ({self 7→ {ν(t)}}
∪ {g 7→ ({0} ∩ σ g) | g ∈ G,⊥ = last_writeg t′′})
∪ {g 7→ ∅ | g ∈ G,⊥ 6= last_writeg t′′}
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Therefore,

Wρ = {g 7→ ∅ | g ∈ G} = W]
ρ vW]′

ρ

Pρ = {g 7→ {∅} | g ∈ G} = P]
ρ v P]′

ρ

σρ = σ⊕ ({self 7→ {ν(t)}}
∪ {g 7→ ({0} ∩ σ g) | g ∈ G,⊥ = last_writeg t′′})
∪ {g 7→ ∅ | g ∈ G,⊥ 6= last_writeg t′′}

⊆
(
γ̄ ◦ (σ] ⊕ {self 7→ ν] u σ] u1})

)
⊕ ({g 7→ ({0} ∩ σ g) | g ∈ G,⊥ = last_writeg t′′}
∪ {g 7→ ∅ | g ∈ G,⊥ 6= last_writeg t′′})

⊆
(
γ̄ ◦ (σ] ⊕ {self 7→ ν] u σ] u1})

)
⊕ {g 7→ ({0} ∩ σ g) | g ∈ G}

⊆ γ̄ ◦
(

σ] ⊕
(
{self 7→ ν] u σ] u1} ∪

{
g 7→

(
σ] g u J0K]Exp>

)
| g ∈ G

}))
= γ̄ ◦ σ]

ρ

⊆ γ̄ ◦ σ]′
ρ

Altogether, t′′ ∈ η′wc [u1, ∅, new]
A u u1 A0] holds for all t ∈ ηi−1 [u, S, A0]. Hence, all

side-effects for x = create(u1) of Cwc are accounted for in η′wc, and the claim holds.

Next, consider the constraints corresponding to returning from a thread. Consider an
edge (u, return, u′) ∈ E and digests A′ and A0 such that A′ ∈ Ju, returnK]A(A0). We verify
that

J([u, S, A0], return, u′), A′Kwc ηi−1 ⊆ (η′wc, η′wc [u′, S, A′])

We have

J([u, S, A0], return, u′), A′Kwc η = let T = J(u, return, u′)KT (η [u, S, A0]) in
let ρ = {[i, A′] 7→ {t | t ∈ T, id t = i} | i ∈ Vtid} in
(ρ, T)

J[u, S, A0], return, A′K]η] = let (W], P], σ]) = η] [u, S, A0] in
let I = σ] self in
let v]ρ = σ] ret in
let ρ] =

{
[i, A′] 7→ v]ρ | i ∈ I

}
in(

ρ], (W], P], σ])
)

Let η] [u, S, A0] = (W], P], σ]) and η] [u′, S, A′] = (W]′ , P]′ , σ]′) the value provided by C]
for the end point of the given control-flow edge and lockset and digest. Since η] is a
solution of C], W] vW]′ , P] v P]′ , and σ] v σ]′ hold. Then, by definition:

η′wc[u′, S, A′] = γu′,S,A′(W]′ , P]′ , σ]′)

= {t ∈ T | loc t = u′, Lt = S, αA t = A′, β t = (W, P, σ),
σ ⊆ γ̄ ◦ σ]′ , W vW]′ , P v P]′}
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For every trace t ∈ ηi−1 [u, S, A0], let β t = (W, P, σ). By induction hypothesis, W vW],
P v P], and σ ⊆ γ̄ ◦ σ]. Let t′ = J(u, return, u′)KT {t}. Then loc t′ = u′, Lt′ = S, αA t′ = A′,
and

β t′ = (W ′, P′, σ′) where

W ′ = {g 7→ {Lt′ [v̄′]} | g ∈ G, (_, g = x, v̄′) = last_tl_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′} = W

P′ = {g 7→ min_lockset_since t′ v̄′ | g ∈ G, (_, g = x, v̄′) = last_tl_writeg t′}
∪ {g 7→ {∅} | g ∈ G,⊥ = last_tl_writeg t′} = P

σ′ = {x 7→ {t′(x)} | x ∈ X}
∪ {g 7→ {0} | g ∈ G,⊥ = last_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′,⊥ 6= last_writeg t′}
∪ {g 7→ {σj−1 x′} | g ∈ G, ((j− 1, uj−1, σj−1), g = x′, _) = last_tl_writeg t′}

= σ

Thus W ′ = W v W] v W]′ , P′ = P v P] v P]′ , and σ′ = σ ⊆ γ̄ ◦ σ] ⊆ γ̄ ◦ σ]′ .
Altogether, t′ ∈ η′wc [u′, S, A′] holds for all t ∈ ηi−1 [u, S, A0]. We conclude that the return
value of J([u, S, A0], return, u′), A′Kwc ηi−1 is subsumed by the value η′wc [u′, S, A′].

Next, we consider the side-effects of the corresponding right-hand-side functions for
local traces t and t′ as considered previously

ρ = {[id t′, A′] 7→ {t′}}
ρ] =

{
[i], A′] 7→ v]ρ | i] ∈ σ] self

}
where we use that id t = id t′. As σ ⊆ γ̄ ◦ σ], we have {id t′} = σ self ⊆ γV ]tid

(σ] self). As

V ]
tid is a powerset lattice, and the concretization is defined by the union of concretizations

of the singleton sets, there is at least one i]ρ ∈ σ] self, such that id t′ ∈ γV ]tid
{i]ρ}. Consider

one such i]ρ, and let η] [i]ρ, A′] = v]
′

ρ the value provided by C] for this unknown receiving

the side-effect. Since η] is a solution of C], v]ρ v v]
′

ρ holds. By definition:

η′wc[id t′, A′] =
⋃{γ(id t′),A′(η

] [i], A′]) | i] ∈ SV ]tid
, id t′ ∈ (γV ]tid

{i]})}

Now consider
γ(id t′),A′(η

] [i]ρ, A′]) ⊆ η′wc[id t′, A′]

Then, by definition:

γ(id t′),A′(η
] [i]ρ, A′]) = γ(id t′),A′

(
v]
′

ρ

)
= {t′′ ∈ T | last t′′ = return, αA t′′ = A′, id t′′ = id t′, t′′(ret) ∈ γV ](v

]′
ρ )}

We have last t′ = return, αA t′ = A′, (vacuously id t′ = id t′), and

t′(ret) ∈ σ ret ⊆ (γ̄ ◦ σ]) ret ⊆ γV ]((σ
]) ret) = γV ](v

]
ρ) ⊆ γV ](v

]′
ρ )
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Altogether, t′ ∈ η′wc [id t, A′] holds for all t ∈ ηi−1 [u, S, A0]. Hence, all side-effects for
return of Cwc are accounted for in η′wc, and the claim holds.

Next, consider the constraints corresponding to calling join. Consider an edge (u, x =

join(x′), u′) ∈ E and digests A′, A0 and all appropriate A1 such that A′ ∈ Ju, x =

join(x′)K]A(A0, A1). We verify that

J([u, S, A0], x = join(x′), u′)Kwc ηi−1 ⊆ (η′wc, η′wc [u′, S, A′])

We have

J([u, S, A0], x = join(x′), u′)Kwc η =

let T1 =
⋃{η [t(x′), A1] | t ∈ η [u, S, A0], A1 ∈ A, compat]A A0 A1} in

let T = J(u, x = join(x′), u′)KT (η [u, S, A0], T1) in
(∅, T)

J[u, S, A0], x = join(x′)K]η] =

let (W], P], σ]) = η] [u, S, A0] in
let v] =

⊔
i′∈(σ] x′)

(⊔
A1∈A, compat]A A0 A1

(η][i′, A1])
)

in

if v] = ⊥ then
(∅,⊥)

else
let σ]′′ = σ] ⊕ {x 7→ v]} in
(∅, (W], P], σ]′′))

Let η] [u, S, A0] = (W], P], σ]) and η] [u′, S, A′] = (W]′ , P]′ , σ]′) the value provided by C]
for the end point and the given lockset and digest. As η] is a solution of C], either

(1) v] = ⊥ holds; or

(2) W] vW]′ , P] v P]′ , and σ]′′ v σ]′ all hold.

Then, by definition:

η′wc[u′, S, A′] = γu′,S,A′(W]′ , P]′ , σ]′)

= {t ∈ T | loc t = u′, Lt = S, αA t = A′, β t = (W, P, σ),
σ ⊆ γ̄ ◦ σ]′ , W vW]′ , P v P]′}

For every trace t ∈ ηi−1 [u, S, A0], let β t = (W, P, σ). By induction hypothesis, W vW],
P v P], and σ ⊆ γ̄ ◦ σ]. Let

T′ = J(u, x = join(x′), u′)KT ({t},⋃{ηi−1 [(t′(x′)), A1] | t′ ∈ ηi−1 [u, S, A0], A1 ∈ A, compat]A A0 A1})
= J(u, x = join(x′), u′)KT ({t},

⋃{ηi−1 [(t(x′)), A1] | A1 ∈ A, compat]A A0 A1})

where the equality exploits that for a given local trace t, J(u, x = join(x′), u′)KT ({t}, {t′})
only yields a non-empty set if the thread id of the thread being joined is the one stored
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in x′. We distinguish the case where the resulting set of traces is non-empty and
the case where it is empty. If T′ is empty, it is subsumed by η′wc [u′, S, A′] vacuously.
Consider thus a t′ ∈ T′ and t′′ ∈ ⋃{ηi−1 [(t(x′)), A1] | A1 ∈ A, compat]A A0 A1} such
that {t′} = J(u, x = join(x′), u′)KT ({t}, {t′′}) Then loc t′ = u′, Lt′ = S, αA t′ = A′, and

β t′ = (W ′, P′, σ′) where

W ′ = {g 7→ {Lt′ [v̄′]} | g ∈ G, (_, g = x′′, v̄′) = last_tl_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′} = W

P′ = {g 7→ min_lockset_since t′ v̄′ | g ∈ G, (_, g = x′′, v̄′) = last_tl_writeg t′}
∪ {g 7→ {∅} | g ∈ G,⊥ = last_tl_writeg t′} = P

σ′ = {x′′ 7→ {t′(x′′)} | x′′ ∈ X} ∪ {g 7→ {0} | g ∈ G,⊥ = last_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′,⊥ 6= last_writeg t′}
∪ {g 7→ {σj−1 x′′} | g ∈ G, ((j− 1, uj−1, σj−1), g = x′′, _) = last_tl_writeg t′}

= σ⊕ ({g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′,⊥ 6= last_writeg t′}
∪{x 7→ t′′(ret)})

⊆ σ⊕ {x 7→ t′′(ret)}
Thus W ′ = W v W] and P′ = P v P]. To show that t′ ∈ η′wc [u′, S, A′], it thus remains
to show that v] 6= ⊥ holds (and thus W] v W]′ , P] v P]′ also hold) and to relate
σ⊕ {x 7→ t′′(ret)} to γ̄ ◦ σ]′ . To this end, we first relate t′′(ret) to v]. We have

t′′ ∈ ⋃{ηi−1 [t(x′), A1] | A1 ∈ A, compat]A A0 A1}
⊆ ⋃{η′wc [t(x′), A1] | A1 ∈ A, compat]A A0 A1}
=

⋃{⋃{γt(x′),A1
(η] [i], A1]) | t(x′) ∈ (γV ]tid

{i]})} | A1 ∈ A, compat]A A0 A1}
⊆ ⋃{⋃{γt(x′),A1

(η] [i], A1]) | i] ∈ σ] x′} | A1 ∈ A, compat]A A0 A1}
and therefore

{t′′(ret)}
⊆ {t′′′(ret) | t′′′ ∈ (

⋃{⋃{γt(x′),A1
(η] [i], A1]) | i] ∈ σ] x′}

| A1 ∈ A, compat]A A0 A1})}
⊆ {t′′′(ret) | t′′′ ∈ (

⋃{γt(x′),A1

⊔{(η] [i], A1]) | i] ∈ σ] x′}
| A1 ∈ A, compat]A A0 A1})}

⊆ {t′′′(ret) | t′′′ ∈ (
⋃{{t̄ ∈ T | last (t̄) = return, αA (t̄) = A1, id t̄ = t(x′),

t̄(ret) ∈ γV ](
⊔{(η] [i], A1]) | i] ∈ σ] x′})}

| A1 ∈ A, compat]A A0 A1})} (by def. of γt(x′),A1
)

⊆ ⋃{{t̄(ret) | t̄ ∈ T , last (t̄) = return, αA (t̄) = A1, id t̄ = t(x′),
t̄(ret) ∈ γV ](

⊔{(η] [i], A1]) | i] ∈ σ] x′})}
| A1 ∈ A, compat]A A0 A1}

⊆ ⋃{γV ](⊔{(η] [i], A1]) | i] ∈ σ] x′}) | A1 ∈ A, compat]A A0 A1}
⊆ γV ](

⊔{⊔{(η] [i], A1]) | i] ∈ σ] x′} | A1 ∈ A, compat]A A0 A1})
⊆ γV ]

(⊔
i]∈σ] x′

(⊔
A1∈A, compat]A A0 A1

(η[i], A1])
))

= γV ](v
])
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As a consequence and as γV ](⊥) = ∅, we obtain v] 6= ⊥. Thus, we also have W] vW]′ ,
P] v P]′ , as well as σ]′′ v σ]′ . Also

σ′ ⊆ σ⊕ {x 7→ t′′(ret)} ⊆ (γ̄ ◦ σ])⊕ {x 7→ t′′(ret)} ⊆ γ̄ ◦ (σ] ⊕ {x 7→ v]}) = γ̄ ◦ σ]′′

Thus, W ′ = W v W] v W]′ , P′ = P v P] v P]′ , and σ′ ⊆ γ̄ ◦ σ]′′ ⊆ γ̄ ◦ σ]′ . Altogether,
t′ ∈ η′wc [u′, S, A′] holds for all t ∈ ηi−1 [u, S, A0]. We conclude that the return value of
J([u, S, A0], x = join(x′), u′), A1Kwc ηi−1 is subsumed by the value η′wc [u′, S, A′] in both
cases. As neither constraint causes any side-effects, the statement holds.

Next, consider the constraints corresponding to calling signal. Consider an edge
(u, signal(s), u′) ∈ E and digests A′, A0 such that A′ ∈ Ju, signal(s)K]A(A0). We verify that

J([u, S, A0], signal(s), u′), A′Kwc ηi−1 ⊆ (η′wc, η′wc [u′, S, A′])

We have
J([u, S, A0], signal(s), u′), A′Kwc η =

let T = J(u, signal(s), u′)KT (η [u, S, A0]) in
let ρ = {[s, A′] 7→ T} in
(ρ, T)

J[u, S, A0], signal(s), A′K]η] =

let (W], P], σ]) = η] [u, S, A0] in
let ρ] =

{
[s, A′] 7→ (W], P], σ])

}
in(

ρ], (W], P], σ])
)

Let η] [u, S, A0] = (W], P], σ]) and η] [u′, S, A′] = (W]′ , P]′ , σ]′) the value provided by C]
for the end point of the given control-flow edge and lockset and digest. Since η] is a
solution of C], W] vW]′ , P] v P]′ , and σ] v σ]′ hold. Then, by definition:

η′wc[u′, S, A′] = γu′,S,A′(W]′ , P]′ , σ]′)

= {t ∈ T | loc t = u′, Lt = S, αA t = A′, β t = (W, P, σ),
σ ⊆ γ̄ ◦ σ]′ , W vW]′ , P v P]′}

For every trace t ∈ ηi−1 [u, S, A0], let β t = (W, P, σ). By induction hypothesis, W vW],
P v P], and σ ⊆ γ̄ ◦ σ]. Let t′ = J(u, signal(s), u′)KT {t}. Then loc t′ = u′, Lt′ = S,
αA t′ = A′, and

β t′ = (W ′, P′, σ′) where

W ′ = {g 7→ {Lt′ [v̄′]} | g ∈ G, (_, g = x, v̄′) = last_tl_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′}

= W

P′ = {g 7→ min_lockset_since t′ v̄′ | g ∈ G, (_, g = x, v̄′) = last_tl_writeg t′}
∪ {g 7→ {∅} | g ∈ G,⊥ = last_tl_writeg t′}

= P
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σ′ = {x 7→ {t′(x)} | x ∈ X}
∪ {g 7→ {0} | g ∈ G,⊥ = last_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′,⊥ 6= last_writeg t′}
∪ {g 7→ {σj−1 x′} | g ∈ G, ((j− 1, uj−1, σj−1), g = x′, _) = last_tl_writeg t′}

= σ

Thus W ′ = W v W] v W]′ , P′ = P v P] v P]′ , and σ′ = σ ⊆ γ̄ ◦ σ] ⊆ γ̄ ◦ σ]′ .
Altogether, t′ ∈ η′wc [u′, S, A′] holds for all t ∈ ηi−1 [u, S, A0]. We conclude that the return
value of J([u, S, A0], signal(s), u′), A′Kwc ηi−1 is subsumed by the value η′wc [u′, S, A′].

Next, we consider the side-effects of the corresponding right-hand-side functions for
local traces t and t′ as considered previously.

ρ = {[s, A′] 7→ T}
ρ] = {[s, A′] 7→ (W], P], σ])}

Let η] [s, A′] = (W]
ρ , P]

ρ , σ]
ρ) the value provided by C] for the unknown receiving the

side-effect. Since η] is a solution of C], W] v W]
ρ , P] v P]

ρ , and σ] v σ]
ρ hold. By

definition:

η′wc[s, A′] = γs,A′(η
] [s, A′])

= {t ∈ T | last t = signal(s), αA t = A′,
β t = (W, P, σ), σ ⊆ γ̄ ◦ σ]

ρ, W vW]
ρ , P v P]

ρ}

Consider a trace t′ as above: Then last t′ = signal(s), αA t′ = A′, and W ′ = W vW] vW]
ρ ,

P′ = P v P] v P]
ρ , and σ′ = σ ⊆ γ̄ ◦ σ] ⊆ γ̄ ◦ σ]

ρ Altogether, t′ ∈ η′wc [s, A′] holds for
all t ∈ ηi−1 [u, S, A0]. Hence, all side-effects for signal(s) of Cwc are accounted for in η′wc,
and the claim holds.

Lastly, consider the constraints corresponding to a call of wait. Consider an edge
(u,wait(s), u′) ∈ E and digests A′, A0 and all appropriate A1 such that the resulting
digest A′ ∈ Ju,wait(s)K]A(A0, A1). We verify that

J([u, S, A0],wait(s), u′)Kwc ηi−1 ⊆ (η′wc, η′wc [u′, S, A′])

We have
J([u, S, A0],wait(s), u′)Kwc η =

let T1 =
⋃{η [s, A1] | A1 ∈ A, compat]A A0 A1} in

let T = J(u,wait(s), u′)KT (η [u, S, A0], T1) in
(∅, T)

J[u, S, A0],wait(s)K]η] =

let (W], P], σ]) = η] [u, S, A0] in
if
((⊔

A′∈A, compat]A A0 A′ η
] [s, A′]

)
= ⊥

)
then

(∅,⊥)
else

(∅, (W], P], σ]))
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Let η] [u, S, A0] = (W], P], σ]) and η] [u′, S, A′] = (W]′ , P]′ , σ]′) the value provided by C]
for the end point of the given control-flow edge and lockset and digest. Since η] is a
solution of C], we either have

(1)
(⊔

A′∈A, compat]A A0 A′ η
] [s, A′]

)
= ⊥; or

(2) W] vW]′ , P] v P]′ , and σ] v σ]′ all hold.

By definition, we have:

η′wc[u′, S, A′] = γu′,S,A′(W]′ , P]′ , σ]′)

= {t ∈ T | loc t = u′, Lt = S, αA t = A′, β t = (W, P, σ),
σ ⊆ γ̄ ◦ σ]′ , W vW]′ , P v P]′}

For every trace t ∈ ηi−1 [u, S, A0], let β t = (W, P, σ). By induction hypothesis, W vW],
P v P], and σ ⊆ γ̄ ◦ σ]. Let

T′ = J(u,wait(s), u′)KT ({t},
⋃{ηi−1 [s, A1] | A1 ∈ A, compat]A A0 A1})

We distinguish the case where the resulting set of traces is non-empty and the case
where it is empty. If T′ is empty, it is subsumed by η′wc [u′, S, A′] vacuously. Consider
thus a t′ ∈ T′ and t′′ ∈ ⋃{ηi−1 [s, A1] | A1 ∈ A, compat]A A0 A1} such that {t′} =

J(u,wait(s), u′)KT ({t}, {t′′}).
By induction hypothesis, we have

t′′ ∈ ⋃{ηi−1 [s, A1] | A1 ∈ A, compat]A A0 A1}
⊆ ⋃{η′wc [s, A1] | A1 ∈ A, compat]A A0 A1}
=

⋃{γs,A1(η
] [s, A1]) | A1 ∈ A, compat]A A0 A1}

and thus as γs,A′(⊥) = ∅ for any A′ ∈ A, there is at least one A′ ∈ A for which

compat]A A0 A′ holds and where η] [s, A′] 6= ⊥. Thus,
(⊔

A′∈A, compat]A A0 A′ η
] [s, A′]

)
6= ⊥

and (1) does not hold. We thus have that (2) W] vW]′ , P] v P]′ , and σ] v σ]′ all hold.
Consider again the trace t′. Then, loc t′ = u′, Lt′ = S, αA t′ = A′, and

β t′ = (W ′, P′, σ′) where

W ′ = {g 7→ {Lt′ [v̄′]} | g ∈ G, (_, g = x, v̄′) = last_tl_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′} = W

P′ = {g 7→ min_lockset_since t′ v̄′ | g ∈ G, (_, g = x, v̄′) = last_tl_writeg t′}
∪ {g 7→ {∅} | g ∈ G,⊥ = last_tl_writeg t′} = P

σ′ = {x 7→ {t′(x)} | x ∈ X}
∪ {g 7→ {0} | g ∈ G,⊥ = last_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′,⊥ 6= last_writeg t′}
∪ {g 7→ {σj−1 x′} | g ∈ G, ((j− 1, uj−1, σj−1), g = x′, _) = last_tl_writeg t′}

= σ⊕ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′,⊥ 6= last_writeg t′}
⊆ σ

188



6.1 Soundness Proofs for Analyses Considering Globals in Isolation

Thus, W = W ′ v W] v W]′ , P = P′ v P] v P]′ , and σ′ ⊆ σ ⊆ γ̄ ◦ σ] ⊆ γ̄ ◦ σ]′ .
Altogether, t′ ∈ η′wc [u′, S, A′] holds for all t ∈ ηi−1 [u, S, A0] and t′′ ∈ ⋃{ηi−1 [s, A1] |
A1 ∈ A, compat]A A0 A1}. As neither constraint causes any side-effects, the statement
holds for edges corresponding to calls of wait(s).

This concludes the case distinction for the inductive step and thus the soundness
proof for Write-Centered Reading with ego-lane digests.

6.1.2 Lock-Centered Reading

Consider some ego-lane digest A and an appropriate definition of compat]A. Let us refer
to the constraint system of the analysis from Section 4.1.5 refined with A by C]lc. As a
first step, we construct a new constraint system Clc over sets of local traces for which the
unknowns match those of C]lc — up to the unknowns used for thread returns. We then
show the equivalence of Clc and C by showing Clc to be equivalent to Cwc for which we
have shown the equivalence in Proposition 16.
Clc then has the following unknowns:

• [u, S, A] for u ∈ N , S ⊆M and A ∈ A,

• [g, a, S, A] for g ∈ G, a ∈ M, S ⊆M, and A ∈ A,

• [i, A] for i ∈ Vtid and A ∈ A, and

• [s, A] for s ∈ S and A ∈ A.

where unknowns different from the ones used in Cwc are highlighted in bold. The
constraints of Clc are then the same as in Cwc with the following deviations for the
right-hand sides:

J([u, S, A0], lock(a), u′)Klc ηlc =

let T1 =
⋃{ηlc [g, a, S′, A1] | g ∈ G, S′ ⊆M, A1 ∈ A, compat]A A0 A1} in

let T2 = {t′ | t ∈ ηlc [u, S, A0], ī = init_v t, ī 6= ⊥, t′ =↓ī (t), compat]A A0 (αA t′)} in
let T = J(u, lock(a), u′)KT (ηlc [u, S, A0], T1 ∪ T2) in
(∅, T)

J([u, S, A0], unlock(a), u′), A′Klc ηlc =

let T = J(u, unlock(a), u′)KT (ηlc [u, S, A0]) in
let ρ = {[g, a, S \ {a}, A′] 7→ T | g ∈ G} in
(ρ, T)

Thus, the splitting according to w performed in Cwc is not performed here. In order to
relate least solutions of Clc to least solutions of Cwc, we first establish that a least solution
of Clc exists and that it can be attained as the least upper bound of all Kleene iterates.

Proposition 19. The right-hand side function of constraint system Clc over the lattice mapping
(extended) unknowns to sets of local traces with the order as discussed in Section 2.2.2 is
Scott-continuous.
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Proof. The proof here proceeds in the same matter as the proof of Proposition 14
in Section 6.1.1. The two differing right-hand sides are also compositions of Scott-
continuous functions, and thus Scott-continuous. Then, the combined right-hand side
collecting all constraints is given as the least upper bound of (compositions of) functions
that are Scott-continuous, and is thus also Scott-continuous.

Proposition 20. The constraint system Clc has a least solution which is obtained as the least-
upper bound of all Kleene iterates.

To relate solutions of both systems, we define for a mapping ηwc from the unknowns
of Cwc to sets of local traces, a mapping ηlc from the unknowns of Clc to sets of local
traces by setting

ηlc [u, S, A] = ηwc [u, S, A] (u ∈ N , S ⊆M, A ∈ A)
ηlc [g, a, S, A] =

⋃
w⊆M ηwc [g, a, S, w, A] (g ∈ G, a ∈ M, S ⊆M, A ∈ A)

ηlc [i, A] = ηwc [i, A] (i ∈ Vtid, A ∈ A)
ηlc [s, A] = ηwc [s, A] (s ∈ S , A ∈ A)

(6.2)

Proposition 21. The following two statements are equivalent:

• ηwc is the least solution of Cwc;

• ηlc is the least solution of Clc.

Proof. The proof is by fixpoint induction. Consider the i−th approximation ηi
wc to the

least solution of Cwc, and the i−th approximation ηi
lc to the least solution of Clc. Let us

call property (1) that the relationship between ηi
wc and ηi

lc is as given in Eq. (6.2). For
i = 0, the value of all unknowns in both constraint systems is ∅, and property (1) holds
trivially. Evaluating constraints that are the same in Cwc and Clc preserves property (1).
Thus, the constraints corresponding to locking and unlocking mutexes remain to be
considered.

First, consider the constraints corresponding to lock for some mutex a. Consider
an edge (u, lock(a), u′) ∈ E and digests A′, A0, s.t. ∀A1 ∈ A, Ju, lock(a)K]A(A0, A1) ∈
{{A′}, ∅}, which exists as A here is ego-lane-derived and corresponding right-hand
sides

J([u, S, A0], lock(a), u′)Klc ηlc =

let T1 =
⋃{ηlc [g, a, S′, A1] | g ∈ G, S′ ⊆M, A1 ∈ A, compat]A A0 A1} in

let T2 = {t′ | t ∈ ηlc [u, S, A0], ī = init_v t, ī 6= ⊥, t′ =↓ī (t), compat]A A0 (αA t′)} in
let T = J(u, lock(a), u′)KT (ηlc [u, S, A0], T1 ∪ T2) in
(∅, T)

J([u, S, A0], lock(a), u′)Kwc ηwc =

let T1 =
⋃{ηwc [g, a, S′, w, A1] | g ∈ G, S′ ⊆M, w ⊆M, A1 ∈ A, compat]A A0 A1} in

let T2 = {t′ | t ∈ ηwc [u, S, A0], ī = init_v t, ī 6= ⊥, t′ =↓ī (t), compat]A A0 (αA t′)} in
let T = J(u, lock(a), u′)KT (ηwc [u, S, A0], T1 ∪ T2) in
(∅, T)
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The difference between the two right-hand sides is in the computation of T1. However,
when property (1) holds, the resulting sets are identical. Thus, the contributions
of Clc and Cwc to the left-hand side are identical if property (1) holds for the i-th
approximations and as neither right-hand side causes a side-effect, if property (1) holds
for the i-th approximations, and constraints of this form are considered, it also holds for
the (i + 1)-th approximations.

Finally, consider the constraints corresponding to unlock, an edge (u, unlock(a), u′) ∈
E , and digests A′, A0 such that A′ ∈ Ju, unlock(a)K]A(A0) and corresponding right-hand
sides

J([u, S, A0], unlock(a), u′), A′Klc ηlc =

let T = J(u, unlock(a), u′)KT (ηlc [u, S, A0]) in
let ρ = {[g, a, S \ {a}, A′] 7→ T | g ∈ G} in
(ρ, T)

J([u, S, A0], unlock(a), u′), A′Kwc ηwc =

let T = J(u, unlock(a), u′)KT (ηwc [u, S, A0]) in
let ρ = {[g, a, S \ {a}, w, A′] 7→ {t} | t ∈ T, g ∈ G, w ⊆M,

((last_tl_writeg t = (ū, g = x, ū′) ∧ Lt[ū] ⊆ w) ∨ (last_tl_writeg t = ⊥))}
in
(ρ, T)

When property (1) holds, the contributions to the left-hand sides are identical. It thus
remains to consider the side-effects. With the observation that each t ∈ T is side-effected
to at least one [g, a, S \ {a}, w, A′] in Cwc, we conclude that if property (1) holds for the
i-th approximations and constraints of this form are considered, it also holds for the
(i + 1)-th approximations.

This concludes the case distinction and thus the proof of Proposition 21.

The next proposition needed for the soundness proof of Lock-Centered Reading
indicates that the new unknown [g, a, S, A] collects a superset of local traces whose last
write to the global g can be read by a thread satisfying the specific assumptions (L0)
through (L3) below.

Proposition 22. Consider the i-th approximation ηi
lc to the least solution ηlc of constraint

system Clc, a control-flow edge (u, x = g, u′) of the program, and a local trace t ∈ ηi
lc [u

′, S, A]

in which the last action is x = g, that ends in ū′ = (j, u′, σ), i.e., t = (ū′) ↓t.
For every mutex a ∈ M, let L a denote the singleton set containing the background lockset of the
ego thread at the last thread-local lock of a, given that the ego thread has ever acquired a in t,
and set L a = ∅ otherwise. Also, for every mutex a, let V a the set of globals written by the ego
thread since a was last acquired by it, or all globals written since the start of the ego thread in
case it has never acquired a.
Then, the value d = σ x that is read for g,

• is the initial value 0 of g; or
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• is produced by a write to g that is the last thread-local write to g in t; or

• is produced by a write to g that is the last thread-local write to g in some local trace
stored at ηi′ [g, a, S′, A′] for some i′ < i, i.e.,

d ∈ eval_tlg (η
i′
lc [g, a, S′, A′])

where

(L0) a has been acquired by the ego thread, i.e., L a 6= ∅,

(L1) L a = {B} such that B ∩ S′ = ∅,

(L2) g 6∈ V a,

(L3) compat]A A A′

Proof. The proof is by fixpoint induction. We prove that the values (that are not the
initial values of globals) read non-thread-locally for a global g at some (u, x = g, u′)
during the computation of ηi

lc are the last thread-local writes of a local trace t′′ ending in
an unlock operation that is side-effected to an appropriate ηi′

lc [g, a, S′, A′] in some prior
iteration i′ < i for some a, S′, and A′ satisfying (L0) through (L3).

This property holds for i = 0, as in η0
lc, all unknowns have the value ∅, and, therefore,

no reads from globals or unlocks can happen.
For the induction step i > 0, there are two proof obligations: First, that the property

holds for all reads from a global, and, additionally, that all traces ending in an unlock
operation are once more side-effected to appropriate unknowns in this iteration.

For the first obligation, consider a local trace t ∈ ηi
lc [u

′, S, A] where the last action
is x = g and the result of last_writeg t. Recall that last_writeg t returns either the edge
along which the last write to g happened or the edge corresponding to initMT in case g
has not been written. In the latter case, the value read for g is the initial value 0 of g,
and the proposition holds. Now consider the case where there is a write to g in t:

last_writeg t = ((j′ − 1, uj′−1, σj′−1), g = x′, ū′′) = l.

Let i0 = id t and i1 = σj−1 self the thread ids of the reading ego thread and the thread
performing the last write, respectively. We distinguish two cases:
Case 1: i0 = i1. The last write is thread-local to t (and l is therefore also the last thread-
local write to g in t) and the proposition holds.
Case 2: i0 6= i1. The last write is not thread-local. Consider the maximal sub-trace t′ of t
with id (t′) = i1, i.e., the maximal sub-trace of the thread performing the last write to g
appearing in t. Let a denote the last (w.r.t. the program order) mutex unlocked by i1 in
t′ for which the following additional conditions hold:

• the mutex a is unlocked in t′ by i1 after the last write to g (l)

• the mutex a has also been locked by i0 in t
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• the last lock of the mutex a by i0 succeeds the unlock of a by i1 w.r.t. the causality
order ≤ of t.

We observe that there is at least one mutex, namely mg, which is unlocked by i1 after
its last write to g and subsequently locked by i0 before g is read. Let S′ denote the
background lockset held at the last action unlock(a) by i1. Let B denote the background
lockset at the last lock(a) of the ego thread i0, i.e., L a = {B}.

First, assume that property (L1) is violated for a. Then there is some c ∈ B ∩ S′,
leading to a contradiction. To see this, assume first that c later is unlocked by i1 so that i0
can acquire c. Then, however, the conditions are also fulfilled for c, meaning that a is not
the last such mutex. If on the other hand, c is never unlocked by i1 in t′, thread i0 will
not be able to acquire c before its last operation lock(a), also yielding a contradiction.

Accordingly, now assume that B ∩ S′ = ∅. We claim that then also g 6∈ V a must hold
(L2). If this were not the case, some thread-local write to g by i0 has happened after the
last operation lock(a). Then, however, the write in t′ happens before this write to g by i0,
and is thus not the last write, yielding once again a contradiction.

Lastly, for (L3): The argument is the same as given for (W5) in Proposition 17.

The local trace t′′ which is the sub-trace of t′ ending in this unlock(a) of i1 thus contains
the last write to g in t. It was constructed during some earlier iteration i′ < i and, by
induction hypothesis, added to ηi′

lc[g, a, S′, A′] during the i′-th iteration. We conclude
that the value d read from g by i0 is given by d = σj′−1 x′ ∈ eval_tlg ηi′

lc [g, a, S′, A′] ⊆
eval_tlg (η

i
lc [g, a, S′, A′]).

It now remains to show that any trace t with last(t) = unlock(a), a ∈ M ending in
(j, u, σ), i.e., t = (j, u, σ) ↓t, produced in this iteration i is side-effected to ηi

lc [g, a, S, αA(t)]
for S = Lt[(j, u, σ)]. This, however, follows directly from the construction of Clc.

Now it remains to relate solutions of Clc and solutions of C]lc to each other. Let us refer
to C]lc by C] in the remainder of this section.

As a first step, we define a function β that extracts from some local trace t for each
mutex a

• the set V a of global variables that were written by the ego thread since a was last
acquired by it, or all global variables written since the start of the ego thread in
case it has never acquired a; and

• the set L a containing the background lockset when a was acquired by the ego
thread last.

Additionally, β extracts a map σ that contains the values of the locals at the sink of t as

193



6 Soundness Proofs for the Analyses

well as the last-written thread-local values of globals. Thus, we define

β t = (V, L, σ) where

V = {a 7→ {g | g ∈ G, (_, g = x, ū′) = last_tl_writeg t, ū ≤ ū′} |
a ∈ M, (_, lock(a), ū) = last_tl_locka t} ∪

{a 7→ {g | g ∈ G, (_, g = x, _) = last_tl_writeg t} |
a ∈ M,⊥ = last_tl_locka t}

L = {a 7→ {Lt[ū]} | a ∈ M, (ū, lock(a), _) = last_tl_locka t} ∪
{a 7→ ∅ | a ∈ M,⊥ = last_tl_locka t}

σ = {x 7→ {t(x)} | x ∈ X}
∪ {g 7→ {0} | g ∈ G,⊥ = last_writeg t}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t,⊥ 6= last_writeg t}
∪ {g 7→ {σj−1 x} | g ∈ G, ((j− 1, uj−1, σj−1), g = x, _) = last_tl_writeg t}

and remark that the definition of σ is the same as in Eq. (6.1). The abstraction function
β then is once more used to specify concretization functions for the values of unknowns
[u, S, A] for program points, currently held locksets, and digests as well as for the other
unknowns.

γu,S,A(V], L], σ]) = {t ∈ T | loc t = u, Lt = S, αA t = A, β t = (V, L, σ),
σ ⊆ γ̄V̄ ] ◦ σ], V v V], L v L]}

where ⊆ on maps is understood to be defined point-wise, and v for L and V is defined
point-wise as well. We will also once more abbreviate γ̄V̄ ] by γ̄ for the remainder of this
section. Furthermore, we have

γg,a,S,A(v) = {t ∈ T | last t = unlock(a), Lt = S, αA t = A,
((_, _, σj−1), g = x, ū′) = last_tl_writeg t, σj−1 x ∈ γV ](v)}

∪ {t ∈ T | last t = unlock(a), Lt = S, αA t = A,
last_tl_writeg t = ⊥}

γi,A(v) = {t ∈ T | last t = return, αA t = A, id t = i, t(ret) ∈ γV ](v)}
γs,A(V], L], σ]) = {t ∈ T | last t = signal(s), αA t = A, β t = (V, L, σ),

σ ⊆ γ̄ ◦ σ], V v V], L v L]}

Let η] be a solution of C]. We then construct from it a mapping ηlc by:

ηlc[u, S, A] = γu,S,A(η
] [u, S, A]) u ∈ N , S ⊆M, A ∈ A

ηlc[g, a, S, A] = γg,a,S,A(η
] [g, a, S, A]) g ∈ G, a ∈ M,

S ⊆M, A ∈ A
ηlc[i, A] =

⋃{γi,A(η
] [i], A]) | i] ∈ SV ]tid

, i ∈ γV ]tid
{i]}} i ∈ Vtid, A ∈ A

ηlc[s, A] = γs,A(η
] [s, A]) s ∈ S , A ∈ A

Altogether, correctness of C]lc follows from the following theorem:
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Theorem 18. Every solution of C]lc is sound w.r.t. the local trace semantics.

Proof. Recall from Proposition 21 that the least solution of Clc is sound w.r.t. the local
trace semantic (where the proof proceeds via Cwc and Proposition 16). It thus suffices to
show that the mapping ηlc as constructed above, is a solution of the constraint system
Clc. For that, we verify by fixpoint induction that for the i-th approximation ηi to the
least solution η of Clc, ηi ⊆ ηlc holds.

To this end, we first consider the constraints for initialization, the start point u0 and the
empty lockset. We verify that for all A ∈ init]A:

(∅, {t | t ∈ init, A = αA(t)}) ⊆ (ηlc, ηlc [u0, ∅, A])

As no side-effects are triggered, it suffices to check that {t | t ∈ init, A = αA(t)} ⊆
ηlc [u0, ∅, A] holds.

init(A)] _ = let V] = {a 7→ ∅ | a ∈ M} in
let L] = {a 7→ ∅ | a ∈ M} in
let σ] = {x 7→ > | x ∈ X \ {self}} ∪ {self 7→ Ji0K

]
Exp>}

∪{g 7→ J0K]Exp> | g ∈ G}
in
(∅, (V], L], σ]))

Let η] [u0, ∅, A] = (V]′ , L]′ , σ]′) the value provided by η] for the start point and the
empty lockset. Since η] is a solution of C], V] v V]′ , L] v L]′ , and σ] v σ]′ all hold.
Then, by definition:

ηlc[u0, ∅, A] = γu0,∅,A(V]′ , L]′ , σ]′)

= {t ∈ T | loc t = u0, Lt = ∅, αA t = A, β t = (V, L, σ),
σ ⊆ γ̄V̄ ] ◦ σ]′ , V v V]′ , L v L]′}

For every trace t ∈ {t | t ∈ init, A = αA(t)}, let

β t = (V, L, σ) where

V = {a 7→ {g | g ∈ G, (_, g = x, ū′) = last_tl_writeg t, ū ≤ ū′} |
a ∈ M, (_, lock(a), ū) = last_tl_locka t} ∪

{a 7→ {g | g ∈ G, (_, g = x, _) = last_tl_writeg t} |
a ∈ M,⊥ = last_tl_locka t}

= {a 7→ ∅ | a ∈ M}
L = {a 7→ {Lt[ū]} | a ∈ M, (ū, lock(a), _) = last_tl_locka t} ∪

{a 7→ ∅ | a ∈ M,⊥ = last_tl_locka t}
= {a 7→ ∅ | a ∈ M}
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σ = {x 7→ {t(x)} | x ∈ X}
∪ {g 7→ {0} | g ∈ G,⊥ = last_writeg t}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t,⊥ 6= last_writeg t}
∪ {g 7→ {σj−1 x} | g ∈ G, ((j− 1, uj−1, σj−1), g = x, _) = last_tl_writeg t}

= {x 7→ {t(x)} | x ∈ X} ∪ {g 7→ {0} | g ∈ G}
Thus, V = V] v V]′ , L = L] v L]′ , and

σ = {x 7→ {t(x)} | x ∈ X} ∪ {g 7→ {0} | g ∈ G}
⊆ γ̄ ◦ ({x 7→ > | x ∈ X \ {self}} ∪ {self 7→ Ji0K

]
Exp>} ∪ {g 7→ J0K]Exp> | g ∈ G})

= γ̄ ◦ σ]

⊆ γ̄ ◦ σ]′

Altogether t ∈ ηlc [u0, ∅, A] holds for all t ∈ {t | t ∈ init, A = αA(t)}.

Next, consider the constraints for initMT. Consider an edge (u, initMT, u′) ∈ E and
digests A′, A0 such that A′ ∈ Ju, initMTK]A(A0). We remark that, by construction, the
lockset is empty when executing initMT. We verify that

J([u, ∅, A0], initMT, u′)Klc ηi−1 ⊆ (ηlc, ηlc [u′, ∅, A′])

We have

J([u, ∅, A0], initMT, u′)Klc η = (∅, J(u, initMT, u′)KT (η [u, ∅, A0]))

J[u, ∅, A0], initMTK]η] =
(
∅, η] [u, ∅, A0]

)
Let η] [u, ∅, A0] = (V], L], σ]) and η] [u′, ∅, A′] = (V]′ , L]′ , σ]′) the value provided by η]

for the endpoint of the given control-flow edge, the empty lockset, and the resulting
digest. Since η] is a solution of C], V] v V]′ , L] v L]′ , and σ] v σ]′ all hold. Then, by
definition:

ηlc[u′, ∅, A′] = γu′,∅,A′(V]′ , L]′ , σ]′)

= {t ∈ T | loc t = u′, Lt = ∅, αA t = A′, β t = (V, L, σ),
σ ⊆ γ̄V̄ ] ◦ σ]′ , V v V]′ , L v L]′}

For every trace t ∈ ηi−1 [u, ∅, A0], let β t = (V, L, σ). By induction hypothesis, V v V],
L v L], and σ ⊆ γ̄ ◦ σ]. Let t′ = J(u, initMT, u′)KT {t}. Then loc t′ = u′, Lt′ = ∅,
αA t′ = A′, and

β t′ = (V ′, L′, σ′) where

V ′ = {a 7→ {g | g ∈ G, (_, g = x, ū′) = last_tl_writeg t′, ū ≤ ū′} |
a ∈ M, (_, lock(a), ū) = last_tl_locka t′} ∪

{a 7→ {g | g ∈ G, (_, g = x, _) = last_tl_writeg t′} |
a ∈ M,⊥ = last_tl_locka t′}

= V

L′ = {a 7→ {Lt′ [ū]} | a ∈ M, (ū, lock(a), _) = last_tl_locka t′} ∪
{a 7→ ∅ | a ∈ M,⊥ = last_tl_locka t′}

= L
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σ′ = {x 7→ {t′(x)} | x ∈ X}
∪ {g 7→ {0} | g ∈ G,⊥ = last_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′,⊥ 6= last_writeg t′}
∪ {g 7→ {σj−1 x} | g ∈ G, ((j− 1, uj−1, σj−1), g = x, _) = last_tl_writeg t′}

= σ

Thus, V ′ = V v V] v V]′ , L′ = L v L] v L]′ and σ′ = σ ⊆ γ̄ ◦ σ] ⊆ γ̄ ◦ σ]′ . Altogether,
t′ ∈ ηlc [u′, ∅, A′] holds for all t ∈ ηi−1 [u, ∅, A0]. We conclude that the return value
of J([u, ∅, A0], initMT, u′)Klc ηi−1 is subsumed by the value ηlc [u′, ∅, A′] and since the
constraint causes no side-effects, the claim holds.

Next, consider the constraints for a read from a global x = g. Consider an edge
(u, x = g, u′) ∈ E and digests A′, A0 such that A′ ∈ Ju, x = gK]A(A0). We verify that

J([u, S, A0], x = g, u′)Klc ηi−1 ⊆ (ηlc, ηlc [u′, S, A′])

We have

J([u, S, A0], x = g, u′)Klc η = (∅, J(u, x = g, u′)KT (η [u, S, A0]))

J[u, S, A0], x = gK]η] = let (V], L], σ]) = η] [u, S, A0] in
let d = σ] g t⊔{η][g, a, S′, A′] | a ∈ M, g 6∈ V] a,

∃B ∈ L] a, B ∩ S′ = ∅, A′ ∈ A, compat]A A0 A′}
in
let σ]′′ = σ] ⊕ {x 7→ d} in
(∅, (V], L], σ]′′))

Let η] [u, S, A0] = (V], L], σ]) and η] [u′, S, A′] = (V]′ , L]′ , σ]′) the value provided by
η] for the endpoint of the given control-flow edge, the appropriate lockset, and the
resulting digest. Since η] is a solution of C], V] v V]′ , L] v L]′ , and σ]′′ v σ]′ all hold.
Then, by definition:

ηlc[u′, S, A′] = γu′,S,A′(V]′ , L]′ , σ]′)

= {t ∈ T | loc t = u′, Lt = S, αA t = A′, β t = (V, L, σ),
σ ⊆ γ̄V̄ ] ◦ σ]′ , V v V]′ , L v L]′}

For every trace t ∈ ηi−1 [u, S, A0], let β t = (V, L, σ). By induction hypothesis, V v V],
L v L], and σ ⊆ γ̄ ◦ σ]. Let t′ = J(u, x = g, u′)KT {t}. Then loc t′ = u′, Lt′ = S, αA t′ = A′,
and

β t′ = (V ′, L′, σ′) where

V ′ = {a 7→ {g′ | g′ ∈ G, (_, g′ = x′, ū′) = last_tl_writeg′ t
′, ū ≤ ū′} |

a ∈ M, (_, lock(a), ū) = last_tl_locka t′} ∪
{a 7→ {g′ | g′ ∈ G, (_, g′ = x′, _) = last_tl_writeg′ t

′} |
a ∈ M,⊥ = last_tl_locka t′} = V

L′ = {a 7→ {Lt′ [ū]} | a ∈ M, (ū, lock(a), _) = last_tl_locka t′} ∪
{a 7→ ∅ | a ∈ M,⊥ = last_tl_locka t′} = L
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σ′ = {x′ 7→ {t′(x′)} | x′ ∈ X}
∪ {g′ 7→ {0} | g′ ∈ G,⊥ = last_writeg′ t

′}
∪ {g′ 7→ ∅ | g′ ∈ G,⊥ = last_tl_writeg′ t

′,⊥ 6= last_writeg′ t
′}

∪ {g′ 7→ {σj−1 x′} | g′ ∈ G, ((j− 1, uj−1, σj−1), g′ = x′, _) = last_tl_writeg′ t
′}

= σ⊕ {x 7→ {t′(x)}}

= σ⊕
{
{x 7→ {σj′−1 x′}} if last_writeg t′ = ((j′ − 1, uj′−1, σj′−1), g = x′, _)

{x 7→ {0}} if last_writeg t′ = ⊥

= σ⊕
{
{x 7→ {σj′−1 x′}} if last_writeg t = ((j′ − 1, uj′−1, σj′−1), g = x′, _)

{x 7→ {0}} if last_writeg t = ⊥

Thus, L′ = L v L] v L]′ and V ′ = V v V] v V]′ . Also, σ y = σ′ y and therefore,
σ′ y ⊆ (γ̄ ◦ σ]′) y for y 6≡ x. For y ≡ x, we consider three cases:

• There is no write to g (last_writeg t = ⊥): Then σ g = {0} ⊆ (γ̄ σ]) g, thus
σ′ x ⊆ (γ̄ ◦ σ]′′) x and accordingly, σ′ ⊆ γ̄ ◦ σ]′ .

• The last write to g is thread-local (last_writeg t = last_tl_writeg t): Then σ g =

{σj′−1 x′} ⊆ (γ̄ ◦ σ]) g, thus σ′ x ⊆ (γ̄ ◦ σ]′′) x and accordingly, σ′ ⊆ γ̄ ◦ σ]′ .

• The last write to g is non-thread-local.

σ′ x ⊆ ⋃{eval_tlg (η
i−1
lc [g, a, S′, A′]) | a ∈ M, g 6∈ V] a,

∃B ∈ L] a, B ∩ S′ = ∅,
compat]A A0 A′} (By Proposition 22)

⊆ ⋃{eval_tlg (ηlc [g, a, S′, A′]) | a ∈ M, g 6∈ V] a,
∃B ∈ L] a, B ∩ S′ = ∅,
compat]A A0 A′} (By Induction Hypothesis)

⊆ ⋃{eval_tlg (γg,a,S′,A′(η
] [g, a, S′, A′])) | a ∈ M, g 6∈ V] a,

∃B ∈ L] a, B ∩ S′ = ∅,
compat]A A0 A′}

⊆ ⋃{γV ](η] [g, a, S′, A′]) | a ∈ M, g 6∈ V] a,
∃B ∈ L] a, B ∩ S′ = ∅,
compat]A A0 A′}

⊆ γV ](
⊔{(η] [g, a, S′, A′]) | a ∈ M, g 6∈ V] a,
∃B ∈ L] a, B ∩ S′ = ∅,
compat]A A0 A′})

⊆ γV ](σ
] g t⊔{(η] [g, a, S′, A′]) | a ∈ M, g 6∈ V] a,
∃B ∈ L] a, B ∩ S′ = ∅,
compat]A A0 A′})

= γV ](σ
]′′ g) = (γ̄ ◦ σ]′′) x

⊆ (γ̄ ◦ σ]′) x

and thus σ′ ⊆ γ̄ ◦ σ]′′ ⊆ γ̄ ◦ σ]′ .
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Altogether, t′ ∈ ηlc [u′, S, A′] holds for all t ∈ ηi−1 [u, S, A0]. We conclude that the return
value of J([u, S, A0], x = g, u′)Klc ηi−1 is subsumed by the value ηlc [u′, S, A′] and since
the constraint causes no side-effects, the claim holds.

Next, consider the constraints for a write to a global g = x. Consider an edge (u, g =

x, u′) ∈ E and digests A′, A0 such that A′ ∈ Ju, g = xK]A(A0). We verify that

J([u, S, A0], g = x, u′)Klc ηi−1 ⊆ (ηlc, ηlc [u′, S, A′])

We have

J([u, S, A0], g = x, u′)Klc η = (∅, J(u, g = x, u′)KT (η [u, S, A0]))

J[u, S, A0], g = xK]η] = let (V], L], σ]) = η] [u, S, A0] in
let V]′′ = {a 7→ (V] a ∪ {g}) | a ∈ M} in
let σ]′′ = σ] ⊕ {g 7→ (σ] x)} in
(∅, (V]′′ , L], σ]′′))

Let η] [u, S, A0] = (V], L], σ]) and η] [u′, S, A′] = (V]′ , L]′ , σ]′) the value provided by
η] for the endpoint of the given control-flow edge, the appropriate lockset, and the
resulting digest. Since η] is a solution of C], V]′′ v V]′ , L] v L]′ , and σ]′′ v σ]′ all hold.
Then, by definition:

ηlc[u′, S, A′] = γu′,S,A′(V]′ , L]′ , σ]′)

= {t ∈ T | loc t = u′, Lt = S, αA t = A′, β t = (V, L, σ),
σ ⊆ γ̄V̄ ] ◦ σ]′ , V v V]′ , L v L]′}

For every trace t ∈ ηi−1 [u, S, A0], let β t = (V, L, σ). By induction hypothesis, V v V],
L v L], and σ ⊆ γ̄ ◦ σ]. Let t′ = J(u, g = x, u′)KT {t}. Then loc t′ = u′, Lt′ = S, αA t′ = A′,
and

β t′ = (V ′, L′, σ′) where

V ′ = {a 7→ {g′ | g′ ∈ G, (_, g′ = x′, ū′) = last_tl_writeg′ t
′, ū ≤ ū′} |

a ∈ M, (_, lock(a), ū) = last_tl_locka t′} ∪
{a 7→ {g′ | g′ ∈ G, (_, g′ = x′, _) = last_tl_writeg′ t

′} |
a ∈ M,⊥ = last_tl_locka t′}

= {a 7→ Va ∪ {g} | a ∈ M}
L′ = {a 7→ {Lt′ [ū]} | a ∈ M, (ū, lock(a), _) = last_tl_locka t′} ∪

{a 7→ ∅ | a ∈ M,⊥ = last_tl_locka t′}
= L

σ′ = {x′ 7→ {t′(x′)} | x′ ∈ X}
∪ {g′ 7→ {0} | g′ ∈ G,⊥ = last_writeg′ t

′}
∪ {g′ 7→ ∅ | g′ ∈ G,⊥ = last_tl_writeg′ t

′,⊥ 6= last_writeg′ t
′}

∪ {g′ 7→ {σj−1 x′} | g′ ∈ G, ((j− 1, uj−1, σj−1), g′ = x′, _) = last_tl_writeg′ t
′}

= σ⊕ {g 7→ σx}
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Thus, L′ = L v L] v L]′ , and

V ′ = {V a ∪ {g} | a ∈ M} v {a 7→ V] a ∪ {g} | a ∈ M} = V]′′ v V]′

σ′ = σ⊕ {g 7→ σ x} ⊆ γ̄ ◦ (σ] ⊕ {g 7→ σ] x}) = γ̄ ◦ σ]′′ ⊆ γ̄ ◦ σ]′

Altogether, t′ ∈ ηlc [u′, S, A′] holds for all t ∈ ηi−1 [u, S, A0]. We conclude that the return
value of J([u, S, A0], g = x, u′)Klc ηi−1 is subsumed by the value ηlc [u′, S, A′] and since
the constraint causes no side-effects, the claim holds.

For constraints corresponding to computations on locals and corresponding to guards,
the right-hand sides for the analysis change the σ components of the abstract states
only. Furthermore, for such actions act, t′ ∈ J(u, act, u′)KT {t}, β t = (L, V, σ), and
β t′ = (L′, V ′, σ′), L = L′ and V = V ′ both hold. It thus suffices to consider the third
component here. As the effect on the σ components of the abstract states in this analysis
is the same as for Write-Centered-Reading, and the definition of the σ-component of
β in Section 6.1.1 is identical to the definition here, the arguments given for these
actions in Section 6.1.1 apply here as well. We conclude that for such actions act and
A′ ∈ Ju, actK]A(A0), the return value of J([u, S, A0], act, u′)Klc ηi−1 is subsumed by the
value ηlc [u′, S, A′] and since the constraints causes no side-effects, the claim holds.

Next, consider the constraints corresponding to locking a mutex a. Consider an
edge (u, lock(a), u′) ∈ E and digests A′, A0 and all appropriate A1 such that A′ ∈
Ju, lock(a)K]A(A0, A1). We verify that

J([u, S, A0], lock(a), u′)Klc ηi−1 ⊆ (ηlc, ηlc [u′, S ∪ {a}, A′])

We have

J([u, S, A0], lock(a), u′)Klc η =

let T1 =
⋃{η [g, a, S′, A1] | g ∈ G, S′ ⊆M, A1 ∈ A, compat]A A0 A1} in

let T2 = {t′ | t ∈ η [u, S, A0], ī = init_v t, ī 6= ⊥, t′ =↓ī (t), compat]A A0 (αA t′)} in
let T = J(u, lock(a), u′)KT (η [u, S, A0], T1 ∪ T2) in
(∅, T)

J[u, S, A0], lock(a)K]η] =

let (V], L], σ]) = η] [u, S, A0] in
let V]′′ = V] ⊕ {a 7→ ∅} in
let L]′′ = L] ⊕ {a 7→ {S}} in
(∅, (V]′′ , L]′′ , σ]))

Let η] [u, S, A0] = (V], L], σ]) and η] [u′, S ∪ {a}, A′] = (V]′ , L]′ , σ]′) the value provided
by η] for the endpoint of the given control-flow edge, the appropriate lockset, and the
resulting digest. Since η] is a solution of C], V]′′ v V]′ , L]′′ v L]′ , and σ] v σ]′ all hold.
Then, by definition:

ηlc[u′, S ∪ {a}, A′] = γu′,S∪{a},A′(V]′ , L]′ , σ]′)

= {t ∈ T | loc t = u′, Lt = S ∪ {a}, αA t = A′, β t = (V, L, σ),
σ ⊆ γ̄V̄ ] ◦ σ]′ , V v V]′ , L v L]′}
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For every trace t ∈ ηi−1 [u, S, A0], let β t = (V, L, σ). By induction hypothesis, V v V],
L v L], and σ ⊆ γ̄ ◦ σ]. Let

t′ ∈ J(u, lock(a), u′)KT ({t},⋃{η [g, a, S′, A1] | g ∈ G, S′ ⊆M, A1 ∈ A, compat]A A0 A1}
∪{t′′ | t′ ∈ η [u, S, A0], ī = init_v t′, ī 6= ⊥, t′′ =↓ī (t

′), compat]A A0 (αA t′′)})
= J(u, lock(a), u′)KT ({t},⋃{η [g, a, S′, A1] | g ∈ G, S′ ⊆M, A1 ∈ A, compat]A A0 A1}

∪{t′ | ī = init_v t, ī 6= ⊥, t′ =↓ī (t)})

where the equality exploits that for a given local trace t and a first lock of a, the second
trace which contains the observed initMT must be a sub-trace of t. Then loc t′ = u′,
Lt′ = S ∪ {a}, αA t′ = A′, and

β t′ = (V ′, L′, σ′) where

V ′ = {a 7→ {g | g ∈ G, (_, g = x, ū′) = last_tl_writeg t′, ū ≤ ū′} |
a ∈ M, (_, lock(a), ū) = last_tl_locka t′} ∪

{a 7→ {g | g ∈ G, (_, g = x, _) = last_tl_writeg t′} |
a ∈ M,⊥ = last_tl_locka t′}

= V ⊕ {a 7→ ∅}
L′ = {a 7→ {Lt′ [ū]} | a ∈ M, (ū, lock(a), _) = last_tl_locka t′} ∪

{a 7→ ∅ | a ∈ M,⊥ = last_tl_locka t′}
= L⊕ {a 7→ {S}}

σ′ = {x 7→ {t′(x)} | x ∈ X}
∪ {g 7→ {0} | g ∈ G,⊥ = last_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′,⊥ 6= last_writeg t′}
∪ {g 7→ {σj−1 x} | g ∈ G, ((j− 1, uj−1, σj−1), g = x, _) = last_tl_writeg t′}

= σ⊕ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′,⊥ 6= last_writeg t′}
⊆ σ

Therefore,
V ′ = V ⊕ {a 7→ ∅} v V] ⊕ {a 7→ ∅} = V]′′ v V]′

L′ = L⊕ {a 7→ {S}} v L] ⊕ {a 7→ {S}} = L]′′ v L]′

σ′ ⊆ σ ⊆ γ̄ ◦ σ] ⊆ γ̄ ◦ σ]′

Altogether, t′ ∈ ηlc [u′, S ∪ {a}, A′] holds for all t ∈ ηi−1 [u, S, A0]. We conclude that the
return value of J([u, S, A0], lock(a), u′)Klc ηi−1 is subsumed by the value ηlc [u′, S∪{a}, A′]
and since the constraint causes no side-effects, the claim holds.

Next, consider the constraints corresponding to unlocking some mutex a. Consider an
edge (u, unlock(a), u′) ∈ E and digests A′, A0 such that A′ ∈ Ju, unlock(a)K]A(A0). We
verify that

J([u, S, A0], unlock(a), u′), A′Klc ηi−1 ⊆ (ηlc, ηlc [u′, S \ {a}, A′])
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We have
J([u, S, A0], unlock(a), u′), A′Klc η =

let T = J(u, unlock(a), u′)KT (η [u, S, A0]) in
let ρ = {[g, a, S \ {a}, A′] 7→ T | g ∈ G} in
(ρ, T)

J[u, S, A0], unlock(a), A′K]η]

let (V], L], σ]) = η] [u, S, A0] in
let ρ] = {[g, a, S \ {a}, A′] 7→ σ] g | g ∈ G} in
(ρ], (V], L], σ]))

Let η] [u, S, A0] = (V], L], σ]) and η] [u′, S \ {a}, A′] = (V]′ , L]′ , σ]′) the value provided
by η] for the endpoint of the given control-flow edge, the appropriate lockset, and the
resulting digest. Since η] is a solution of C], V] v V]′ , L] v L]′ , and σ] v σ]′ all hold.
Then, by definition:

ηlc[u′, S \ {a}, A′] = γu′,S\{a},A′(V]′ , L]′ , σ]′)

= {t ∈ T | loc t = u′, Lt = S \ {a}, αA t = A′, β t = (V, L, σ),
σ ⊆ γ̄V̄ ] ◦ σ]′ , V v V]′ , L v L]′}

For every trace t ∈ ηi−1 [u, S, A0], let β t = (V, L, σ). By induction hypothesis, V v V],
L v L], and σ ⊆ γ̄ ◦ σ]. Let t′ = J(u, unlock(a), u′)KT {t}. Then loc t′ = u′, Lt′ = S \ {a},
αA t′ = A′, and

β t′ = (V ′, L′, σ′) where

V ′ = {a 7→ {g | g ∈ G, (_, g = x, ū′) = last_tl_writeg t′, ū ≤ ū′} |
a ∈ M, (_, lock(a), ū) = last_tl_locka t′} ∪

{a 7→ {g | g ∈ G, (_, g = x, _) = last_tl_writeg t′} |
a ∈ M,⊥ = last_tl_locka t′}

= V

L′ = {a 7→ {Lt′ [ū]} | a ∈ M, (ū, lock(a), _) = last_tl_locka t′} ∪
{a 7→ ∅ | a ∈ M,⊥ = last_tl_locka t′}

= L

σ′ = {x 7→ {t′(x)} | x ∈ X}
∪ {g 7→ {0} | g ∈ G,⊥ = last_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′,⊥ 6= last_writeg t′}
∪ {g 7→ {σj−1 x} | g ∈ G, ((j− 1, uj−1, σj−1), g = x, _) = last_tl_writeg t′}

= σ

Thus, V = V ′ v V] v V]′ , and L = L′ v L] v L]′ , and σ′ = σ ⊆ γ̄ ◦ σ] ⊆ γ̄ ◦ σ]′ .
Altogether, t′ ∈ ηlc [u′, S \ {a}, A′] holds for all t ∈ ηi−1 [u, S, A0]. We conclude that
the return value of J([u, S, A0], unlock(a), u′), A′Klc ηi−1 is subsumed by the value of the
unknown ηlc [u′, S ∪ {a}, A′]. Next, we consider the side-effects of the corresponding
right-hand-side functions. For each g ∈ G, we distinguish two cases for t′:
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• last_tl_writeg t′ = ⊥: Then, a side-effect {[g, a, S \ {a}, A′] 7→ {t′}} is caused. This
side-effect is accounted for by construction of ηlc:

t′ ∈ {t ∈ T | last t = unlock(a), Lt = S \ {a}, αA t = A, last_tl_writeg t = ⊥}
⊆ ηlc [g, a, S \ {a}, A]

• last_tl_writeg t′ = ((j− 1, uj−1, σj−1), g = x, ū′) with (j− 1, uj−1, σj−1) = ū: Then

the side-effects caused to unknowns associated with g in C]lc and C], respectively,
are given by

ρ′ = {[g, a, S \ {a}, A′] 7→ {t′}}
ρ]
′

= {[g, a, S \ {a}, A′] 7→ σ] g}
We have σ g = {σj−1 x} ⊆ (γ̄ ◦ σ])g. Furthermore, as η] is a solution of C], we
have σ] g v η] [g, a, S \ {a}, A′]. Thus, we have

t′ ∈ γg,a,S\{a},A′(σ
] g) ⊆ ηlc [g, a, S \ {a}, A′]

Hence, all side-effects for unlock(a) of Clc are accounted for in ηlc, and the claim holds.

Next, consider the constraints corresponding to starting a new thread. Consider an edge
(u, x = create(u1), u′) ∈ E and digests A′, A0 such that A′ ∈ Ju, x = create(u1)K

]
A(A0).

We verify that

J([u, S, A0], x = create(u1), u′)Klc ηi−1 ⊆ (ηlc, ηlc [u′, S, A′])

We have

J([u, S, A0], x = create(u1), u′)Klc η =

let T = J(u, x = create(u1), u′)KT (η [u, S, A0]) in
let ρ = {[u1, ∅, new]

A u u1 A0] 7→ new u1 (η [u, S, A0])} in
(ρ, T)

J[u, S, A0], x = create(u1)K]η] =

let (V], L], σ]) = η] [u, S, A0] in
let V]

ρ = {a 7→ ∅ | a ∈ M} in
let L]

ρ = {a 7→ ∅ | a ∈ M} in
let i = ν] u σ u1 in
let σ]

ρ = σ] ⊕
(
{self 7→ i} ∪

{
g 7→

(
σ g u J0K]Exp>

)
| g ∈ G

})
in

let ρ] = {[u1, ∅, new]
A u u1 A0] 7→ (V]

ρ , L]
ρ, σ]

ρ)} in
let σ]′′ = σ] ⊕ {x 7→ i} in
(ρ], (V], L], σ]′′))

where we, for notational convenience, denote by new]
A u u1 A0 the only element of this

singleton set. Let η] [u, S, A0] = (V], L], σ]) and η] [u′, S, A′] = (V]′ , L]′ , σ]′) the value
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provided by η] for the endpoint of the given control-flow edge, the appropriate lockset,
and the resulting digest. Since η] is a solution of C], V] v V]′ , L] v L]′ , and σ]′′ v σ]′

all hold. Then, by definition:

ηlc[u′, S, A′] = γu′,S,A′(V]′ , L]′ , σ]′)

= {t ∈ T | loc t = u′, Lt = S, αA t = A′, β t = (V, L, σ),
σ ⊆ γ̄V̄ ] ◦ σ]′ , V v V]′ , L v L]′}

For every trace t ∈ ηi−1 [u, S, A0], let β t = (V, L, σ). By induction hypothesis, V v V],
L v L], and σ ⊆ γ̄ ◦ σ]. Let t′ = J(u, x = create(u1), u′)KT {t}. Then loc t′ = u′, Lt′ = S,
αA t′ = A′, and

β t′ = (V ′, L′, σ′) where

V ′ = {a 7→ {g | g ∈ G, (_, g = x, ū′) = last_tl_writeg t′, ū ≤ ū′} |
a ∈ M, (_, lock(a), ū) = last_tl_locka t′} ∪

{a 7→ {g | g ∈ G, (_, g = x, _) = last_tl_writeg t′} |
a ∈ M,⊥ = last_tl_locka t′}

= V

L′ = {a 7→ {Lt′ [ū]} | a ∈ M, (ū, lock(a), _) = last_tl_locka t′} ∪
{a 7→ ∅ | a ∈ M,⊥ = last_tl_locka t′}

= L

σ′ = {x′ 7→ {t′(x′)} | x′ ∈ X}
∪ {g 7→ {0} | g ∈ G,⊥ = last_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′,⊥ 6= last_writeg t′}
∪ {g 7→ {σj−1 x′} | g ∈ G, ((j− 1, uj−1, σj−1), g = x′, _) = last_tl_writeg t′}

= σ⊕ {x 7→ {ν(t)}}

Thus V ′ = V v V] v V]′ , L′ = L v L] v L]′ , and as ν(t) ∈ γV ]tid
(ν] u σ] u1) by (3.2),

σ′ = σ⊕ {x 7→ {ν(t)}} ⊆ γ̄ ◦ (σ] ⊕ {x 7→ ν] u σ] u1}) = γ̄ ◦ σ]′′

⊆ γ̄ ◦ σ]′

Altogether, t′ ∈ ηlc [u′, S, A′] holds for all t ∈ ηi−1 [u, S, A0]. We conclude that the return
value of J([u, S, A0], x = create(u1), u′)Klc ηi−1 is subsumed by the value ηlc [u′, S, A′].

Next, we consider the side-effects of the corresponding right-hand-side functions for
a t as considered previously.

ρ = {[u1, ∅, new]
A u u1 A0] 7→ new u1 t}

ρ] = {[u1, ∅, new]
A u u1 A0] 7→ (V]

ρ , L]
ρ, σ]

ρ)}

Let η] [u1, ∅, new]
A u u1 A0] = (V]′

ρ , L]′
ρ , σ]′

ρ ) the value provided by C] for the unknown

receiving the side-effect. Since η] is a solution of C], V]
ρ v V]′

ρ , L]
ρ v L]′

ρ , and σ]
ρ v σ]′

ρ
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hold. By definition:

ηlc[u1, ∅, new]
A u u1 A0]

= γu1,∅,new]
A u u1 A0

(V]′
ρ , L]′

ρ , σ]′
ρ )

= {t ∈ T | loc t = u′, Lt = ∅, αA t = new]
A u u1 A0, β t = (V, L, σ),

σ ⊆ γ̄V̄ ] ◦ σ]′
ρ , V v V]′

ρ , L v L]′
ρ }

Let t′′ = new u1 {t}. Then, loc t′′ = u1, Lt′′ = ∅, αA t′′ = new]
A u u1 A0, and

β t′′ = (Vρ, Lρ, σρ) where

Vρ = {a 7→ {g | g ∈ G, (_, g = x, ū′) = last_tl_writeg t′′, ū ≤ ū′} |
a ∈ M, (_, lock(a), ū) = last_tl_locka t′′} ∪

{a 7→ {g | g ∈ G, (_, g = x, _) = last_tl_writeg t′′} |
a ∈ M,⊥ = last_tl_locka t′′}

= {a 7→ ∅ | a ∈ M}
Lρ = {a 7→ {Lt′′ [ū]} | a ∈ M, (ū, lock(a), _) = last_tl_locka t′′} ∪

{a 7→ ∅ | a ∈ M,⊥ = last_tl_locka t′′}
= {a 7→ ∅ | a ∈ M}

σρ = {x′ 7→ {t′′(x′)} | x′ ∈ X}
∪ {g 7→ {0} | g ∈ G,⊥ = last_writeg t′′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′′,⊥ 6= last_writeg t′′}
∪ {g 7→ {σj−1 x′} | g ∈ G, ((j− 1, uj−1, σj−1), g = x′, _) = last_tl_writeg t′′}

= σ⊕ ({self 7→ {ν(t)}}
∪ {g 7→ ({0} ∩ σ g) | g ∈ G,⊥ = last_writeg t′′})
∪ {g 7→ ∅ | g ∈ G,⊥ 6= last_writeg t′′}

Therefore,

Vρ = {a 7→ ∅ | a ∈ M} = V]
ρ v V]′

ρ

Lρ = {a 7→ ∅ | a ∈ M} = L]
ρ v L]′

ρ

σρ = σ⊕ ({self 7→ {ν(t)}}
∪ {g 7→ ({0} ∩ σ g) | g ∈ G,⊥ = last_writeg t′′})
∪ {g 7→ ∅ | g ∈ G,⊥ 6= last_writeg t′′}

⊆
(
γ̄ ◦ (σ] ⊕ {self 7→ ν] u σ] u1})

)
⊕ ({g 7→ ({0} ∩ σ g) | g ∈ G,⊥ = last_writeg t′′}
∪ {g 7→ ∅ | g ∈ G,⊥ 6= last_writeg t′′})

⊆
(
γ̄ ◦ (σ] ⊕ {self 7→ ν] u σ] u1})

)
⊕ {g 7→ ({0} ∩ σ g) | g ∈ G}

⊆ γ̄ ◦
(

σ] ⊕
(
{self 7→ ν] u σ] u1} ∪

{
g 7→

(
σ] g u J0K]Exp>

)
| g ∈ G

}))
= γ̄ ◦ σ]

ρ ⊆ γ̄ ◦ σ]′
ρ

Altogether, t′′ ∈ ηlc [u1, ∅, new]
A u u1 A0] holds for all t ∈ ηi−1 [u, S, A0]. Hence, all

side-effects for x = create(u1) of Clc are accounted for in ηlc and the claim holds.
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Next, consider the constraints corresponding to returning from a thread. Consider an
edge (u, return, u′) ∈ E and digests A′, A0 such that A′ ∈ Ju, returnK]A(A0). We verify
that

J([u, S, A0], return, u′)Klc ηi−1 ⊆ (ηlc, ηlc [u′, S, A′])

We have

J([u, S, A0], return, u′), A′Klc η = let T = J(u, return, u′)KT (η [u, S, A0]) in
let ρ = {[i, A′] 7→ {t | t ∈ T, id t = i} | i ∈ Vtid} in
(ρ, T)

J[u, S, A0], return, A′K]η] = let (V], L], σ]) = η] [u, S, A0] in
let I = σ] self in
let v]ρ = σ] ret in
let ρ] =

{
[i, A′] 7→ v]ρ | i ∈ I

}
in(

ρ], (V], L], σ])
)

Let η] [u, S, A0] = (V], L], σ]) and η] [u′, S, A′] = (V]′ , L]′ , σ]′) the value provided by
η] for the endpoint of the given control-flow edge, the appropriate lockset, and the
resulting digest. Since η] is a solution of C], V] v V]′ , L] v L]′ , and σ] v σ]′ all hold.
Then, by definition:

ηlc[u′, S, A′] = γu′,S,A′(V]′ , L]′ , σ]′)

= {t ∈ T | loc t = u′, Lt = S, αA t = A′, β t = (V, L, σ),
σ ⊆ γ̄V̄ ] ◦ σ]′ , V v V]′ , L v L]′}

For every trace t ∈ ηi−1 [u, S, A0], let β t = (V, L, σ). By induction hypothesis, V v V],
L v L], and σ ⊆ γ̄ ◦ σ]. Let t′ = J(u, return, u′)KT {t}. Then loc t′ = u′, Lt′ = S, αA t′ = A′,
and

β t′ = (V ′, L′, σ′) where

V ′ = {a 7→ {g | g ∈ G, (_, g = x, ū′) = last_tl_writeg t′, ū ≤ ū′} |
a ∈ M, (_, lock(a), ū) = last_tl_locka t′} ∪

{a 7→ {g | g ∈ G, (_, g = x, _) = last_tl_writeg t′} |
a ∈ M,⊥ = last_tl_locka t′}

= V

L′ = {a 7→ {Lt′ [ū]} | a ∈ M, (ū, lock(a), _) = last_tl_locka t′} ∪
{a 7→ ∅ | a ∈ M,⊥ = last_tl_locka t′}

= L

σ′ = {x′ 7→ {t′(x′)} | x′ ∈ X}
∪ {g 7→ {0} | g ∈ G,⊥ = last_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′,⊥ 6= last_writeg t′}
∪ {g 7→ {σj−1 x′} | g ∈ G, ((j− 1, uj−1, σj−1), g = x′, _) = last_tl_writeg t′}

= σ
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Thus V ′ = V v V] v V]′ , L′ = L v L] v L]′ , and σ′ = σ ⊆ γ̄ ◦ σ] ⊆ γ̄ ◦ σ]′ . Altogether,
t′ ∈ ηlc [u′, S, A′] holds for all t ∈ ηi−1 [u, S, A0]. We conclude that the return value of
J([u, S, A0], return, u′)Klc ηi−1 is subsumed by the value ηlc [u′, S, A′].

Next, we consider the side-effects of the corresponding right-hand-side functions for
local traces t and t′ as considered previously.

ρ = {[id t′, A′] 7→ {t′}}
ρ] =

{
[i], A′] 7→ v]ρ | i] ∈ σ] self

}
where we use that id t = id t′. As σ ⊆ γ̄ ◦ σ], we have {id t′} = σ self ⊆ γV ]tid

(σ] self). As

V ]
tid is a powerset lattice, and the concretization is defined by the union of concretizations

of the singleton sets, there is at least one i]ρ ∈ σ] self, such that id t′ ∈ γV ]tid
{i]ρ}. Consider

one such i]ρ, and let η] [i]ρ, A′] = v]
′

ρ the value provided by C] for this unknown receiving

the side-effect. Since η] is a solution of C], v]ρ v v]
′

ρ holds. By definition:

ηlc[id t′, A′] =
⋃{γ(id t′),A′(η

] [i], A′]) | i] ∈ SV ]tid
, id t′ ∈ (γV ]tid

{i]})}

Now consider
γ(id t′),A′(η

] [i]ρ, A′]) ⊆ ηlc[id t′, A′]

Then, by definition:

γ(id t′),A′(η
] [i]ρ, A′]) = γ(id t′),A′

(
v]
′

ρ

)
= {t′′ ∈ T | last t′′ = return, αA t′′ = A′, id t′′ = id t′, t′′(ret) ∈ γV ](v

]′
ρ )}

Then last t′ = return, αA t′ = A′, (vacuously id t′ = id t′), and

t′(ret) ∈ σ ret ⊆ (γ̄ ◦ σ]) ret ⊆ γV ]((σ
]) ret) = γV ](v

]
ρ) ⊆ γV ](v

]′
ρ )

Altogether, t′ ∈ ηlc [id t, A′] holds for all t ∈ ηi−1 [u, S, A0]. Hence, all side-effects for
return of Clc are accounted for in ηlc, and the claim holds.

Next, consider the constraints corresponding to calling join. Consider an edge (u, x =

join(x′), u′) ∈ E and digests A′, A0 and all appropriate A1 such that A′ ∈ Ju, x =

join(x′)K]A(A0, A1). We verify that

J([u, S, A0], x = join(x′), u′)Klc ηi−1 ⊆ (ηlc, ηlc [u′, S, A′])

We have

J([u, S, A0], x = join(x′), u′)Klc η =

let T1 =
⋃{η [t(x′), A1] | t ∈ η [u, S, A0], A1 ∈ A, compat]A A0 A1} in

let T = J(u, x = join(x′), u′)KT (η [u, S, A0], T1) in
(∅, T)
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J[u, S, A0], x = join(x′)K]η] =

let (V], L], σ]) = η] [u, S, A0] in
let v] =

⊔
i′∈(σ] x′)

(⊔
A1∈A, compat]A A0 A1

(η][i′, A1])
)

in

if v] = ⊥ then
(∅,⊥)

else
let σ]′′ = σ] ⊕ {x 7→ v]} in
(∅, (V], L], σ]′′))

Let η] [u, S, A0] = (V], L], σ]) and η] [u′, S, A′] = (V]′ , L]′ , σ]′) the value provided by
η] for the endpoint of the given control-flow edge, the appropriate lockset, and the
resulting digest. Since η] is a solution of C], we either have

(1) v] = ⊥; or

(2) V] v V]′ , L] v L]′ , and σ]′′ v σ]′ all hold.

Then, by definition:

ηlc[u′, S, A′] = γu′,S,A′(V]′ , L]′ , σ]′)

= {t ∈ T | loc t = u′, Lt = S, αA t = A′, β t = (V, L, σ),
σ ⊆ γ̄V̄ ] ◦ σ]′ , V v V]′ , L v L]′}

For every trace t ∈ ηi−1 [u, S, A0], let β t = (V, L, σ). By induction hypothesis, V v V],
L v L], and σ ⊆ γ̄ ◦ σ]. Let

T′ = J(u, x = join(x′), u′)KT ({t},⋃{ηi−1 [(t′(x′)), A1] | t′ ∈ ηi−1 [u, S, A0], A1 ∈ A, compat]A A0 A1})
= J(u, x = join(x′), u′)KT ({t},

⋃{ηi−1 [(t(x′)), A1] | A1 ∈ A, compat]A A0 A1})
where the equality exploits that for a given local trace t, J(u, x = join(x′), u′)KT ({t}, {t′})
only yields a non-empty set if the thread id of the thread being joined is the one stored
in x′. We distinguish the case where the resulting set of traces is non-empty and the
case where it is empty. If T′ is empty, it is subsumed by ηlc [u′, S, A′] vacuously.

Consider thus a t′ ∈ T′ and t′′ ∈ ⋃{ηi−1 [(t(x′)), A1] | A1 ∈ A, compat]A A0 A1} such
that {t′} = J(u, x = join(x′), u′)KT ({t}, {t′′}) Then loc t′ = u′, Lt′ = S, αA t′ = A′, and

β t′ = (V ′, L′, σ′) where

V ′ = {a 7→ {g | g ∈ G, (_, g = x, ū′) = last_tl_writeg t′, ū ≤ ū′} |
a ∈ M, (_, lock(a), ū) = last_tl_locka t′} ∪

{a 7→ {g | g ∈ G, (_, g = x, _) = last_tl_writeg t′} |
a ∈ M,⊥ = last_tl_locka t′}

= V

L′ = {a 7→ {Lt′ [ū]} | a ∈ M, (ū, lock(a), _) = last_tl_locka t′} ∪
{a 7→ ∅ | a ∈ M,⊥ = last_tl_locka t′}

= L
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σ′ = {x′′ 7→ {t′(x′′)} | x′′ ∈ X}
∪ {g 7→ {0} | g ∈ G,⊥ = last_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′,⊥ 6= last_writeg t′}
∪ {g 7→ {σj−1 x′′} | g ∈ G, ((j− 1, uj−1, σj−1), g = x′′, _) = last_tl_writeg t′}

= σ⊕ ({g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′,⊥ 6= last_writeg t′}
∪{x 7→ t′′(ret)})

⊆ σ⊕ {x 7→ t′′(ret)}
Thus V ′ = V v V] and L′ = L v L]. To show that t′ ∈ ηlc [u′, S, A′], it thus remains
to show that v] 6= ⊥ holds (and thus V] v V]′ , L] v L]′ also hold) and to relate
σ⊕ {x 7→ t′′(ret)} to γ̄ ◦ σ]′ . To this end, we first relate t′′(ret) to v]. We have

t′′ ∈ ⋃{ηi−1 [t(x′), A1] | A1 ∈ A, compat]A A0 A1}
⊆ ⋃{ηlc [t(x′), A1] | A1 ∈ A, compat]A A0 A1}
=

⋃{⋃{γt(x′),A1
(η] [i], A1]) | t(x′) ∈ (γV ]tid

{i]})} | A1 ∈ A, compat]A A0 A1}
⊆ ⋃{⋃{γt(x′),A1

(η] [i], A1]) | i] ∈ σ] x′} | A1 ∈ A, compat]A A0 A1}

and therefore

{t′′(ret)}
⊆ {t′′′(ret) | t′′′ ∈ (

⋃{⋃{γt(x′),A1
(η] [i], A1]) | i] ∈ σ] x′}

| A1 ∈ A, compat]A A0 A1})}
⊆ {t′′′(ret) | t′′′ ∈ (

⋃{γt(x′),A1

⊔{(η] [i], A1]) | i] ∈ σ] x′}
| A1 ∈ A, compat]A A0 A1})}

⊆ {t′′′(ret) | t′′′ ∈ (
⋃{{t̄ ∈ T | last (t̄) = return, αA (t̄) = A1, id t̄ = t(x′),

t̄(ret) ∈ γV ](
⊔{(η] [i], A1]) | i] ∈ σ] x′})}

| A1 ∈ A, compat]A A0 A1})} (by def. of γt(x′),A1
)

⊆ ⋃{{t̄(ret) | t̄ ∈ T , last (t̄) = return, αA (t̄) = A1, id t̄ = t(x′),
t̄(ret) ∈ γV ](

⊔{(η] [i], A1]) | i] ∈ σ] x′})}
| A1 ∈ A, compat]A A0 A1}

⊆ ⋃{γV ](⊔{(η] [i], A1]) | i] ∈ σ] x′}) | A1 ∈ A, compat]A A0 A1}
⊆ γV ](

⊔{⊔{(η] [i], A1]) | i] ∈ σ] x′} | A1 ∈ A, compat]A A0 A1})
⊆ γV ]

(⊔
i]∈σ] x′

(⊔
A1∈A, compat]A A0 A1

(η[i], A1])
))

= γV ](v
])

As a consequence and as γV ](⊥) = ∅, we obtain v] 6= ⊥. Thus, we also have V] v V]′ ,
L] v L]′ , and σ]′′ v σ]′ . Also,

σ′ ⊆ σ⊕ {x 7→ t′′(ret)} ⊆ (γ̄ ◦ σ])⊕ {x 7→ t′′(ret)} ⊆ γ̄ ◦ (σ] ⊕ {x 7→ v]}) = γ̄ ◦ σ]′′

Thus, V ′ = V v V] v V]′ , L′ = L v L] v L]′ , and σ′ ⊆ γ̄ ◦ σ]′′ ⊆ γ̄ ◦ σ]′ . Altogether,
t′ ∈ ηlc [u′, S, A′] holds for all t ∈ ηi−1 [u, S, A0]. We conclude that the return value
of J([u, S, A0], x = join(x′), u′), A′Klc ηi−1 is subsumed by the value ηlc [u′, S, A′] in both
cases. As neither constraint causes any side-effects, the statement holds.
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Next, consider the constraints corresponding to calling signal. Consider an edge
(u, signal(s), u′) ∈ E and digests A′, A0 such that A′ ∈ Ju, signal(s)K]A(A0). We verify that

J([u, S, A0], signal(s), u′), A′Klc ηi−1 ⊆ (ηlc, ηlc [u′, S, A′])

We have
J([u, S, A0], signal(s), u′), A′Klc η =

let T = J(u, signal(s), u′)KT (η [u, S, A0]) in
let ρ = {[s, A′] 7→ T} in
(ρ, T)

J[u, S, A0], signal(s), A′K]η] =

let (V], L], σ]) = η] [u, S, A0] in
let ρ] =

{
[s, A′] 7→ (V], L], σ])

}
in(

ρ], (V], L], σ])
)

Let η] [u, S, A0] = (V], L], σ]) and η] [u′, S, A′] = (V]′ , L]′ , σ]′) the value provided by
η] for the endpoint of the given control-flow edge, the appropriate lockset, and the
resulting digest. Since η] is a solution of C], we have V] v V]′ , L] v L]′ , and σ] v σ]′ .
Then, by definition:

ηlc[u′, S, A′] = γu′,S,A′(V]′ , L]′ , σ]′)

= {t ∈ T | loc t = u′, Lt = S, αA t = A′, β t = (V, L, σ),
σ ⊆ γ̄V̄ ] ◦ σ]′ , V v V]′ , L v L]′}

For every trace t ∈ ηi−1 [u, S, A0], let β t = (V, L, σ). By induction hypothesis, V v V],
L v L], and σ ⊆ γ̄ ◦ σ]. Let t′ = J(u, signal(s), u′)KT {t}. Then loc t′ = u′, Lt′ = S,
αA t′ = A′, and

β t′ = (V ′, L′, σ′) where

V ′ = {a 7→ {g | g ∈ G, (_, g = x, ū′) = last_tl_writeg t′, ū ≤ ū′} |
a ∈ M, (_, lock(a), ū) = last_tl_locka t′} ∪

{a 7→ {g | g ∈ G, (_, g = x, _) = last_tl_writeg t′} |
a ∈ M,⊥ = last_tl_locka t′}

= V

L′ = {a 7→ {Lt′ [ū]} | a ∈ M, (ū, lock(a), _) = last_tl_locka t′} ∪
{a 7→ ∅ | a ∈ M,⊥ = last_tl_locka t′}

= L

σ′ = {x′ 7→ {t′(x′)} | x′ ∈ X}
∪ {g 7→ {0} | g ∈ G,⊥ = last_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′,⊥ 6= last_writeg t′}
∪ {g 7→ {σj−1 x′} | g ∈ G, ((j− 1, uj−1, σj−1), g = x′, _) = last_tl_writeg t′}

= σ
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Thus V ′ = V v V] v V]′ , L′ = L v L] v L]′ , and σ′ = σ ⊆ γ̄ ◦ σ] ⊆ γ̄ ◦ σ]′ . Altogether,
t′ ∈ ηlc [u′, S, A′] holds for all t ∈ ηi−1 [u, S, A0]. We conclude that the return value of
J([u, S, A0], signal(s), u′), A′Klc ηi−1 is subsumed by the value ηlc [u′, S, A′].

Next, we consider the side-effects of the corresponding right-hand-side functions for
local traces t and t′ as considered previously.

ρ = {[s, A′] 7→ T}
ρ] = {[s, A′] 7→ (V], L], σ])}

Let η] [s, A′] = (V]
ρ , L]

ρ, σ]
ρ) the value provided by C] for the unknown receiving the

side-effect. Since η] is a solution of C], V] v V]
ρ , L] v L]

ρ, and σ] v σ]
ρ hold. By

definition:

ηlc[s, A′] = γs,A′(η
] [s, A′])

= {t ∈ T | last t = signal(s), αA t = A′, β t = (V, L, σ), σ ⊆ γ̄ ◦ σ]
ρ, V v V]

ρ , L v L]
ρ}

Consider a trace t′ as above: Then last t′ = signal(s), αA t′ = A′, and V ′ = V v V] v V]
ρ ,

L′ = L v L] v L]
ρ, and σ′ = σ ⊆ γ̄ ◦ σ] ⊆ γ̄ ◦ σ]

ρ Altogether, t′ ∈ ηlc [s, A′] holds for all
t ∈ ηi−1 [u, S, A0]. Hence, all side-effects for signal(s) of Clc are accounted for in ηlc, and
the claim holds.

Lastly, consider the constraints corresponding to a call of wait. Consider an edge
(u,wait(s), u′) ∈ E and digests A′, A0 and all appropriate A1 such that the resulting
digest A′ ∈ Ju,wait(s)K]A(A0, A1). We verify that

J([u, S, A0],wait(s), u′)Klc ηi−1 ⊆ (ηlc, ηlc [u′, S, A′])

We have
J([u, S, A0],wait(s), u′)Klc η =

let T1 =
⋃{η [s, A1] | A1 ∈ A, compat]A A0 A1} in

let T = J(u,wait(s), u′)KT (η [u, S, A0], T1) in
(∅, T)

J[u, S, A0],wait(s)K]η] =

let (V], L], σ]) = η] [u, S, A0] in
if
((⊔

A′∈A, compat]A A0 A′ η
] [s, A′]

)
= ⊥

)
then

(∅,⊥)
else

(∅, (V], L], σ]))

Let η] [u, S, A0] = (V], L], σ]) and η] [u′, S, A′] = (V]′ , L]′ , σ]′) the value provided by
η] for the endpoint of the given control-flow edge, the appropriate lockset, and the
resulting digest. Since η] is a solution of C], we either have

(1)
(⊔

A′∈A, compat]A A0 A′ η
] [s, A′]

)
= ⊥; or
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(2) V] v V]′ , L] v L]′ , and σ] v σ]′ all hold.

Then, by definition:

ηlc[u′, S, A′] = γu′,S,A′(V]′ , L]′ , σ]′)

= {t ∈ T | loc t = u′, Lt = S, αA t = A′, β t = (V, L, σ),
σ ⊆ γ̄V̄ ] ◦ σ]′ , V v V]′ , L v L]′}

For every trace t ∈ ηi−1 [u, S, A0], let β t = (V, L, σ). By induction hypothesis, V v V],
L v L], and σ ⊆ γ̄ ◦ σ]. Let

T′ = J(u,wait(s), u′)KT ({t},
⋃{ηi−1 [s, A1] | A1 ∈ A, compat]A A0 A1})

We distinguish the case where the resulting set of traces is non-empty, and the case
where it is. If T′ is empty, it is subsumed by ηlc [u′, S, A′] vacuously. Consider
thus a t′ ∈ T′ and t′′ ∈ ⋃{ηi−1 [s, A1] | A1 ∈ A, compat]A A0 A1} such that {t′} =

J(u,wait(s), u′)KT ({t}, {t′′}).
By induction hypothesis, we have

t′′ ∈ ⋃{ηi−1 [s, A1] | A1 ∈ A, compat]A A0 A1}
⊆ ⋃{ηlc [s, A1] | A1 ∈ A, compat]A A0 A1}
=

⋃{γs,A1(η
] [s, A1]) | A1 ∈ A, compat]A A0 A1}

and thus as γs,A1(⊥) = ∅ for any A1 ∈ A, there is at least one A1 ∈ A for which

compat]A A0 A1 holds and where η] [s, A1] 6= ⊥. Thus,
(⊔

A′∈A, compat]A A0 A′ η
] [s, A′]

)
6=

⊥ and (1) does not hold. We thus have that (2) V] v V]′ , L] v L]′ , and σ] v σ]′ all hold.
Consider again the trace t′. Then loc t′ = u′, Lt′ = S, αA t′ = A′, and

β t′ = (V ′, L′, σ′) where

V ′ = {a 7→ {g | g ∈ G, (_, g = x, ū′) = last_tl_writeg t′, ū ≤ ū′} |
a ∈ M, (_, lock(a), ū) = last_tl_locka t′} ∪

{a 7→ {g | g ∈ G, (_, g = x, _) = last_tl_writeg t′} |
a ∈ M,⊥ = last_tl_locka t′}

= V

L′ = {a 7→ {Lt′ [ū]} | a ∈ M, (ū, lock(a), _) = last_tl_locka t′} ∪
{a 7→ ∅ | a ∈ M,⊥ = last_tl_locka t′}

= L

σ′ = {x′ 7→ {t′(x′)} | x′ ∈ X}
∪ {g 7→ {0} | g ∈ G,⊥ = last_writeg t′}
∪ {g 7→ ∅ | g ∈ G,⊥ = last_tl_writeg t′,⊥ 6= last_writeg t′}
∪ {g 7→ {σj−1 x′} | g ∈ G, ((j− 1, uj−1, σj−1), g = x′, _) = last_tl_writeg t′}

= σ
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Thus V ′ = V v V] v V]′ , L′ = L v L] v L]′ , and σ′ = σ ⊆ γ̄ ◦ σ] ⊆ γ̄ ◦ σ]′ .
Altogether, t′ ∈ ηlc [u′, S, A′] holds for all t ∈ ηi−1 [u, S, A0] and t′′ ∈ ⋃{ηi−1 [s, A1] |
A1 ∈ A, compat]A A0 A1}.

As neither constraint causes any side-effects, the statement holds for edges corre-
sponding to calls of wait(s).

This concludes the case distinction for the inductive step and thus the soundness
proof for Lock-Centered Reading with ego-lane digests.

6.1.3 Protection-Based Reading

To prove the Protection-Based Reading with Ego-Lane Digests analysis sound, we show
that we can construct from its solution a solution of the constraint system for the Write-
Centered Reading with Ego-Lane Digests analysis described in Section 4.1.7. Consider
some ego-lane digest A and an appropriate definition of compat]A. Let us refer to the
constraint system of the analysis from Section 4.1.2 refined with A by C]pb.

To relate the constraint system C]pb to the constraint system for Write-Centered Reading
with Ego-Lane Digests we introduce some additional side-effects which we will argue are
benign for least solutions.

Thus, we first need to establish that the constraint system C]pb has a least solution as
observed in Remark 6. As we will later use a fixpoint induction in one of the proof
steps, we establish the stronger property that this least solution is in fact attained as the
least-upper bound of the Kleene iterates.

We first observe that, the set of all (type-preserving) maps from unknowns used by
C]pb to values from their respective abstract domains forms a complete lattice with least
element ⊥ = {x 7→ ⊥x | x ∈ X}, greatest element > = {x 7→ >x | x ∈ X}, and the least
upper bound defined point-wise. ⊥x and >x here refers to the ⊥ and > value for the
lattice associated with unknowns of the same type as x, respectively.

Proposition 23. The right-hand side function of constraint system C]pb over the lattice given
above is Scott-continuous.

Proof. We first re-write the right-hand sides and collect all of them in one constraint
with the help of a function flat[x](S, V) = S ∪ {[x] 7→ V} akin to the one introduced in
Section 2.2.2 for tuples of concrete values.

As the function init(A)] is constant, it also is Scott-continuous. As flat[x] is Scott-
continuous for all x ∈ X, it thus suffices to check that all J[u, S, A0, ], actK] respectively
J[u, S, A0, ], act, A′K] are Scott-continuous for all possible actions. For create edges, this
follows from the Scott-continuity of ν] , π[x] for [x] ∈ X, and of the map replacement
operation ⊕. initMT and locking return the unmodified state at their predecessor and
are thus Scott-continuous. For assignment to a global variable, Scott-continuity follows
from the Scott-continuity of adding an element to a set, the operator ⊕ and the access of
a value in the map. Similarly, for guards. For unlocking of a mutex, we observe that
the unknowns receiving side-effects are fixed. Scott-continuity then follows from the
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Scott-continuity of accessing elements in the map. For reading from a global at a given
constraint, it is fixed whether the primed or unprimed versions of a value will be read.
As the order on P is reversed, the resulting right-hand side is also Scott-continuous. For
return, Scott-continuity is a result of the definition of the thread id domain — the same
holds for join. For signal, the argument is distributed to two different unknowns, which
also is Scott-continuous. Lastly, wait returns its argument provided its other argument
is non-⊥ which once more is Scott-continuous.

Thus, the right-hand side is given as the least upper bound of (compositions of)
functions that are Scott-continuous, and is thus also Scott-continuous.

Proposition 24. The constraint system C]pb has a least solution which is obtained as the least-
upper bound of all Kleene iterates.

To simplify the next steps of the proof, we make some adjustments to this con-
straint system and call the new constraint system C] ′pb. In particular, we modify
J[u, S, A0], unlock(mg), A′K]pb and J[u, S, A0], unlock(a), A′K]pb by introducing some addi-
tional side-effects (highlighted in color below). First, we consider unlocking a mutex mg

for some g ∈ G.

J[u, S, A0], unlock(mg), A′K] ′pbη =

let (P, σ) = η [u, S, A0] in
let P′ = {h ∈ P | ((S \ {mg}) ∩ M̄[h]) 6= ∅} in
let ρ0 = {[g, A′]′ 7→ σ g} ∪ {[g, A′] 7→ σ g | M̄[g] = {mg}} in
let ρ1 = {[h, A′]′ 7→ σ h | h ∈ G \ {g}} in
let ρ2 = {[h, A′] 7→ σ h | h ∈ G, (M̄[h] \ {mh}) 6⊆ S \ {mg}} in
(ρ0 ∪ ρ1 ∪ ρ2, (P′, σ))

Next, for a mutex a 6∈ {mg | g ∈ G}:

J[u, S, A0], unlock(a), A′K] ′pbη =

let (P, σ) = η [u, S, A0] in
let P′ = {g ∈ P | ((S \ {a}) ∩ M̄[g]) 6= ∅} in
let ρ0 = {[g, A′] 7→ σ g | a ∈ M̄[g]} in
let ρ1 = {[g, A′]′ 7→ σ g | g ∈ G} in
let ρ2 = {[g, A′] 7→ σ g | a 6∈ M̄[g], (M̄[g] \ {mg}) 6⊆ S \ {a}} in
(ρ0 ∪ ρ1 ∪ ρ2, (P′, σ))

The side-effects ρ1 in both cases ensure to publish the local values of all global variables
to the unknown [g, A′]′. The side-effects ρ2, on the other hand, publish the values of
globals that are no longer totally protected at the end point of the edge, i.e., where at
least one of the mutexes M̄[g] \ {mg} is no longer held, to [g, A′].

We will argue that for ego-lane digests, these additional side-effects do not change
the values that are read for global variables at any program point for least solutions
of C]pb. To this end, we show that all values that are additionally read from one of the
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unknowns that now receive an additional side-effect, are already read from another
unknown that also receives a side-effect in the original formulation.

First consider the values contained in σ g. For the least solution of this system, one
can write σ g as a join of all abstract values wg written to g along some path to the start
point of the thread template to which the current program point belongs and the initial
value J0K]Exp>.

σ g = (J0K]Exp>) t
⊔

wg written to g

wg

This can be verified by fixpoint induction.
Now, consider a global g and an additional side-effect {[g, A′]′ 7→ σ g} from some ρ1,

and a right-hand side for a read from g with associated digest A0 at which this unknown
is consulted. Then, the value read from globals is given by

r =
⊔

A′′∈A, compat]A A0 A′′

η [g, A′′]′

and compat]A A0 A′ holds. We then argue that the contribution from [g, A′]′ to this
join is subsumed by contributions of unknowns to which side-effects were already
caused in the original formulation. First, we consider the initial value (J0K]Exp>). As

the considered digest is ego-lane-derived, we have by (2.19) that compat]A A0 A1 holds
for all A1 ∈ init]A. Furthermore, the unknowns [g, A1]

′ receive an initial side-effect of
(J0K]Exp>) in the constraint for initialization. Thus, the initial value is already read from
an unknown [g, A1]

′. Next, consider some written value wg: The write of this value was,
by construction, immediately followed by an unlock of mutex mg with associated digest
A1. That constraint causes a side-effect to [g, A1]

′. As the digest is ego-lane-derived,
we have — by (2.18) — compat]A A0 A1, and the contribution wg to r is subsumed by
contributions of unknowns to which side-effects were already caused in the original
formulation. We conclude that the additional side-effects do not change the values read
when unknowns of the form [g, A]′ are consulted.

Next, for a global g and an additional side-effect {[g, A′] 7→ σ g} from some ρ2, and a
right-hand side for a read from g with associated digest A0 at which this unknown is
consulted. Then, the value read from globals is given by

r =
⊔

A′′∈A, compat]A A0 A′′

η [g, A′′]

and compat]A A0 A′ holds. We then once more argue that the contribution from [g, A′] to
this join is subsumed by contributions of unknowns to which side-effects were already
caused in the original formulation. For the initial value (J0K]Exp>), the argument is the
same as for the side-effects from some ρ1. Next, consider some written value wg: By
construction, this write happened while holding all mutexes M̄[g]. For each additional
side-effect, we know that the global g is not only protected by mg, is not protected by
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the mutex currently being unlocked, and that after the unlock at least one protecting
mutex is not held anymore. Since the unlocked mutex was not protecting, and the
write happened while all protecting mutexes were held, there must be an unlock of
a protecting mutex between the write and the unlock of the current mutex. At this
program point, the original formulation causes a side-effect to [g, A1] for some A1 that
accounts for the written value wg. As the digest is ego-lane-derived, we have — by
(2.18) — compat]A A0 A1, and the contribution wg to r is subsumed by contributions of
unknowns to which side-effects were already caused in the original formulation.

We thus have that the additional side-effects do not change the values read from
unknowns for global variables and thus obtain:

Proposition 25. A solution of the modified constraint system C] ′pb can be constructed from the
solution of the original constraint system C]pb where both coincide on all unknowns except for
those corresponding to global variables.

Proof. By verifying that, after evaluating all right-hand sides once to trigger any addi-
tional side-effects, all constraints in C] ′pb are satisfied and that the mappings still agree
on the value of all unknowns except for those corresponding to global variables.

With this observation, one can now re-write the two modified right-hand sides of the
constraint system C] ′pb to an equivalent but more concise form that gives up the strict
distinction between newly added side-effects and those already present in C]pb.

J[u, S, A0], unlock(mg), A′K] ′pbη =

let (P, σ) = η [u, S, A0] in
let P′ = {h ∈ P | ((S \ {mg}) ∩ M̄[h]) 6= ∅} in
let ρ0 = {[g, A′] 7→ σ g | M̄[g] = {mg}} in
let ρ1 = {[h, A′]′ 7→ σ h | h ∈ G} in
let ρ2 = {[h, A′] 7→ σ h | h ∈ G, (M̄[h] \ {mh}) 6⊆ S \ {mg}} in
(ρ0 ∪ ρ1 ∪ ρ2, (P′, σ))

J[u, S, A0], unlock(a), A′K] ′pbη =

let (P, σ) = η [u, S, A0] in
let P′ = {g ∈ P | ((S \ {a}) ∩ M̄[g]) 6= ∅} in
let ρ0 = {[g, A′] 7→ σ g | g ∈ G, (M̄[g] \ {mg}) 6⊆ S \ {a}} in
let ρ1 = {[g, A′]′ 7→ σ g | g ∈ G} in
(ρ0 ∪ ρ1, (P′, σ))

It thus remains to relate solutions of the modified constraint system C] ′pb which coincide
with the least solution of C]pb on all unknowns except for those corresponding to global

variables to solutions of the constraint system C]wc for the Write-Centered Reading with
Ego-Lane Digests analysis. By abuse of notation, in this section we locally refer to the
modified constraint system C] ′pb by C] (with right-hand sides referred to by J·K]pb), and
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to the constraint system C]wc by C (with right-hand sides J·K]wc) to avoid obscuring key
ideas by heavy notation.

We introduce a concretization mapping γ defined by

γ (P], σ]) = (W, P, σ) where
W = {g 7→ {M̄[g]} | g ∈ G}
P = {g 7→ if g ∈ P] then {{a} | a ∈ M̄[g]} else {∅} | g ∈ G}
σ = σ]

Moreover, we introduce a description relation ∆ between the sets of unknowns of C and
those of C]. It is given by

[u, S, A] ∆ [u, S, A] for u ∈ N
[i, A] ∆ [i, A] for i ∈ SV ]tid
[s, A] ∆ [s, A] for s ∈ S

[g, a, S, w, A] ∆ [g, A] for a ∈ (M̄[g] \ {mg}),M̄[g] ⊆ w
[g, a, S, w, A] ∆ [g, A] for a ∈ ((M\M̄[g]) ∪ {mg}),

(M̄[g] \ {mg}) 6⊆ S,M̄[g] ⊆ w
[g, a, S, w, A] ∆ [g, A]′ for a ∈ ((M\M̄[g]) ∪ {mg}),

(M̄[g] \ {mg}) ⊆ S,M̄[g] ⊆ w

where additionally A ∈ A, g ∈ G, w ⊆M, and S ⊆M.
Let η] be the least solution of C], which is known to exist as all right-hand sides

of C] are monotonic, both in the returned values and the side-effects. We construct a
mapping η for the constraint system C from η] by setting η [u, S, A] = γ (η] [u, S, A]),
setting η [i, A] = η] [i, A], setting η [s, A] = γ (η] [s, A]), and finally setting

η [g, a, S, w, A] =



η] [g, A]′ if a ∈ {mg} ∪ (M\M̄[g]),

(M̄[g] \ {mg}) ⊆ S,M̄[g] ⊆ w

⊥ if M̄[g] 6⊆ w

η] [g, A] otherwise

Theorem 19. Then, we have:

• The mapping η, as constructed above, is a solution of the constraint system C.

• η][g, A] v η][g, A]′ holds for all g ∈ G, A ∈ A.

• Whenever [g, a, S, w, A]∆ [g, A]′, then η [g, a, S, w, A] v η] [g, A]′;

• Whenever [g, a, S, w, A]∆ [g, A], then η [g, a, S, w, A] v η] [g, A].

As, per Theorem 17, solutions of C are sound w.r.t. the local trace semantics, so are
solutions of C (as they are greater than the least solution of C). By Proposition 25,
solutions to the constraint system C]pb are then also sound w.r.t. the local trace semantics.
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Proof. The proof is by verifying for each edge (u, act, u′) of the control-flow graph,
appropriate locksets S and S′, suitable digests A and A′, η constructed above that
J[u, S, A], actK]wcη v (η, η [u′, S′, A′]) holds.

Consider the constraints corresponding to unlocking a mutex a. Consider an edge
(u, unlock(a), u′) ∈ E and digests A′, A0 such that A′ ∈ Ju, unlock(a)K]A(A0). We verify
that

J[u, S, A0], unlock(a), A′K]wc η v (η, η [u′, S \ {a}, A′])

holds. We first consider the case where a ≡ mg for some mg ∈ {mg′ | g′ ∈ G}. Then,

J[u, S, A0], unlock(mg), A′K]pbη] =

let (P], σ]) = η] [u, S, A0] in
let P] ′′ = {h ∈ P] | ((S \ {mg}) ∩ M̄[h]) 6= ∅} in
let ρ]0 = {[g, A′] 7→ σ] g | M̄[g] = {mg}} in
let ρ]1 = {[h, A′]′ 7→ σ] h | h ∈ G} in
let ρ]2 = {[h, A′] 7→ σ] h | h ∈ G, (M̄[h] \ {mh}) 6⊆ S \ {mg}} in
(ρ]0 ∪ ρ]1 ∪ ρ]2, (P] ′′, σ]))

J[u, S, A0], unlock(mg), A′K]wcη =

let (W, P, σ) = η [u, S, A0] in
let P′′ = {h 7→ P h t {S \ {mg}} | h ∈ G} in
let ρ = {[h, mg, S \ {mg}, w, A′] 7→ σ h | h ∈ G, w ∈W h} in
(ρ, (W, P′′, σ))

By construction of η, we have

η [u, S, A0] = (W, P, σ) = γ(P], σ]) = γ(η] [u, S, A0])

We first show that, in this case,

(W, P′′, σ) v η [u′, S \ {mg}, A′] = (W ′, P′, σ′) = γ(η] [u′, S \ {mg}, A′])

holds. Let η] [u′, S \ {mg}, A′] = (P] ′, σ] ′) be the value provided by η] for the endpoint
of the edge for the respective digest and lockset. Since η] is a solution of C], we have
P] ′′ v P] ′, and σ] v σ] ′. Consequently, we have σ v σ′ and W vW ′. Now consider

P′′ = {h 7→ P h t {S \ {mg}} | h ∈ G}
= {h 7→ (if h ∈ P] then {{a} | a ∈ M̄[h]} else {∅}) t {S \ {mg}} | h ∈ G}
= {h 7→ (if h ∈ P] then ({{a} | a ∈ M̄[h]} t {S \ {mg}}) else ({∅})) | h ∈ G}
v {h 7→ (if h ∈ P]′′ then ({{a} | a ∈ M̄[h]} t {S \ {mg}}) else ({∅})) | h ∈ G}
= {h 7→ (if h ∈ P]′′ then ({{a} | a ∈ M̄[h]}) else ({∅})) | h ∈ G}
v {h 7→ (if h ∈ P]′ then ({{a} | a ∈ M̄[h]}) else ({∅})) | h ∈ G}
= P′
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where we exploit that for h ∈ P] ′′, by construction (S \ {mg}) ∩ M̄[h] 6= ∅ and thus
{{a} | a ∈ M̄[h]} t {S \ {mg}} = {{a} | a ∈ M̄[h]}.

We conclude that the return value of J[u, S, A0], unlock(mg), A′K]wcη is subsumed by
the value η [u′, S \ {mg}, A′]. It remains to consider the side-effects. The side-effects
caused by C] and by C, are given by

ρ]0 = {[g, A′] 7→ σ g | M̄[g] = {mg}}
ρ]1 = {[h, A′]′ 7→ σ h | h ∈ G}
ρ]2 = {[h, A′] 7→ σ h | h ∈ G, (M̄[h] \ {mh}) 6⊆ S \ {mg}}

and
ρ = {[h, mg, S \ {mg}, w, A′] 7→ σ h | h ∈ G, w ∈W h}

respectively. We remark that, by construction of η, we have W h = {M̄[h]}. The proof
obligation then is to show that any side-effected caused by C is already subsumed by η

by construction.
Consider the side-effect in ρ for a global variable h. We distinguish three cases:

• If mg ∈ {mh} ∪ (M\M̄[h]), and M̄[h] \ {mh} 6⊆ S \ {mg}, then the relationship
[h, mg, S \ {mg},M̄[h], A′]∆[h, A′] holds, and the side-effect is accounted for by the
corresponding side-effect from ρ]2 to [h, A′] in C].

• If mg ∈ {mh} ∪ (M\M̄[h]), and M̄[h] \ {mh} ⊆ S \ {mg}, then the relationship
[h, mg, S \ {mg},M̄[h], A′]∆[h, A′]′ holds and the side-effect is accounted for by the
corresponding side-effect from ρ]1 to [h, A′]′ in C].

• mg 6∈ {mh} ∪ (M\M̄[h]) implies that h 6= g and mg ∈ M̄[h], which contradicts
the construction of M̄ and thus need not be considered.

As we have σ] = σ, all side-effects from ρ are accounted for, and the claim holds.

Now consider the case where a ∈ M\ {mg | g ∈ G}. Then,

J[u, S, A0], unlock(a), A′K]pbη] =

let (P], σ]) = η] [u, S, A0] in
let P] ′′ = {g ∈ P] | ((S \ {a}) ∩ M̄[g]) 6= ∅} in
let ρ]0 = {[g, A′] 7→ σ] g | g ∈ G(M̄[g] \ {mg}) 6⊆ S \ {a}} in
let ρ]1 = {[g, A′]′ 7→ σ] g | g ∈ G} in
(ρ]0 ∪ ρ]1, (P] ′′, σ]))

J[u, S, A0], unlock(a), A′K]wcη =

let (W, P, σ) = η [u, S, A0] in
let P′′ = {h 7→ P g t {S \ {a}} | g ∈ G} in
let ρ = {[g, a, S \ {a}, w, A′] 7→ σ g | g ∈ G, g ∈W g} in
(ρ, (W, P′′, σ))
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By construction of η, we have

η [u, S, A0] = (W, P, σ) = γ(P], σ]) = γ(η] [u, S, A0])

We first show that, in this case,

(W, P′′, σ) v η [u′, S \ {a}, A′] = (W ′, P′, σ′) = γ(η] [u′, S \ {a}, A′])

holds. Let η] [u′, S \ {a}, A′] = (P] ′, σ] ′) be the value provided by η] for the endpoint
of the edge for the respective digest and lockset. Since η] is a solution of C], we have
P] ′′ v P] ′, and σ] v σ] ′. Consequently, we have σ v σ′ and W vW ′. Now consider

P′′ = {g 7→ P g t {S \ {a}} | g ∈ G}
= {g 7→ (if g ∈ P] then {{a′} | a′ ∈ M̄[g]} else {∅}) t {S \ {a}} | g ∈ G}
= {g 7→ (if g ∈ P] then ({{a′} | a′ ∈ M̄[g]} t {S \ {a}}) else ({∅})) | g ∈ G}
v {h 7→ (if g ∈ P]′′ then ({{a′} | a′ ∈ M̄[g]} t {S \ {a}}) else ({∅})) | g ∈ G}
= {g 7→ (if g ∈ P]′′ then ({{a′} | a′ ∈ M̄[g]}) else ({∅})) | g ∈ G}
v {g 7→ (if g ∈ P]′ then ({{a′} | a′ ∈ M̄[g]}) else ({∅})) | g ∈ G}
= P′

where we exploit that for g ∈ P] ′′, by construction (S \ {a}) ∩ M̄[g] 6= ∅ and thus
{{a′} | a′ ∈ M̄[g]} t {S \ {a}} = {{a′} | a′ ∈ M̄[h]}.

We conclude that the return value of J[u, S, A0], unlock(mg), A′K]wcη is subsumed by the
value η [u′, S \ {a}, A′]. It remains to consider the side-effects. The side-effects caused
by C] and by C, are given by

ρ]0 = {[g, A′] 7→ σ] g | g ∈ G, (M̄[g] \ {mg}) 6⊆ S \ {a}}
ρ]1 = {[g, A′]′ 7→ σ] g | a 6∈ M̄[g]}

and
ρ = {[g, a, S \ {a}, w, A′] 7→ σ g | g ∈ G, w ∈W g}

respectively. We remark that, by construction of η, we have W g = {M̄[g]}. The proof
obligation then is to show that any side-effected caused by C is already subsumed by η

by construction.
Consider the side-effect in ρ for a global variable g ∈ G. We distinguish three cases:

• a ∈ M̄[g]: In this case, (M̄[g] \ {mg}) 6⊆ S \ {a} holds as well as the relation-
ship [g, a, S \ {a},M̄[g], A′]∆[g, A′]. The side-effect is thus accounted for by the
corresponding side-effect from ρ]0 to [g, A′] in C].

• a ∈ M\M̄[g] and (M̄[g] \ {mg}) 6⊆ S \ {a}. Then, [g, a, S \ {a},M̄[g], A′]∆[g, A′]
holds, and the side-effect is thus accounted for by the corresponding side-effect
from ρ]0 to [g, A′] in C].
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• a ∈ M\M̄[g] and (M̄[g] \ {mg}) ⊆ S \ {a}. Then, [g, a, S \ {a},M̄[g], A′]∆[g, A′]′

holds, and the side-effect is thus accounted for by the corresponding side-effect
from ρ]1 to [g, A′]′ in C].

As we have σ] = σ, all side-effects from ρ are accounted for, and the claim holds.

Next, consider the constraints corresponding to reading from a global g. Consider an
edge (u, x = g, u′) ∈ E and digests A′, A0 such that A′ ∈ Ju, x = gK]A(A0). We verify
that

J[u, S, A0], x = gK]wc η v (η, η [u′, S, A′])

holds. We have

J[u, S, A0], x = gK]pbη] =

let (P], σ]) = η] [u, S, A0] in
let d] = if g ∈ P] then σ] g

else if S ∩ M̄[g] = {mg} then
σ] g t⊔A′∈A, compat]A A0 A′ η

] [g, A′]′

else σ] g t⊔A′∈A, compat]A A0 A′ η
] [g, A′]

in
let σ]′′ = σ] ⊕ {x 7→ d]} in
(∅, (P], σ]′′))

J[u, S, A0], x = gK]wcη =

let (W, P, σ) = η [u, S, A0] in
let d = σ g t⊔{η[g, a, S′, w, A′] | a ∈ S, S ∩ S′ = ∅,
∃S′′ ∈ P g : S′′ ∩ w = ∅,
∃S′′′ ∈ P g : a /∈ S′′′,
A′ ∈ A, compat]A A0 A′} in

let σ′′ = σ⊕ {x 7→ d} in
(∅, (W, P, σ′′))

By construction of η, we have

η [u, S, A0] = (W, P, σ) = γ(P], σ]) = γ(η] [u, S, A0])

We show that, in this case,

(W, P, σ′′) v η [u′, S, A′] = (W ′, P′, σ′) = γ(η] [u′, S, A′])

holds. Let η] [u′, S, A′] = (P] ′, σ] ′) be the value provided by η] for the endpoint of the
edge for the respective digest and lockset. Since η] is a solution of C], we have P] v P] ′,
and σ]′′ v σ] ′. Consequently, we have P v P′ and (by construction) W v W ′. It thus
remains to show that σ′′ v σ′ holds. To this end, let us distinguish three cases:
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Case 1. g ∈ P]. Then σ] ⊕ {g 7→ σ] g} = σ]′′ v σ]′ = σ′, and P g = {{a′} | a′ ∈ M̄[g]}.
d = σ g t⊔{η[g, a, S′, w, A′] | a ∈ S, S ∩ S′ = ∅,

∃S′′ ∈ P g : S′′ ∩ w = ∅,
∃S′′′ ∈ P g : a /∈ S′′′,
A′ ∈ A, compat]A A0 A′}

= σ g t⊔{η[g, a, S′, w, A′] | a ∈ S, S ∩ S′ = ∅,
∃S′′ ∈ {{a′} | a′ ∈ M̄[g]} : S′′ ∩ w = ∅,
∃S′′′ ∈ {{a′} | a′ ∈ M̄[g]} : a /∈ S′′′,
A′ ∈ A, compat]A A0 A′}

= σ g t⊥ (by construction of η)

and thus σ′′ = σ⊕ {x 7→ σ g} = σ]′′ v σ]′ = σ′.

Case 2. g 6∈ P], S ∩ M̄[g] = {mg}. Then P g = {∅}, and

σ] ⊕

x 7→

σ] g t
⊔

A′∈A, compat]A A0 A′

η] [g, A′]′


 = σ]′′ v σ]′ = σ′

and
d = σ g t⊔{η[g, a, S′, w, A′] | a ∈ S, S ∩ S′ = ∅,

∃S′′ ∈ P g : S′′ ∩ w = ∅,
∃S′′′ ∈ P g : a /∈ S′′′,
A′ ∈ A, compat]A A0 A′}

= σ g t⊔{η[g, a, S′, w, A′] | a ∈ S, S ∩ S′ = ∅,
A′ ∈ A, compat]A A0 A′}

v σ g t⊔{η] [g, A′] t η] [g, A′]′ |
A′ ∈ A, compat]A A0 A′} (by construction of η)

= σ g t⊔{η] [g, A′]′ | A′ ∈ A, compat]A A0 A′} (by η] [g, A′] v η] [g, A′]′)

and thus σ′′ = σ⊕ {x 7→ d} v σ]′′ v σ]′ = σ′.

Case 3. g 6∈ P], S ∩ M̄[g] 6= {mg}. Then P g = {∅}, and

σ] ⊕

x 7→

σ] g t
⊔

A′∈A, compat]A A0 A′

η] [g, A′]


 = σ]′′ v σ]′ = σ′

and
d = σ g t⊔{η[g, a, S′, w, A′] | a ∈ S, S ∩ S′ = ∅,

∃S′′ ∈ P g : S′′ ∩ w = ∅,
∃S′′′ ∈ P g : a /∈ S′′′,
A′ ∈ A, compat]A A0 A′}

= σ g t⊔{η[g, a, S′, w, A′] | a ∈ S, S ∩ S′ = ∅,
A′ ∈ A, compat]A A0 A′}

= σ g t⊔{η] [g, A′] | A′ ∈ A, compat]A A0 A′} (by construction of η)
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where the last step uses the fact that, for an unknown that received the primed
value to be consulted, M̄[g] \ {mg} ⊆ S′ would need to hold. However, as by
construction mg ∈ S, here there is some a ∈ S ∩ (M̄[g] \ {mg}) and thus for each
such S′, S ∩ S′ 6= ∅. Thus, σ′′ = σ⊕ {x 7→ d} = σ]′′ v σ]′ = σ′.

We conclude that the return value of J[u, S, A0], x = gK]wcη is subsumed by the value
η [u′, S, A′]. As no side-effects are caused, the claim follows.

Next, consider the constraints corresponding to writing to a global g. Consider an edge
(u, g = x, u′) ∈ E and digests A′, A0 such that A′ ∈ Ju, g = xK]A(A0). We verify that

J[u, S, A0], g = xK]wc η v (η, η [u′, S, A′])

holds. We have

J[u, S, A0], g = xK]pbη] =

let (P], σ]) = η] [u, S, A0] in
let P]′′ = P] ∪ {g} in
let σ]′′ = σ] ⊕ {g 7→ σ] g} in
(∅, (P]′′ , σ]′′))

J[u, S, A0], g = xK]wcη =

let (W, P, σ) = η [u, S, A0] in
let W ′′ = W ⊕ {g 7→ {S}} in
let P′′ = P⊕ {g 7→ {S}} in
let σ′′ = σ⊕ {g 7→ σ x} in
(∅, (W ′′, P′′, σ′′))

By construction of η, we have

η [u, S, A0] = (W, P, σ) = γ(P], σ]) = γ(η] [u, S, A0])

We show that, in this case,

(W ′′, P′′, σ′′) v η [u′, S, A′] = (W ′, P′, σ′) = γ(η] [u′, S, A′])

holds. Let η] [u′, S, A′] = (P] ′, σ] ′) be the value provided by η] for the endpoint of the
edge for the respective digest and lockset. Since η] is a solution of C], we have P] ′′ v P] ′,
and σ]′′ v σ] ′.

By construction W = W ′ = {g 7→ {M̄[g]} | g ∈ G}. As g is written here, by
construction of M̄ all write-protecting mutexes of g are held, i.e., M̄[g] ⊆ S. Then

W ′′ = W ⊕ {g 7→ {S}} vW ⊕ {g 7→ {M̄[g]}} = W ′
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and furthermore

P′′

= P⊕ {g 7→ {S}}
= {h 7→ (if h ∈ P] then {{a} | a ∈ M̄[h]} else {∅}) | h ∈ G} ⊕ {g 7→ {S}}
v {h 7→ (if h ∈ P] then {{a} | a ∈ M̄[h]} else {∅}) | h ∈ G} ⊕ {g 7→ {M̄[g]}}
v {h 7→ (if h ∈ P] then {{a} | a ∈ M̄[h]} else {∅}) | h ∈ G}⊕

{g 7→ {{a} | a ∈ M̄[g]}}
= {h 7→ (if h ∈ (P] ∪ g) then {{a} | a ∈ M̄[h]} else {∅}) | h ∈ G}
= {h 7→ (if h ∈ P]′′ then {{a} | a ∈ M̄[h]} else {∅}) | h ∈ G}
v {h 7→ (if h ∈ P]′ then {{a} | a ∈ M̄[h]} else {∅}) | h ∈ G}
= P′

Lastly, σ′′ = σ ⊕ {g 7→ σ x} = σ] ⊕ {g 7→ σ] x} = σ]′′ v σ]′ = σ′, and conclude that
the return value of J[u, S, A0], g = xK]wcη is subsumed by the value η [u′, S, A′]. As no
side-effects are caused, the claim follows. The proof for constraints corresponding to
assignments to local variables as well as for guards is analogous (with the difference
that P is not modified), and thus is omitted here.

Next, consider the constraints corresponding to locking a mutex a. Consider an edge
(u, lock(a), u′) ∈ E and digests A′, A0, A1 such that A′ ∈ Ju, lock(a)K]A(A0, A1). We verify
that

J[u, S, A0], lock(a), A′K]wc η v (η, η [u′, S ∪ {a}, A′])

holds. We have
J[u, S, A0], lock(a)K]pbη] = (∅, η] [u, S, A0])

J[u, S, A0], lock(a)K]wcη = (∅, η [u, S, A0])

By construction of η, we have

η [u, S, A0] = γ(η] [u, S, A0])

Let η] [u′, S ∪ {a}, A′] = (P] ′, σ] ′) be the value provided by η] for the endpoint of
the edge for the respective digest and lockset. Since η] is a solution of C], we have
η] [u, S, A0] v η] [u′, S ∪ {a}, A′], and thus

η [u, S, A0] = γ(η] [u, S, A0]) v γ(η] [u′, S ∪ {a}, A′]) = η [u′, S ∪ {a}, A′]

We conclude that the return value of J[u, S, A0], lock(a)K]wcη is subsumed by the value
η [u′, S ∪ {a}, A′]. As no side-effects are caused, the claim follows.

Next, consider the constraints corresponding to thread creation. Consider an edge
(u, x = create(u1), u′) ∈ E and digests A′, A0 such that A′ ∈ Ju, x = create(u1)K

]
A(A0).

We verify that

J[u, S, A0], x = create(u1)K
]
wc η v (η, η [u′, S, A′])
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holds. We have

J[u, S, A0], x = create(u1)K
]
pbη] =

let (P], σ]) = η] [u, S, A0] in
let i] = ν] u σ] u1 in
let σ]

ρ = σ] ⊕ ({self 7→ i]} ∪ {g 7→ J0K]Exp> | g ∈ G}) in
let σ]′′ = σ] ⊕ {x 7→ i]} in
let ρ] = {[u1, ∅, A′] 7→ (∅, σ]

ρ) | A′ ∈ new]
A u u1 A0} in

(ρ], (P], σ]′′))

J[u, S, A0], x = create(u1)K
]
wcη =

let (W, P, σ) = η [u, S, A0] in
let Wρ = {g 7→ ∅ | g ∈ G} in
let Pρ = {g 7→ {∅} | g ∈ G} in
let i = ν] u σ u1 in
let σρ = σ⊕

(
{self 7→ i} ∪

{
g 7→

(
σ g u J0K]Exp>

)
| g ∈ G

})
in

let σ′′ = σ⊕ {x 7→ i} in
let ρ = {[u1, ∅, A′] 7→ (Wρ, Pρ, σρ) | A′ ∈ new]

A u u1 A0} in
(ρ, (W, P, σ′′))

By construction of η, we have

η [u, S, A0] = (W, P, σ) = γ(P], σ]) = γ(η] [u, S, A0])

We first show that, in this case,

(W, P, σ′′) v η [u′, S, A′] = (W ′, P′, σ′) = γ(η] [u′, S, A′])

holds. Let η] [u′, S, A′] = (P] ′, σ] ′) be the value provided by η] for the endpoint of the
edge for the respective digest and lockset. Since η] is a solution of C], we have P] v P] ′,
and σ]′′ v σ] ′. Consequently, we have P v P′ and (by construction) W v W ′. It thus
remains to show that σ′′ v σ′ holds. Here, we have

σ′′ = σ⊕ {x 7→ ν] u σ u1} = σ] ⊕ {x 7→ ν] u σ] u1} = σ]′′ v σ]′ = σ′

We conclude that the return value of J[u, S, A0], x = create(u1)K
]
wcη is subsumed by the

value η [u′, S, A′].
It remains to consider the side-effects. As the side-effect occurs to the same unknown

in both cases, it is only the value being side-effected that needs to be considered.
Consider the value η] [u1, ∅, A′] = (P]′

ρ , σ]′
ρ ) provided by η] for the target unknown of

the side-effect. As η] is a solution, we have ∅ v P]′
ρ and σ]

ρ v σ]′
ρ . We now show that

(Wρ, Pρ, σρ) v η [u1, ∅, A′] = (W ′ρ, P′ρ, σ′ρ) = γ(η] [u1, ∅, A′])
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We have

σρ = σ⊕
(
{self 7→ ν] u σ u1} ∪

{
g 7→

(
σ g u J0K]Exp>

)
| g ∈ G

})
= σ] ⊕

(
{self 7→ ν] u σ] u1} ∪

{
g 7→

(
σ] g u J0K]Exp>

)
| g ∈ G

})
v σ] ⊕ ({self 7→ i]} ∪ {g 7→ J0K]Exp> | g ∈ G})
= σ]

ρ

v σ]′
ρ = σ′ρ

and Wρ = {g 7→ ∅ | g ∈ G} v {g 7→ {M̄[g]} | g ∈ G} = W ′ρ as well as

Pρ = {g 7→ {∅} | g ∈ G}
= {g 7→ (if g ∈ ∅ then {{a} | a ∈ M̄[g]} else {∅}) | g ∈ G}
v {g 7→ (if g ∈ P]′ then {{a} | a ∈ M̄[g]} else {∅}) | g ∈ G}
= P′ρ

We conclude that all side-effects from ρ are thus accounted for in η [u1, ∅, A′], and the
claim holds.

For the remaining right-hand sides (corresponding to return, initMT, initialization,
wait, signal, and join), the proof continues similarly. As the constraints in C] and C take
an essentially identical form for these right-hand sides, the details for these cases are
omitted here.

6.2 Soundness Proofs for Analyses Considering Clusters of
Globals

This section provides soundness proofs for the analyses presented in Section 4.2. While
the constraint systems of these analyses are considerably closer to the constraint system
for the concrete semantics than the constraint systems considered in Section 6.1 were,
the unknowns still do not quite coincide. Thus, the overall strategy is the same as in the
previous section: First a version of the concrete constraint system with unknowns very
close to the abstract system is constructed, and then a relationship between solutions of
the abstract system and solutions of the concrete system is established.

6.2.1 Mutex-Meet with Digests

Let the constraint system from Section 4.2.2 instantiated with some digest A be called
C]. We consider the refined constraint system for the concrete semantics (Eq. (2.12))
instantiated with the considered actions from Section 2.4 and the product digest of A
and the lockset digest from Fig. 2.11 and refer to this constraint system by C. Recall that
the resulting constraint system has the following set of unknowns:

• [u, S, A] for u ∈ N , S ⊆M and A ∈ A,
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• [a, S, A] for g ∈ G, a ∈ M, S ⊆M, w ⊆M and A ∈ A,

• [initMT, ∅, A] for A ∈ A,

• [return, S, A] for S ⊆M and A ∈ A, and

• [s, S, A] for s ∈ S , S ⊆M and A ∈ A.

where we once again abbreviate unlock(a) by a and signal(s) by s. While there is quite a
close correspondence between the unknowns used by the analysis and the unknowns
of the concrete constraint system, they do not match up exactly. We thus, as a first
step, construct a constraint system Cmm over the set of local traces for which the set of
unknowns matches those of C] - up to the unknowns used for thread returns. Cmm thus
uses the following set of unknowns:

• [u, S, A] for u ∈ N , S ⊆M and A ∈ A,

• [a, Q, A] for a ∈ M, Q ∈ Qa and A ∈ A,

• [i, A] for i ∈ Vtid and A ∈ A, and

• [s, A] for s ∈ S , and A ∈ A.

We remark that for each a ∈ M there is at least one corresponding unknown as we
demand that Qa 6= ∅. The constraints for Cmm are then given by:

[u0, ∅, A] ⊇ fun _→ (∅, {t | t ∈ init, A = αA(t)})
for A ∈ init]A

[u′, S, A′] ⊇ J([u, S, A0], x = create(u1), u′)Kmm

for (u, x = create(u1), u′) ∈ E , A′ ∈ Ju, x = create(u1)K
]
A(A0)

[u′, S ∪ {a}, A′] ⊇ J([u, S, A0], lock(a), u′), A1Kmm

for (u, lock(a), u′) ∈ E , A′ ∈ Ju, lock(a)K]A(A0, A1)

[u′, S, A′] ⊇ J([u, S, A0], act, u′), A1Kmm

for (u, act, u′) ∈ E , act ∈ Actobserving, not lock, A′ ∈ Ju, actK]A(A0, A1)

[u′, S \ {a}, A′] ⊇ J([u, S, A0], unlock(a), u′), A′Kmm

for (u, unlock(a), u′) ∈ E , A′ ∈ Ju, unlock(a)K]A(A0)

[u′, S, A′] ⊇ J([u, S, A0], act, u′), A′Kmm

for (u, act, u′) ∈ E , act ∈ Actobservable, not unlock or initMT, A′ ∈ Ju, actK]A(A0)

[u′, S, A′] ⊇ J([u, S, A0], act, u′)Kmm

for (u, act, u′) ∈ E , act ∈ Actlocal, A′ ∈ Ju, actK]A(A0)

[u′, ∅, A′] ⊇ J([u, ∅, A0], initMT, u′), A′Kmm

for (u, initMT, u′) ∈ E , A′ ∈ Ju, initMTK]A(A0)
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The corresponding right-hand sides J·Kmm are then given by:

J([u, S, A0], x = create(u1), u′)Kmm ηmm =

let T = J(u, x = create(u1), u′)KT (ηmm [u, S, A0]) in
({[u1, ∅, new]

A u u1 A0] 7→ new u1 (ηmm [u, S, A0])}, T)

J([u, S, A0], lock(a), u′), A1Kmm ηmm =

let T1 =
⋂{ηmm [a, Q, A1] | Q ∈ Qa} in

let T = J(u, lock(a), u′)KT (ηmm [u, S, A0], T1) in
(∅, T)

J([u, S, A0], unlock(a), u′), A′Kmm ηmm =

let T = J(u, unlock(a), u′)KT (ηmm [u, S, A0]) in
let ρ = {[a, Q, A′] 7→ T | Q ∈ Qa} in
(ρ, T)

J([u, S, A0], return, u′), A′Kmm ηmm =

let T = J(u, return, u′)KT (ηmm [u, S, A0]) in
let ρ = {[i, A′] 7→ {t | t ∈ T, id t = i} | i ∈ Vtid} in
(ρ, T)

J([u, S, A0], x = join(x′), u′), A1Kmm ηmm =

let T1 =
⋃{ηmm [t(x′), A1] | t ∈ ηmm [u, S, A0]} in

let T = J(u, x = join(x′), u′)KT (ηmm [u, S, A0], T1) in
(∅, T)

J([u, S, A0], signal(s), u′), A′Kmm ηmm =

let T = J(u, signal(s), u′)KT (ηmm [u, S, A0]) in
let ρ = {[s, A′] 7→ T} in
(ρ, T)

J([u, S, A0],wait(s), u′), A1Kmm ηmm =

let T = J(u,wait(s), u′)KT (ηmm [u, S, A0], ηmm [s, A1]) in
(∅, T)

J([u, S, A0], initMT, u′), A′Kmm ηmm =

let T = J(u, act, u′)KT (ηmm [u, S, A0]) in
let ρ = {[a, Q, A′] 7→ T | a ∈ M, Q ∈ Qa} in
(ρ, T)

J([u, S, A0], act, u′)Kmm ηmm =

let T = J(u, act, u′)KT (ηmm [u, S, A0]) in
(∅, T)

where act refers to a local action.

Proposition 26. The right-hand side function of constraint system Cmm over the lattice mapping
(extended) unknowns to sets of local traces with the order as discussed in Section 2.2.2 is Scott-
continuous.
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Proof. The proof here proceeds in the same manner as the proof of Proposition 10 in
Section 2.3. After collecting all right-hand sides into one constraint using the Scott-
continuous helper function flat[x], it remains to show that the individual right-hand sides
are composition of Scott-continuous functions. This follows from the Scott-continuity
of J·KT , new, and π[x] for [x] ∈ X. Furthermore, all arguments to J·KT are constructed in
a way where either the union of sets is taken, or the resulting set is constructed as the
union of some function applied to each element of the set in isolation, also rendering
these functions Scott-continuous. Then, the combined right-hand side is given as the
least upper bound of (compositions of) functions that are Scott-continuous, and is thus
also Scott-continuous.

Proposition 27. The constraint system Cmm has a least solution which is obtained as the
least-upper bound of all Kleene iterates.

To be able to relate solutions of C and solutions of Cmm we define for a mapping η

from unknowns of C to sets of local traces a mapping split[η] from unknowns of Cmm to
sets of local traces as follows:

split[η][u, S, A] = η[u, S, A] (for u ∈ N , S ⊆M,
A ∈ A)

split[η][a, Q, A] = η[initMT, ∅, A] ∪⋃S⊆M η[a, S, A] (for a ∈ M, Q ∈ Qa,
A ∈ A)

split[η][i, A] = {t ∈ ⋃S⊆M η[return, S, A] | id t = i} (for i ∈ Vtid, A ∈ A)
split[η][s, A] =

⋃
S⊆M η[s, S, A] (for s ∈ S , S ⊆M, A ∈ A)

We then obtain:

Proposition 28. The following two statements are equivalent:

(A) η is the least solution of C.

(B) split[η] is the least solution of Cmm.

Proof. We prove both statements simultaneously by fixpoint induction: Consider the
i−th approximation ηi to the least solution of C, and the i−th approximation ηi

mm to the
least solution of Cmm. Let us call property (1) that ηi

mm = split[ηi]. For i = 0, the value of
all unknowns in both constraint systems is ∅, and property (1) holds trivially. Next, we
show that for constraints corresponding to a control-flow edge as well as the constraint
for initialization executed in lock-step, provided that property (1) holds before the
update, it still holds after the update. Considering the constraint’s contribution to the
unknown on the left and its side-effects (if any are triggered) suffices for this.

First, consider the constraints for initialization. They take identical form in both
constraint systems:

[u0, ∅, A] ⊇ fun _→ (∅, {t | t ∈ init, A = αA(t)}) for A ∈ init]A
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In both systems, unknowns [u0, ∅, A] receive identical contributions. Thus, if property
(1) holds for the i-th approximations, and constraints of this form are considered, it also
holds for the (i + 1)-th approximations.

Next, consider the constraints for initMT. Consider an edge (u, initMT, u′) ∈ E and
digests A′, A0 such that A′ ∈ Ju, initMTK]A(A0). We remark that, by construction, the
lockset is empty when executing initMT. For Cmm, the constraints take the following
form:

[u′, ∅, A′] ⊇ J([u, ∅, A0], initMT, u′), A′Kmm

with right-hand side

J([u, ∅, A0], initMT, u′), A′Kmm ηmm =

let T = J(u, act, u′)KT (ηmm [u, ∅, A0]) in
let ρ = {[a, Q, A′] 7→ T | a ∈ M, Q ∈ Qa} in
(ρ, T)

For C, the constraints take the following form:

[u′, ∅, A′] ⊇ J([u, ∅, A0], initMT, [u′, ∅, A′])K

with right-hand side

J([u, ∅, A0], initMT, [u′, ∅, A′])K η = let T = J(u, initMT, u′)KT (η [u, ∅, A0]) in
({[initMT, ∅, A′] 7→ T}, T)

Provided property (1) holds for the i-th approximations, the unknowns [u′, ∅, A′]
of both constraint systems receive the same new contribution. For the side-effects,
ηi+1 [initMT, ∅, A′] receives the additional contribution T, which is also the new contri-
bution to all ηi+1

mm [a, Q, A′]. Consider now some a ∈ M and Q ∈ Qa:

ηi+1
mm [a, Q, A′] = ηi

mm [a, Q, A′] ∪ T
= split[ηi] [a, Q, A′] ∪ T
= ηi[initMT, ∅, A] ∪ (

⋃
S⊆M ηi[a, S, A]) ∪ T

= (ηi[initMT, ∅, A] ∪ T) ∪ (
⋃

S⊆M ηi+1[a, S, A])

= ηi+1[initMT, ∅, A] ∪ (
⋃

S⊆M ηi+1[a, S, A])

= split[ηi+1] [a, Q, A′]

Thus, if property (1) holds for the i-th approximations, and constraints of this form are
considered, it also holds for the (i + 1)-th approximations.

Next, consider the constraints for local actions. Here, the same reasoning applies as
for the constraints for initMT as discussed above and neither constraint causes any
side-effect. Thus, if property (1) holds for the i-th approximations, and constraints
corresponding to local actions are considered, it also holds for the (i + 1)-th approxima-
tions. For constraints corresponding to thread creation the constraints and right-hand
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sides of both constraint systems coincide. Provided property (1) holds for the i-th
approximations, the unknowns on the left-hand sides of both constraint systems receive
the same new contribution, as do the unknowns that receive side-effects. All of these
unknowns are associated with program points. Thus, if property (1) holds for the
i-th approximations, and constraints of this form are considered, it also holds for the
(i + 1)-th approximations.

Next, consider the constraints corresponding to lock. Consider an edge (u, lock(a), u′) ∈
E and digests A′, A0, where A′ ∈ Ju, lock(a)K]A(A0, A1). For Cmm, the constraints take
the following form:

[u′, S ∪ {a}, A′] ⊇ J([u, S, A0], lock(a), u′), A1Kmm

with right-hand side

J([u, S, A0], lock(a), u′), A1Kmm ηmm =

let T0 =
⋂{ηmm [a, Q, A1] | Q ∈ Qa} in

let T = J(u, lock(a), u′)KT (ηmm [u, S, A0], T0) in
(∅, T)

For C, the constraint takes the following form

[u′, S ∪ {a}, A′] ⊇ J([u, S, A0], lock(a), u′), A1K

with right-hand side

J([u, S, A0], lock(a), u′), A1K η =

let T1 = J(u, lock(a), u′)KT (η [u, S, A0], η [initMT, ∅, A1]) in
let T2 =

⋃
S′⊆MJ(u, lock(a), u′)KT (η [u, S, A0], η [a, S′, A1]) in

(∅, T1 ∪ T2)

As a first step, we relate T and T1 ∪ T2 to each other.

T1 ∪ T2 = J(u, lock(a), u′)KT
(
ηi [u, S, A0], ηi [initMT, ∅, A1]

)⋃
S′⊆MJ(u, lock(a), u′)KT

(
ηi [u, S, A0], ηi [a, S′, A1]

)
= J(u, lock(a), u′)KT (ηi [u, S, A0], ηi [initMT, ∅, A1] ∪

⋃
S′⊆M ηi [a, S′, A1])

By induction hypothesis, we have that ηi
mm [u, S, A0] = split[ηi] [u, S, A0] = ηi [u, S, A0]

and it thus remains to relate the second arguments of J(u, lock(a), u′)KT to each other.

⋂{ηi
mm [a, Q, A1] | Q ∈ Qa} =

⋂{split[ηi] [a, Q, A1] | Q ∈ Qa}
=

⋂{ηi[initMT, ∅, A1] ∪
⋃

S′⊆M ηi[a, S′, A1] | Q ∈ Qa}
= ηi[initMT, ∅, A1] ∪

⋃
S′⊆M ηi[a, S′, A1]
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As a consequence, we obtain T = T1 ∪ T2, and

ηi+1
mm [u′, S ∪ {a}, A′] = ηi

mm [u′, S ∪ {a}, A′] ∪ T
= split[ηi] [u′, S ∪ {a}, A′] ∪ T
= ηi[u′, S ∪ {a}, A′] ∪ (T1 ∪ T2)

= ηi+1[u′, S ∪ {a}, A′]
= split[ηi+1] [u′, S ∪ {a}, A′]

As neither constraint causes any side-effect, we obtain: If property (1) holds for the i-th
approximations, and constraints corresponding to locking a mutex are considered, it
also holds for the (i + 1)-th approximations.

Next, for constraints corresponding to unlock. Consider an edge (u, unlock(a), u′) ∈ E
and digests A′, A0 such that A′ ∈ Ju, unlock(a)K]A(A0). For Cmm, the constraints take the
following form:

[u′, S \ {a}, A′] ⊇ J([u, S, A0], unlock(a), u′), A′Kmm

with right-hand side

J([u, S, A0], unlock(a), u′), A′Kmm ηmm =

let T = J(u, unlock(a), u′)KT (ηmm [u, S, A0]) in
let ρ = {[a, Q, A′] 7→ T | Q ∈ Qa} in
(ρ, T)

For C, the constraints take the following form:

[u′, S \ {a}, A′] ⊇ J([u, S, A0], unlock(a), [u′, S \ {a}, A′])K

with right-hand side

J([u, S, A0], unlock(a), [u′, S \ {a}, A′])K η =

let T = J(u, unlock(a), u′)KT (η [u, S, A0]) in
({[a, S \ {a}, A′] 7→ T}, T)

Provided property (1) holds for the i-th approximations, the unknowns [u′, S \ {a}, A′]
of both constraint systems receive the same new contribution. It thus remains to consider
the side-effects. Consider some cluster Q ∈ Qa:

ηi+1
mm [a, Q, A′] = ηi

mm [a, Q, A′] ∪ T = split[ηi] [a, Q, A′] ∪ T
= ηi[initMT, ∅, A′] ∪ (

⋃
S′⊆M ηi[a, S′, A′]) ∪ T

= ηi+1[initMT, ∅, A′] ∪ (
⋃

S′⊆M ηi[a, S′, A′]) ∪ T
= ηi+1[initMT, ∅, A′] ∪ (

⋃
S′⊆M,S′ 6=S\{a} ηi[a, S′, A′]) ∪ (ηi[a, S \ {a}, A′] ∪ T)

= ηi+1[initMT, ∅, A′] ∪ (
⋃

S′⊆M,S′ 6=S\{a} ηi+1[a, S′, A′]) ∪ ηi+1[a, S \ {a}, A′]
= ηi+1[initMT, ∅, A′] ∪ (

⋃
S′⊆M ηi+1[a, S′, A′])

= split[ηi+1] [a, Q, A′]
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Thus, if property (1) holds for the i-th approximations, and constraints of this form are
considered, it also holds for the (i + 1)-th approximations.

Next, consider the constraints corresponding to return. Consider an edge (u, return, u′) ∈
E and digests A′, A0 such that A′ ∈ Ju, returnK]A(A0). For Cmm, the constraints take the
following form:

[u′, S, A′] ⊇ J([u, S, A0], return, u′), A′Kmm

with right-hand side

J([u, S, A0], return, u′), A′Kmm ηmm =

let T = J(u, return, u′)KT (ηmm [u, S, A0]) in
let ρ = {[i, A′] 7→ {t | t ∈ T, id t = i} | i ∈ Vtid} in
(ρ, T)

For C, the constraints take the following form:

[u′, S, A′] ⊇ J([u, S, A0], return, [u′, S, A′])K

with right-hand side

J([u, S, A0], return, [u′, S, A′])K η = let T = J(u, return, u′)KT (η [u, S, A0]) in
({[return, S, A′] 7→ T}, T)

Provided property (1) holds for the i-th approximations, the unknowns [u′, S, A′] of
both constraint systems receive the same new contribution. For the side-effects, consider
some j ∈ Vtid. Then

ηi+1
mm [j, A′] = ηi

mm [j, A′] ∪ {t | t ∈ T, id t = j}
= split[ηi] [j, A′] ∪ {t | t ∈ T, id t = j}
= {t ∈ ⋃S′⊆M ηi[return, S′, A′] | id t = j} ∪ {t | t ∈ T, id t = j}
= {t ∈ ⋃S′⊆M,S′ 6=S ηi[return, S′, A′] | id t = j}
∪{t ∈ ηi[return, S, A′] | id t = j} ∪ {t | t ∈ T, id t = j}

= {t ∈ ⋃S′⊆M,S′ 6=S ηi+1[return, S′, A′] | id t = j}
∪{t ∈ (ηi[return, S, A′] ∪ T) | id t = j}

= {t ∈ ⋃S′⊆M,S′ 6=S ηi+1[return, S′, A′] | id t = j} ∪ {t ∈ ηi+1[return, S, A′] | id t = j}
= {t ∈ ⋃S′⊆M ηi+1[return, S′, A′] | id t = j}
= split[ηi+1] [j, A′]

Thus, if property (1) holds for the i-th approximations, and constraints of this form are
considered, it also holds for the (i + 1)-th approximations.

Next, consider the constraints corresponding to join. Consider an edge (u, x =

join(x′), u′) ∈ E and digests A′, A0, A′ ∈ Ju, lock(a)K]A(A0, A1). For Cmm, the constraints
take the following form:

[u′, S, A′] ⊇ J([u, S, A0], x = join(x′), u′), A1Kmm
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with right-hand side

J([u, S, A0], x = join(x′), u′), A1Kmm ηmm =

let T1 =
⋃{ηmm [t(x′), A1] | t ∈ ηmm [u, S, A0]} in

let T = J(u, x = join(x′), u′)KT (ηmm [u, S, A0], T1) in
(∅, T)

For C, the constraints take the following form

[u′, S, A′] ⊇ J([u, S, A0], x = join(x′), u′), A1K

with right-hand side

J([u, S, A0], x = join(x′), u′), A1K η =

let T =
⋃

S′⊆MJ(u, x = join(x′), u′)KT (η [u, S, A0], η [return, S′, A1]) in
(∅, T)

By the argument outlined for the join case in the proof of Proposition 16, we have

J(u, x = join(x′), u′)KT (ηi
mm [u, S, A0],

⋃{ηi
mm [t(x′), A1] | t ∈ ηi

mm [u, S, A0]})
= J(u, x = join(x′), u′)KT (ηi

mm [u, S, A0],
⋃

j∈Vtid
ηi

mm [j, A1])

We also have: ⋃
S′⊆MJ(u, x = join(x′), u′)KT

(
ηi [u, S, A0], ηi [return, S′, A1]

)
= J(u, x = join(x′), u′)KT

(
ηi [u, S, A0],

⋃
S′⊆M ηi [return, S′, A1]

)
exploiting that J·KT is defined point-wise. By induction hypothesis, we have that
ηi

mm [u, S, A0] = split[ηi] [u, S, A0] = ηi [u, S, A0]. It thus remains to relate the second
arguments of J(u, x = join(x′), u′)KT as given above to each other.

⋃
j∈Vtid

ηi
mm [j, A1] =

⋃
j∈Vtid

split[ηi] [j, A1]

=
⋃

j∈Vtid

(
{t ∈ ⋃S′⊆M ηi[return, S′, A1] | id t = j}

)
=

⋃
S′⊆M ηi[return, S′, A1]

Thus, J·KT returns the same set of local traces in both cases. As neither constraint
causes any side-effect, we obtain: If property (1) holds for the i-th approximations,
and constraints corresponding to joining a thread are considered, it also holds for the
(i + 1)-th approximations.

Next, for constraints corresponding to signal. Consider an edge (u, signal(s), u′) ∈ E
and digests A′, A0 such that A′ ∈ Ju, signal(s)K]A(A0). For Cmm, the constraints take the
following form:

[u′, S, A′] ⊇ J([u, S, A0], signal(s), u′), A′Kmm
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with right-hand side

J([u, S, A0], signal(s), u′), A′Kmm ηmm =

let T = J(u, signal(s), u′)KT (ηmm [u, S, A0]) in
let ρ = {[s, A′] 7→ T} in
(∅, T)

For C, the constraints take the following form:

[u′, S, A′] ⊇ J([u, S, A0], signal(s), [u′, S, A′])K

with right-hand side

J([u, S, A0], signal(s), [u′, S, A′])K η = let T = J(u, signal(s), u′)KT (η [u, S, A0]) in
({[s, S, A′] 7→ T}, T)

Provided property (1) holds for the i-th approximations, the unknowns [u′, S, A′] of
both constraint systems receive the same new contribution. It thus remains to consider
the side-effects.

ηi+1
mm [s, A′] = ηi

mm [s, A′] ∪ T = split[ηi] [s, A′] ∪ T
= (

⋃
S′⊆M ηi[s, S′, A′]) ∪ T

= (
⋃

S′⊆M,S′ 6=S ηi[s, S′, A′]) ∪ (ηi[s, S, A′] ∪ T)
= (

⋃
S′⊆M,S′ 6=S ηi+1[s, S′, A′]) ∪ ηi+1[s, S, A′]

= (
⋃

S′⊆M ηi+1[s, S′, A′])
= split[ηi+1] [s, A′]

Thus, if property (1) holds for the i-th approximations, and constraints of this form are
considered, it also holds for the (i + 1)-th approximations.

Lastly, consider the constraints corresponding to wait. Consider an edge (u,wait(s), u′) ∈
E and digests A′, A0, where A′ ∈ Ju,wait(s)K]A(A0, A1). For Cmm, the constraints take
the following form:

[u′, S, A′] ⊇ J([u, S, A0],wait(s), u′), A1Kmm

with right-hand side

J([u, S, A0],wait(s), u′), A1Kmm ηmm =

let T = J(u,wait(s), u′)KT (ηmm [u, S, A0], ηmm [s, A1]) in
(∅, T)

For C, the constraints take the following form

[u′, S, A′] ⊇ J([u, S, A0],wait(s), u′), A1K
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with right-hand side

J([u, S, A0],wait(s), u′), A1K η =

let T0 =
⋃

S′⊆MJ(u,wait(s), u′)KT (η [u, S, A0], η [s, S′, A1]) in
(∅, T0)

As J·KT is defined point-wise, we have

⋃
S′⊆MJ(u,wait(s), u′)KT

(
ηi [u, S, A0], ηi [s, S′, A1]

)
= J(u,wait(s), u′)KT

(
ηi [u, S, A0], (

⋃
S′⊆M ηi [s, S′, A1])

)
By induction hypothesis, we have that ηi

mm [u, S, A0] = split[ηi] [u, S, A0] = ηi [u, S, A0]

and it thus remains to relate the second arguments of J(u,wait(s), u′)KT to each other.

ηi
mm [s, A1] = split[ηi] [s, A1] =

⋃
S′⊆M ηi[s, S′, A]

Thus, J·KT returns the same set of local traces in both cases. As neither constraint
causes any side-effect, we obtain: If property (1) holds for the i-th approximations,
and constraints corresponding to wait are considered, it also holds for the (i + 1)-th
approximations.

This concludes the case distinction and the proof of Proposition 28.

It thus remains to relate solutions of C] and solutions of Cmm to each other. The
approach is similar to the proofs in the preceding subsection: We first define a function
β that extracts some information from a local trace. In this instance, it has the type
T → (Vars→ V) and extracts a map that contains the values of the locals at the sink of
t as well as the last written values of globals.

β t = {x 7→ t(x) | x ∈ X} ∪ {g 7→ 0 | g ∈ G,⊥ = last_writeg t}
∪ {g 7→ σj−1 x | g ∈ G, ((j− 1, uj−1, σj−1), g = x, _) = last_writeg t}

Remark 27. Note that the type of β differs from the one of the β used for the proofs of the other
analyses. This is for convenience reasons, as this proof works with a relational abstract domain,
whereas the other proofs assume a non-relational abstract domain.

The abstraction function β is used to specify concretization functions for the values of
unknowns [u, S, A] for program points, currently held locksets, and digests as well as
for the other unknowns

γu,S,A(r) = {t ∈ T | loc t = u, Lt = S, αA t = A, β t ∈ γR r}
γa,A(r) = {t ∈ T | last t = unlock(a) ∨ last t = initMT, αA t = A, β t ∈ γR r}
γi,A(r) = {t ∈ T | last t = return, αA t = A, id t = i, β t ∈ γR r}
γs,A(r) = {t ∈ T | last t = signal(s), αA t = A, β t ∈ γR r}
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We remark that these concretization functions are monotonic. For a solution η] of C], we
then construct a mapping η′mm by:

η′mm[u, S, A] = γu,S,A(η
] [u, S, A]) u ∈ N , S ⊆M, A ∈ A

η′mm[a, Q, A] = γa,A(η
] [a, Q, A]) a ∈ M, Q ∈ Qa, A ∈ A

η′mm[i, A] =
⋃{γi,A(η

] [i], A]) | i] ∈ SV ]tid
, i ∈ γV ]tid

{i]}} i ∈ Vtid, A ∈ A
η′mm[s, A] = γs,A(η

] [s, A]) s ∈ S , A ∈ A

Altogether, correctness of C] follows from the following theorem:

Theorem 20. Every solution of C] is sound w.r.t. the local trace semantics.

Proof. Recall from Proposition 28, that the least solution of Cmm is sound w.r.t. the local
trace semantics as specified by the constraint system C. It thus suffices to prove that the
mapping η′mm as constructed above, is a solution of the constraint system Cmm. For that,
we verify by fixpoint induction that for the i-th approximation ηi to the least solution η

of Cmm, ηi ⊆ η′mm holds.
To establish soundness for the constraints for locking a mutex where a meet is

performed (an in fact for all observing actions), it is necessary to show that the abstract
value associated with a program point does not contain information about unprotected
globals and that each unknown for a mutex and cluster only stores information about
globals that are part of this cluster. Intuitively, one would like to state that η] [a, Q, A] =

(η] [a, Q, A])
∣∣
Q. However, this does not hold for arbitrary solutions, and we have not

shown the existence of a least solution for C] and do not want to demand its existence
to make the soundness argument potentially also applicable in cases where such a least
solution does not exist. Thus, we consider an alternative property, namely that not only
β t is in the concretization of the relational abstract value, but so are all other variable
assignments where all variables not protected receive a non-deterministic value.

We define an operation similar to restrict from mappings from variables to concrete
values that maps one mapping to the set of all mappings obtained when replacing all
the values of variables which are forgotten with some non-deterministic value (as always
assumed to be type-preserving):

σ|X = {σ⊕ {xi 7→ vi, . . . xm 7→ vm} | xi ∈ (Vars \ X), vi ∈ V}

We call auxiliary property (a) that

∀t ∈ ηi [u, S, A] : (β t)|X∪{g∈G,M̄[g]∩S 6=∅} ⊆ γR (η] [u, S, A]) u ∈ N , S ⊆M, A ∈ A
∀t ∈ ηi [a, Q, A] : (β t)|Q ⊆ γR (η] [a, Q, A]) a ∈ M, Q ∈ Qa, A ∈ A

holds. The reason for this definition via β instead of directly embedding this in the
concretization is that, for some of these mappings, there is no corresponding local trace
attaining this configuration, which would complicate the further arguments. For the
zero-th iteration ηi is ∅ everywhere, and thus auxiliary property (a) hold.
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We first consider the constraints for initialization, the start point u0 and the empty
lockset. We verify that for all A ∈ init]A:

(∅, {t | t ∈ init, A = αA(t)}) ⊆ (η′mm, η′mm [u0, ∅, A])

As no side-effects are triggered, it suffices to check that {t | t ∈ init, A = αA(t)} ⊆
η′mm [u0, ∅, A] holds.

init(A)] _ = (∅, Jself←] Ji0K
]
Exp>K]R>)

Let η] [u0, ∅, A] = r] the value provided by η] for the start point and the empty lockset.
Since η] is a solution of C], Jself←] Ji0K

]
Exp>K]R> v r] holds. By definition,

η′mm [u0, ∅, A] = γu0,∅,A(r]) = {t ∈ T | loc t = u0, Lt = ∅, αA t = A, β t ∈ γR r]}

Consider a trace t from {t | t ∈ init, A = αA(t)}. Then, loc t = u0, Lt = ∅, and αA t = A
all hold vacuously. Let σ = β t. We remark that, by construction, σ self = i0. Then, by
soundness of the operations on the base domain and the relational domain, we obtain

σ ∈ σ|X ⊆ γR
(
Jself←] Ji0K

]
Exp>K]R>

)
⊆ γR(r])

Altogether t ∈ η′mm [u0, ∅, A] holds for all t ∈ {t | t ∈ init, A = αA(t)} and the auxiliary
property (a) holds for the next approximation as well.

Next, consider the constraints for initMT. Consider an edge (u, initMT, u′) ∈ E and
digests A′, A0 such that A′ ∈ Ju, initMTK]A(A0). We remark that, by construction, the
lockset is empty when executing initMT. We verify that

J([u, ∅, A0], initMT, u′)Kmm ηi ⊆ (η′mm, η′mm [u′, ∅, A′])

We have

J([u, ∅, A0], initMT, u′), A′Kmm η = let T = J(u, act, u′)KT (η [u, ∅, A0]) in
let ρ = {[a, Q, A′] 7→ T | a ∈ M, Q ∈ Qa} in
(ρ, T)

J[u, ∅, A0], initMT, A′K]η] = let r(Q) = J{g← 0 | g ∈ Q}K]R> in
let ρ] = {[a, Q, A′] 7→ r(Q) | a ∈ M, Q ∈ Qa} in
(ρ, η] [u, ∅, A0])

Let η] [u, ∅, A0] = r] and η] [u′, ∅, A′] = r]
′

the value provided by η] for the endpoint of
the given control-flow edge, the empty lockset, and the resulting digest. Since η] is a
solution of C], r] v r]

′
holds. Then, by definition:

η′mm[u′, ∅, A′] = γu′,∅,A′(r]
′
) = {t ∈ T | loc t = u′, Lt = ∅, αA t = A′, β t ∈ γR (r]

′
)}
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For every trace t ∈ ηi [u, ∅, A0], let β t = σ. By induction hypothesis, σ ∈ γR (r])
and also σ|X ∈ γR (r]). Let t′ ∈ J(u, initMT, u′)KT {t}. Then loc t′ = u′, Lt′ = ∅,
αA t′ = A′, and β t′ = σ. Thus, β t′ ∈ γR (r]

′
) and (β t′)|X ⊆ γR (r]

′
). Altogether,

t′ ∈ η′mm [u′, ∅, A′] holds for all t ∈ ηi [u, ∅, A0]. We conclude that the return value
of J([u, ∅, A0], initMT, u′), A′Kmm ηi is subsumed by the value η′mm [u′, ∅, A′] and that
auxiliary property (a) holds for the next approximation as well. Next, we consider the
side-effects. Consider some mutex a and associated cluster Q ∈ Qa. The side-effects to
the unknown [a, Q, A′] are the given by

ρ1 = {[a, Q, A′] 7→ T}
ρ]1 = {[a, Q, A′] 7→ (J{g← 0 | g ∈ Q}K]R>)}

Let η] [a, Q, A′] = r]ρ be the value given by η] for the unknown receiving the side-effect.
Since η] is a solution of C], (J{g← 0 | g ∈ Q}K]R>) v r]ρ holds. Then, by definition:

η′mm[a, Q, A′] = γa,A′(r
]
ρ)

= {t ∈ T | last t = unlock(a) ∨ last t = initMT, αA t = A′, β t ∈ γR r]ρ}

Consider a trace t ∈ ηi [u, ∅, A0] and let t′ = J(u, initMT, u′)KT {t}. Then, last t′ = initMT,
αA t′ = A′. Let β t′ = σ. Then, as last_writeg t′ = ⊥ for g ∈ G, we have σ g = 0.

Thus (as Q ⊆ G by construction), β t′ ∈ γR(J{g ← 0 | g ∈ Q}K]R) ⊆ γR r]ρ. Therefore,
t′ ∈ η′mm [a, Q, A′] holds for all t ∈ ηi [u, ∅, A0]. Hence, all side-effects for initMT of Cmm

are accounted for in η′mm, and the claim holds.

For this analysis, the right-hand sides for reading from a global, writing to a global,
and computations on locals (other than assignments of ?) take the same form. We
exemplify the proof for a read from a global x = g; the other cases are analogous.
Consider an edge (u, x = g, u′) ∈ E and digests A′, A0 such that A′ ∈ Ju, x = gK]A(A0).
We verify that

J([u, S, A0], x = g, u′)Kmm ηi ⊆ (η′mm, η′mm [u′, S, A′])

We have

J([u, S, A0], x = g, u′)Kmm ηmm = (∅, J(u, x = g, u′)KT (ηmm [u, S, A0]))

J[u, S, A0], x = gK]η] = (∅, Jx ← gK]R (η] [u, S, A0]))

Let η] [u, S, A0] = r] and η] [u′, S, A′] = r]
′

the value provided by η] for the endpoint of
the given control-flow edge, the current lockset, and the resulting digest. Since η] is a
solution of C], Jx ← gK]Rr] v r]

′
holds. Then, by definition:

η′mm[u′, S, A′] = γu′,S,A′(r]
′
) = {t ∈ T | loc t = u′, Lt = S, αA t = A′, β t ∈ γR (r]

′
)}

For every trace t ∈ ηi [u, S, A0], let β t = σ. By induction hypothesis, σ ∈ γR (r]) as well
as σ|X∪{g∈G,M̄[g]∩S 6=∅} ⊆ γR (r]). Let t′ = J(u, x = g, u′)KT {t}. Then loc t′ = u′, Lt′ = S,
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αA t′ = A′, σ′ = β t′ = σ⊕ {x 7→ JgKExp σ} Here, we use the function J·KExp to evaluate
the global variable, which is not problematic as, by construction, σ g contains the current
value of g. Recall from Fig. 3.2 that γR (Jx ← eK]R r) ⊇ {σ⊕ {x 7→ JeKExp σ} | σ ∈ γRr}
holds. We obtain

σ′ ∈ σ′|X∪{g∈G,M̄[g]∩S 6=∅}
= (σ⊕ {x 7→ JgKExp σ})

∣∣
X∪{g∈G,M̄[g]∩S 6=∅}

= {σ̂⊕ {x 7→ JgKExp σ} | σ̂ ∈ σ|X∪{g∈G,M̄[g]∩S 6=∅}}
⊆ {σ̂⊕ {x 7→ JgKExp σ̂} | σ̂ ∈ γR r]}
⊆ γR (Jx ← gK]Rr])
⊆ γR(r]

′
)

where we use that x and g are in X ∪ {g ∈ G,M̄[g] ∩ S 6= ∅}. Altogether, t′ ∈
η′mm [u′, S, A′] holds for all t ∈ ηi [u, S, A0]. We conclude that the return value of
J([u, S, A0], x = g, u′)Kmm ηi is subsumed by the value η′mm [u′, S, A′] and that auxiliary
property (a) holds for the next approximation as well for the unknown [u′, S, A′]. Since
the constraint causes no side-effects, the claim holds.

For guards as well as non-deterministic assignments x = ?, the proof proceeds along
the same lines as the proof given in Section 6.1.1, but argues via the soundness of J?eK]R,
respectively the soundness of the relational version of ·|Vars\{x}. We do not detail this
here.

Next, consider the constraints corresponding to locking a mutex a. Consider an edge
(u, lock(a), u′) ∈ E and digests A′, A0, and A1 such that A′ ∈ Ju, lock(a)K]A(A0, A1). We
verify that

J([u, S, A0], lock(a), u′), A1Kmm ηi ⊆ (η′mm, η′mm [u′, S ∪ {a}, A′])

We have
J([u, S, A0], lock(a), u′), A1Kmm ηmm =

let T1 =
⋂{ηmm [a, Q, A1] | Q ∈ Qa} in

let T = J(u, lock(a), u′)KT (ηmm [u, S, A0], T1) in
(∅, T)

J[u, S, A0], lock(a), A1K]η] =

let r] = η] [u, S, A0] in
let r]

′′
= r] u

(d
Q∈Qa

η] [a, Q, A1]
)

in

(∅, r]
′′
)

Let η] [u, S, A0] = r] and η] [u′, S ∪ {a}, A′] = r]
′

the value provided by η] for the
endpoint of the given control-flow edge and the resulting lockset and digest. Since η] is
a solution of C], r]

′′ v r]
′

holds. Then, by definition:

η′mm[u′, S ∪ {a}, A′] = γu′,S∪{a},A′(r]
′
)

= {t ∈ T | loc t = u′, Lt = S ∪ {a}, αA t = A′, β t ∈ γR (r]
′
)}
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For every trace t ∈ ηi [u, S, A0], let β t = σ. By induction hypothesis, σ ∈ γR (r]), as
well as σ|X∪{g∈G,M̄[g]∩S 6=∅} ⊆ γR (r]). For any trace t1 ∈

⋂{ηi [a, Q, A1] | Q ∈ Qa},
let β t1 = σ1. Then, by induction hypothesis, σ1 ∈

⋂{γR(η] [a, Q, A1]) | Q ∈ Qa}.
Also, we have σ1|Q ⊆ γR(η] [a, Q, A1]) for any Q ∈ Qa. As a consequence, we obtain
σ1|Ḡ[a] ⊆

⋂{γR(η] [a, Q, A1]) | Q ∈ Qa}.
Let t′ ∈ J(u, lock(a), u′)KT ({t}, {t1}). Then loc t′ = u′, Lt′ = S ∪ {a}, and αA t′ = A′.

Let σ′ = β t′. Then, ∀x ∈ X , σ′ x = σ x. For all globals protected by a, i.e., g ∈ Ḡ[a], on
the other hand, we have either

• S ∩ M̄[g] 6= ∅, in which case σ′ g = σ g = σ1 g, or

• S ∩ M̄[g] = ∅, in which case σ′g = σ1g.

Thus,
σ′ ∈ σ|X∪{g∈G,M̄[g]∩S 6=∅} ∩ σ1|Ḡ[a]
⊆ γR

(
r]
)
∩⋂{γR(η] [a, Q, A1]) | Q ∈ Qa}

⊆ γR
(

r] ud
Q∈Qa

(η] [a, Q, A1])
)

= γR r]
′′ ⊆ γR r]

′

where we rely on the u operation in R being sound w.r.t. the intersection of concretiza-
tions. Also, we have σ′|X∪{g∈G,M̄[g]∩(S∪{a}) 6=∅} ⊆ σ|X∪{g∈G,M̄[g]∩S 6=∅} ∩ σ1|Ḡ[a]. Alto-
gether, t′ ∈ η′mm [u′, S ∪ {a}, A′] holds for all t ∈ ηi [u, S, A0] and t1 ∈

⋂{ηi [a, Q, A1] |
Q ∈ Qa}. We conclude that the return value of J([u, S, A0], lock(a), u′), A1Kmm ηi is sub-
sumed by the value η′mm [u′, S ∪ {a}, A′] and that auxiliary property (a) holds for the
next approximation as well for the unknown [u′, S ∪ {a}, A′]. Since the constraint causes
no side-effects, the claim holds.

Next, consider the constraints corresponding to unlocking a mutex a. Consider an edge
(u, unlock(a), u′) ∈ E and digests A′, A0 such that A′ ∈ Ju, unlock(a)K]A(A0). We verify
that

J([u, S, A0], unlock(a), u′), A′Kmm ηi ⊆ (η′mm, η′mm [u′, S \ {a}, A′])

We have
J([u, S, A0], unlock(a), u′), A′Kmm ηmm =

let T = J(u, unlock(a), u′)KT (ηmm [u, S, A0]) in
let ρ = {[a, Q, A′] 7→ T | Q ∈ Qa} in
(ρ, T)

J[u, S, A0], unlock(a), A′K]η] =

let r] = η] [u, S, A0] in
let ρ] = {[a, Q, A′] 7→ r]

∣∣
Q | Q ∈ Qa} in

let r]
′′
= r]

∣∣
X∪⋃{Ḡ[a′]|a′∈(S\a)} in

(ρ], r]
′′
)
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6 Soundness Proofs for the Analyses

Let η] [u, S, A0] = r] and η] [u′, S \ {a}, A′] = r]
′

the value provided by η] for the
endpoint of the given control-flow edge and the resulting lockset and digest. Since η] is
a solution of C], r]

′′ v r]
′

holds. Then, by definition:

η′mm[u′, S \ {a}, A′] = γu′,S\{a},A′(r]
′
)

= {t ∈ T | loc t = u′, Lt = S \ {a}, αA t = A′, β t ∈ γR (r]
′
)}

For every trace t ∈ ηi [u, S, A0], let β t = σ. By induction hypothesis, σ ∈ γR (r]) and
σ|X∪⋃{Ḡ[a′]|a′∈S} ⊆ γR (r]). Let t′ ∈ J(u, unlock(a), u′)KT {t}. Then loc t′ = u′, Lt′ =

S \ {a}, αA t′ = A′, and β t′ = σ. Thus,

β t′ ∈ γR (r]) ⊆ γR
(

r]
∣∣
X∪⋃{Ḡ[a′]|a′∈(S\a)}

)
= γR r]

′′ ⊆ γR (r]
′
)

and also (β t′)|X∪⋃{Ḡ[a′]|a′∈(S\a)} ⊆ γR (r]
′
). Altogether, t′ ∈ η′mm [u′, S \ {a}, A′] holds for

all t ∈ ηi [u, S, A0]. We conclude that the value η′mm [u′, S \ {a}, A′] subsumes the return
value of J([u, S, A0], unlock(a), u′), A′Kmm ηi and that auxiliary property (a) holds for the
unknown [u′, S \ {a}, A′] in the next approximation. Next, we consider the side-effects.
Consider some mutex a and associated cluster Q ∈ Qa. The side-effects to the unknown
[a, Q, A′] are the given by

ρ1 = {[a, Q, A′] 7→ T}
ρ]1 = {[a, Q, A′] 7→ r]

∣∣
Q}

As η] is a solution of C], r]
∣∣
Q v η] [a, Q, A′] holds. Now consider a trace t′ as constructed

before. Then, last t′ = unlock(a), αA t′ = A′. As β′ t = β t, we have βt′ ∈ γR r] by
induction hypothesis. Thus, β t′ ∈ γR(r]) ⊆ γR (r]

∣∣
Q) ⊆ γR (η] [a, Q, A′]). Therefore,

t′ ∈ γa,A′(η
] [a, Q, A′]) = η′mm [a, Q, A′] holds for all t ∈ ηi [u, S, A0]. Also, we get

(β t′)|Q ⊆ γR (r]
∣∣
Q). Hence, all side-effects for unlock(a) of Cmm are accounted for

in η′mm, auxiliary property (a) also holds for the next approximation for unknowns
receiving side-effects, and the claim holds.

Next, consider the constraints corresponding to starting a new thread. Consider an edge
(u, x = create(u1), u′) ∈ E and digests A′, A0 such that A′ ∈ Ju, x = create(u1)K

]
A(A0).

We verify that

J([u, S, A0], x = create(u1), u′)Kmm ηi ⊆ (η′mm, η′mm [u′, S, A′])
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We have
J([u, S, A0], x = create(u1), u′)Kmm ηmm =

let T = J(u, x = create(u1), u′)KT (ηmm [u, S, A0]) in
let ρ = {[u1, ∅, new]

A u u1 A0] 7→ new u1 (ηmm [u, S, A0])}
(ρ, T)

J[u, S, A0], x = create(u1)K]η =

let r] = η [u, S, A0] in
let i = ν] u (unlift r]) u1 in
let r]

′′
= Jx ←] iK]Rr]

let r]ρ =
(
Jself←] iK]R r]

) ∣∣∣
X

in

let ρ] = {[u1, ∅, new]
A u u1 A0] 7→ r]ρ} in

(ρ], r]
′′
)

where we, for notational convenience, denote by new]
A u u1 A0 the only element of this

singleton set. Let η] [u, S, A0] = r] and η] [u′, S, A′] = r]
′

the value provided by η] for
the endpoint of the given control-flow edge and the resulting lockset and digest. Since
η] is a solution of C], r]

′′ v r]
′

holds. Then, by definition:

η′mm[u′, S, A′] = γu′,S,A′(r]
′
) = {t ∈ T | loc t = u′, Lt = S, αA t = A′, β t ∈ γR (r]

′
)}

For every trace t ∈ ηi [u, S, A0], let β t = σ. By induction hypothesis, σ ∈ γR (r]), as well
as σ|X∪{g∈G,M̄[g]∩S 6=∅} ⊆ γR (r]).

Let t′ ∈ J(u, x = create(u1), u′)KT {t}. Then loc t′ = u′, Lt′ = S. Let σ′ = β t′ =
σ⊕ {x 7→ ν(t)}. Then, as ν(t) ∈ γV ]tid

(ν] u (unlift r]) u1) by (3.2), and the properties of

the building blocks of the composite operation J· ←] ·K]R (including Fig. 3.2),

σ′ = σ⊕ {x 7→ ν(t)} ∈ (σ⊕ {x 7→ ν(t)})|X∪{g∈G,M̄[g]∩S 6=∅}
= {σ̂⊕ {x 7→ ν(t)} | σ̂ ∈ σ|X∪{g∈G,M̄[g]∩S 6=∅}}
⊆ {σ̂⊕ {x 7→ ν(t)} | σ̂ ∈ γR r]}
⊆ γR (Jx ←] ν] u (unlift r]) u1K

]
Rr])

= γR(r]
′′
) ⊆ γR(r]

′
)

where the second equality exploits that x ∈ X holds. Altogether, t′ ∈ η′mm [u′, S, A′]
holds for all t ∈ ηi [u, S, A0]. We conclude that the return value of J([u, S, A0], x =

create(u1), u′), A′Kmm ηi is subsumed by the value η′mm [u′, S, A′] and that auxiliary prop-
erty (a) holds for the next approximation as well for the unknown [u′, S, A′].

Next, we consider the side-effects of the corresponding right-hand-side functions for
a t as considered previously.

ρ = {[u1, ∅, new]
A u u1 A0] 7→ new u1 {t}}

ρ] = {[u1, ∅, new]
A u u1 A0] 7→ r]ρ}
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6 Soundness Proofs for the Analyses

Let η] [u1, ∅, new]
A u u1 A0] = r]

′
ρ the value provided by C] for the unknown receiving the

side-effect. Since η] is a solution of C], r]ρ v r]
′

ρ holds. Then, by definition:

η′mm[u1, ∅, new]
A u u1 A0] = γu1,∅,new]

A u u1 A0
(r]

′
ρ )

= {t ∈ T | loc t = u1, Lt = ∅, αA t = new]
A u u1 A0, β t ∈ γR (r]

′
ρ )}

Let t′′ = new u1 {t}. Then, loc t′′ = u1, Lt′′ = ∅, αA t′′ = new]
A u u1 A0, and let σ′′ =

β t′′ = σ⊕ {self 7→ ν(t)}. Then,

σ′′ = σ⊕ {self 7→ ν(t)} ∈ (σ⊕ {self 7→ ν(t)})|X
⊆ ⋃{(σ̂⊕ {self 7→ ν(t)})|X | σ̂ ∈ γRr]}
⊆ ⋃{σ̂|X | σ̂ ∈ γR (Jself←] ν] u (unlift r]) u1K

]
Rr])}

⊆ γR
(
(Jself←] ν] u (unlift r]) u1K

]
Rr])

∣∣∣
X

)
= γR(r

]
ρ) ⊆ γR(r

]′
ρ )

Altogether, t′′ ∈ η′mm [u1, ∅, new]
A u u1 A0] holds for all t ∈ ηi [u, S, A0]. Hence, all side-

effects for x = create(u1) of Cmm are accounted for in η′mm, auxiliary property (a) also
holds for the next approximation for unknowns receiving side-effects and the claim
holds.

Next, consider the constraints corresponding to returning from a thread. Consider an
edge (u, return, u′) ∈ E and digests A′, A0 such that A′ ∈ Ju, returnK]A(A0). We verify
that

J([u, S, A0], return, u′), A′Kmm ηi ⊆ (η′mm, η′mm [u′, S, A′])

We have
J([u, S, A0], return, u′), A′Kmm ηmm =

let T = J(u, return, u′)KT (ηmm [u, S, A0]) in
let ρ = {[i, A′] 7→ {t | t ∈ T, id t = i} | i ∈ Vtid} in
(ρ, T)

J[u, S, A0], return, A′K]η] =

let r] = η] [u, S, A0] in
let I] = (unlift r]) self in
let r]ρ = r]

∣∣
{ret} in

let ρ] =
{
[i], A′] 7→ r]ρ | i] ∈ I]

}
in(

ρ], r]
)

Let η] [u, S, A0] = r] and η] [u′, S, A′] = r]
′

the value provided by η] for the endpoint of
the given control-flow edge and the resulting lockset and digest. Since η] is a solution
of C], r] v r]

′
holds. Then, by definition:

η′mm[u′, S, A′] = γu′,S,A′(r]
′
) = {t ∈ T | loc t = u′, Lt = S, αA t = A′, β t ∈ γR (r]

′
)}
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For every trace t ∈ ηi [u, S, A0], let β t = σ. By induction hypothesis, σ ∈ γR (r]) and
σ|X∪{g∈G,M̄[g]∩S 6=∅} ⊆ γR (r]) both hold. Let t′ ∈ J(u, return, u′)KT {t}. Then loc t′ = u′,
Lt′ = S. Let σ′ = β t′ = β t = σ. Thus,

σ′ ∈ σ′
∣∣
X∪{g∈G,M̄[g]∩S 6=∅} = σ|X∪{g∈G,M̄[g]∩S 6=∅} ⊆ γR (r]) ⊆ γR (r]

′
)

Altogether, t′ ∈ η′mm [u′, S, A′] holds for all t ∈ ηi [u, S, A0]. We conclude that the return
value of J([u, S, A0], return, u′), A′Kmm ηi is subsumed by the value η′mm [u′, S, A′] and that
auxiliary property (a) also holds for the next approximation for the unknown [u′, S, A′].

Next, we consider the side-effects of the corresponding right-hand-side functions for
local traces t and t′ as considered previously.

ρ = {[id t′, A′] 7→ {t′}}
ρ] =

{
[i], A′] 7→ r]ρ | i] ∈ (unlift r]) self

}
where we use that id t = id t′. As σ ∈ γR (r]), we have id t′ = σ self ∈ γV ]tid

((unlift r]) self).

As V ]
tid is a powerset lattice, and the concretization is defined by the union of con-

cretizations of the singleton sets, there is at least one i]ρ ∈ ((unlift r]) self), such that

id t′ ∈ γV ]tid
{i]ρ}. Consider one such i]ρ, and let η] [i]ρ, A′] = r]

′
ρ the value provided by C]

for the unknown receiving the side-effect. Since η] is a solution of C], r]ρ v r]
′

ρ holds. By
definition:

η′mm[id t′, A′] =
⋃{γ(id t′),A′(η

] [i], A′]) | i] ∈ SV ]tid
, id t′ ∈ (γV ]tid

{i]})}

Now consider
γ(id t′),A′(η

] [i]ρ, A′]) ⊆ η′mm[id t′, A′]

Then, by definition:

γ(id t′),A′(η
] [i]ρ, A′]) = γ(id t′),A′

(
r]
′

ρ

)
= {t′′ ∈ T | last t′′ = return, αA t′′ = A′, id t′′ = id t′, β t′′ ∈ γR r]

′
ρ }

Then last t′ = return, αA t′ = A′, (vacuously id t′ = id t′), and

β t′ = σ ∈ γR (r]) ⊆ γR
(

r]
∣∣
{ret}

)
= γR r]ρ ⊆ γR r]

′
ρ

Altogether, t′ ∈ η′mm [id t, A′] holds for all t ∈ ηi [u, S, A0]. Hence, all side-effects for
return of Cmm are accounted for in η′mm, and the claim holds.

Next, consider the constraints corresponding to calling join. Consider an edge (u, x =

join(x′), u′) ∈ E and digests A′, A0 and A1 such that A′ ∈ Ju, x = join(x′)K]A(A0, A1). We
verify that

J([u, S, A0], x = join(x′), u′), A1Kmm ηi ⊆ (η′mm, η′mm [u′, S, A′])
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We have
J([u, S, A0], x = join(x′), u′), A1Kmm ηmm =

let T1 =
⋃{ηmm [t(x′), A1] | t ∈ ηmm [u, S, A0]} in

let T = J(u, x = join(x′), u′)KT (ηmm [u, S, A0], T1) in
(∅, T)

J[u, S, A0], x=join(x′), A1K]η] =

let r] = η] [u, S, A0] in
let v] =

⊔
i]∈((unlift r]) x′) unlift (η

][i], A1]) ret in
if v] = ⊥ then

(∅,⊥)
else

let r]
′′
= Jx ←] v]K]Rr] in

(∅, r]
′′
)

Let η] [u, S, A0] = r] and η] [u′, S, A′] = r]
′

the value provided by C] for the end point
of the given control-flow edge and lockset and digest. Since η] is a solution of C], we
either have v = ⊥ or r]

′′ v r]
′

holds. Then, by definition:

η′mm[u′, S, A′] = γu′,S,A′(r]
′
)

= {t ∈ T | loc t = u′, Lt = S, αA t = A′, β t ∈ γR (r]
′
)}

For every trace t ∈ ηi [u, S, A0], let β t = σ By induction hypothesis, σ ∈ γR (r]) as well
as σ|X∪{g∈G,M̄[g]∩S 6=∅} ⊆ γR (r]). Let

T′ = J(u, x = join(x′), u′)KT ({t},
⋃{ηi [(t′(x′)), A1] | t′ ∈ ηi [u, S, A0]})

= J(u, x = join(x′), u′)KT ({t}, ηi [(t(x′)), A1])

where the equality exploits that for a given local trace t, J(u, x = join(x′), u′)KT ({t}, {t′})
only yields a non-empty set if the thread id of the thread being joined is the one stored
in x′. We distinguish the case where the resulting set of traces is empty and the case
where it is empty. In case T′ is empty, it is trivially subsumed by η′mm [u′, S, A′].

Consider, thus, local traces t′ ∈ T′ and t′′ ∈ ηi [(t(x′)), A1] such that {t′} = J(u, x =

join(x′), u′)KT ({t}, {t′′}). Then loc t′ = u′, Lt′ = S, αA t′ = A′. Let σ′ = β t′. Then,
∀y ∈ X \ {x}, σ′ y = σ y. For all globals protected by some currently held mutex
{g | g ∈ G, S ∩ M̄[g] 6= ∅}, we also have t′(g) = t(g) and thus σ′ g = σ g. For x, on the
other hand we have σ′x = t′(x) = t′′(ret). It is thus necessary to relate t′′(ret) to v]. We
have

t′′ ∈ ηi [t(x′), A1]

⊆ η′mm [t(x′), A1]

=
⋃{γt(x′),A1

(η] [i], A1]) | i] ∈ SV ]tid
, t(x′) ∈ (γV ]tid

{i]})}
⊆ ⋃{γt(x′),A1

(η] [i], A1]) | i] ∈ ((unlift r]) x′)}
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6.2 Soundness Proofs for Analyses Considering Clusters of Globals

and therefore

{t′′(ret)}
⊆ {t′′′(ret) | t′′′ ∈ (

⋃{γt(x′),A1
(η] [i], A1]) | i] ∈ ((unlift r]) x′)})}

⊆ {t′′′(ret) | t′′′ ∈ γt(x′),A1
(
⊔{(η] [i], A1]) | i] ∈ ((unlift r]) x′)})}

⊆ γV ] (unlift (
⊔{(η] [i], A1]) | i] ∈ ((unlift r]) x′)} ) ret)

= γV ] ((
⊔{unlift (η] [i], A1]) ret | i] ∈ ((unlift r]) x′)} )) = γV ](v

])

where the next-to-last step uses the distributive property of unlift (see (3.3) in Section 3.2).
As a consequence, we obtain v] 6= ⊥, and thus r]

′′ v r]
′
. Altogether, we have

σ′ ∈ σ′|X∪{g∈G|S∩M̄[g] 6=∅}
= (σ⊕ {x 7→ t′′(ret)})|X∪{g∈G|S∩M̄[g] 6=∅}
=

⋃{σ̂⊕ {x 7→ t′′(ret)} | σ̂ ∈ σ|X∪{g∈G|S∩M̄[g] 6=∅}}
⊆ ⋃{σ̂⊕ {x 7→ t′′(ret)} | σ̂ ∈ γR r]}
⊆ γR (Jx ←] v]K]Rr]) = γR (r]

′′
) ⊆ γR (r]

′
)

where the second equality follows from x ∈ X . Thus, t′ ∈ η′mm [u′, S, A′] holds for all t ∈
ηi [u, S, A0]. We conclude that the return value of J([u, S, A0], x = join(x′), u′), A1Kmm ηi

is subsumed by the value η′mm [u′, S, A′] and that auxiliary property (a) also holds for
the next approximation for the unknown [u′, S, A′]. As neither constraint causes any
side-effects, the statement holds.

Next, consider the constraints corresponding to calling signal. Consider an edge
(u, signal(s), u′) ∈ E and digests A′, A0 such that A′ ∈ Ju, signal(s)K]A(A0). We verify that

J([u, S, A0], signal(s), u′), A′Kmm ηi ⊆ (η′mm, ηmm [u′, S, A′])

We have
J([u, S, A0], signal(s), u′), A′Kmm ηmm =

let T = J(u, signal(s), u′)KT (ηmm [u, S, A0]) in
let ρ = {[s, A′] 7→ T} in
(∅, T)

J[u, S, A0], signal(s)K]η] =

let r] = η] [u, S, A0] in(
{[s, A′] 7→ r]}, r]

)
Let η] [u, S, A0] = r] and η] [u′, S, A′] = r]

′
the value provided by η] for the endpoint of

the given control-flow edge and the resulting lockset and digest. Since η] is a solution
of C], r] v r]

′
holds. Then, by definition:

η′mm[u′, S, A′] = γu′,S,A′(r]
′
) = {t ∈ T | loc t = u′, Lt = S, αA t = A′, β t ∈ γR (r]

′
)}

For every trace t ∈ ηi [u, S, A0], let β t = σ. By induction hypothesis, σ ∈ γR (r])
and σ|X∪{g∈G,M̄[g]∩S 6=∅} ⊆ γR (r]) both hold. Let t′ ∈ J(u, signal(s), u′)KT {t}. Then
loc t′ = u′, Lt′ = S. Let σ′ = β t′ = β t = σ. Thus,

σ′ ∈ σ′
∣∣
X∪{g∈G,M̄[g]∩S 6=∅} = σ|X∪{g∈G,M̄[g]∩S 6=∅} ⊆ γR (r]) ⊆ γR (r]

′
)
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Altogether, t′ ∈ η′mm [u′, S, A′] holds for all t ∈ ηi [u, S, A0]. We conclude that the return
value of J([u, S, A0], signal(s), u′), A′Kmm ηi is subsumed by the value η′mm [u′, S, A′] and
that auxiliary property (a) also holds for the next approximation for the unknown
[u′, S, A′].

Next, we consider the side-effects of the corresponding right-hand-side functions for
local traces t and t′ as considered previously.

ρ = {[s, A′] 7→ T}
ρ] = {[s, A′] 7→ r]}

Let η] [s, A′] = r]ρ the value provided by C] for the unknown receiving the side-effect.
Since η] is a solution of C], r] v r]ρ hold. By definition:

η′mm[s, A′] = γs,A′(η
] [s, A′])

= {t ∈ T | last t = signal(s), αA t = A′, β t ∈ γR (r]ρ)}

Consider a trace t′ as above: Then last t′ = signal(s), αA t′ = A′, and and β t′ = β t ∈
γR (r]) ⊆ γR (r]ρ) Altogether, t′ ∈ η′mm [s, A′] holds for all t ∈ ηi [u, S, A0]. Hence, all
side-effects for signal(s) of Cmm are accounted for in η′mm, and the claim holds.

Lastly, consider the constraints corresponding to a call of wait. Consider an edge
(u,wait(s), u′) ∈ E and digests A′, A0 and A1 such that the resulting digest A′ ∈
Ju,wait(s)K]A(A0, A1). We verify that

J([u, S, A0],wait(s), u′), A1Kmm ηi ⊆ (η′mm, η′mm [u′, S, A′])

We have
J([u, S, A0],wait(s), u′), A1Kmm ηmm =

let T = J(u,wait(s), u′)KT (ηmm [u, S, A0], ηmm [s, A1]) in
(∅, T)

J[u, S, A0],wait(s), A1K]η] =

let r] = η] [u, S, A0] in
if η] [s, A1] = ⊥ then

(∅,⊥)
else

(∅, r])

Let η] [u, S, A0] = r] and η] [u′, S, A′] = r]
′

the value provided by C] for the end point
of the given control-flow edge and lockset and digest. Since η] is a solution of C], we
either have η] [s, A1] = ⊥ or r] v r]

′
holds. Then, by definition:

η′mm[u′, S, A′] = γu′,S,A′(r]
′
)

= {t ∈ T | loc t = u′, Lt = S, αA t = A′, β t ∈ γR (r]
′
)}

For every trace t ∈ ηi [u, S, A0], let β t = σ. By induction hypothesis, σ ∈ γR (r])
as well as σ|X∪{g∈G,M̄[g]∩S 6=∅} ⊆ γR (r]). We distinguish between the case where the
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6.2 Soundness Proofs for Analyses Considering Clusters of Globals

resulting set of traces is T is empty, and the case where it is not. If T is empty, it is
trivially subsumed by η′mm [u′, S, A′]. Let us thus consider the case where it is not empty:
Consider a t′ ∈ T and a t′′ ∈ ηi [s, A1] such that {t′} = J(u,wait(s), u′)KT ({t}, {t′′}). By
induction hypothesis, we have:

t′′ ∈ ηi [s, A1] ⊆ η′mm [s, A1] = γs,A1(η
] [s, A1])

By the properties of γs,A1 , we have η] [s, A1] 6= ⊥. Thus, r] v r]
′

holds.
Consider again the local trace t′: Then loc t′ = u′, Lt′ = S, and αA t′ = A′. Let σ′ = β t′.

Then, ∀y ∈ X : σ′ y = σ y. For all globals protected by some currently held mutex
{g | g ∈ G, S ∩ M̄[g] 6= ∅}, we also have t′(g) = t(g) and thus σ′ g = σ g. Altogether,
we have

σ′ ∈ σ′|X∪{g∈G|S∩M̄[g] 6=∅} = σ|X∪{g∈G|S∩M̄[g] 6=∅} ⊆ γR (r]) ⊆ γR (r]
′
)

Altogether, t′ ∈ η′mm [u′, S, A′] holds for all t ∈ ηi [u, S, A0] and auxiliary property (a)
also holds for the next approximation for the unknown [u′, S, A′]. As neither constraint
causes any side-effects, the statement holds for edges corresponding to calls of wait(s).

This concludes the case distinction for the inductive step and, thus, the soundness
proof for Mutex-Meet with Digests.

6.2.2 Mutex-Meet with Joins

Intuitively, the key insight needed to establish soundness of this analysis is that side-
effects in the abstract constraint system can be abandoned whenever the ego thread
definitely did not write to any global from Ḡ[a] since acquiring a. The latter holds
whenever W] ∩ Ḡ[a] = ∅ at the given unlock(a). By the same argument, whenever
the ego thread has actually written a global from Ḡ[a] since acquiring a, its thread id
coincides with the thread id of the thread executing the last unlock(a) after a write to
any global from Ḡ[a].

More technically, the proof for this analysis proceeds in the following manner: After
establishing a helpful auxiliary property about the k-th approximations to the least
solution of the concrete constraint system, an instance of A tracking a rich abstraction
of the history of the local trace is introduced. While for the other analyses, the analyses
themselves made use of the same A, in this case the analysis does not and instead
splits only according to thread ids as before. The rich A is only used to argue that
side-effect to unknowns associated with unaffected clusters can be abandoned in the
abstract constraint system.

We refer to the constraint system of the analysis from Section 4.2.4 by C], and to the
concrete constraint system introduced in the previous section by Cmm once again. We
further refer to the A to compute thread ids (see Fig. 2.14) by A1.

The following insight into the k-th approximation to the solution of the constraint system
Cmm computed during fixpoint iteration is required: For any trace t associated with an
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unknown for a given program point, lockset, and digest in the k-th approximation ηk to
the least solution η of Cmm, the subtrace of t ending in the last unlock(a) to immediately
succeed a write to a global g protected by a, i.e., g ∈ Ḡ[a], has been side-effected to
all unknowns for clusters associated with a with an appropriate digest value. More
formally, let unlock_after_writea : T → E ∪ {⊥} be a function to extract, for a mutex
a, the first unlock(a) action that immediately succeeds the last write to a global in Ḡ[a].
Then, we have:

Proposition 29. Consider the k-th approximation ηk to the least solution η of Cmm. Then, for
all u ∈ N , S ⊆M, and A ∈ A we have

∀a ∈ M, Q ∈ Qa : t ∈ ηk [u, S, A] =⇒
{t′ | unlock_after_writea t = (ūi, _, _), t′ =↓ūi (t), αA t′ = A′} ⊆ ηk [a, Q, A′]

Proof. The proof itself is obtained by fixpoint induction and relies on the fact that as
soon as a trace ending in unlock(a) is created, it is immediately side-effected and that
this either happened in the current iteration if t actually ends in such an unlock, or must
otherwise have happened in an earlier iteration. We omit the details here.

As hinted at before, the proof of the analysis from Section 4.2.4 abandons the generality
of A and instead fixes a specific instance of A for the analyses. With the help of this
digest, many portions of the proof from Section 6.2.1 carry over. It remains to show that
side-effects can be abandoned in certain situations and that no global unknowns need
to be consulted for join-local contributions. Use of such a digest in the analysis would
make it overly precise and thus potentially also very slow. The full digest thus is used
only as an intermediate step of the proof.

The modified instance of A then tracks, in addition to the thread id digests from
Section 2.8 (and to the lockset digests as in the previous section), for each mutex the
information of which abstract thread id (computed in the same manner as in Section 2.8)
did the last unlock immediately succeeding a thread-local write to a global protected
by that mutex, how many such unlocks have happened since program start, and — for
currently held mutexes — whether any protected global has been written since the
mutex was acquired. To this end, we choose

A = (V ]
tid,A × 2P )× (M→ (N0 × (V ]

tid,A × 2P )× 2G))

and use the right-hand sides given in Fig. 6.3. The function Ju, lock(a)K]A for a mutex a
is then given by

Ju, lock(a)K]A((i, C), H) ((i′, C′), H′) =
∅ ¬may_run (i, C) (H′ a)2


(i, C),

{b 7→ H b | b ∈ M, (H b)1 ≥ (H′ b)1}
∪{b 7→ H̄′ b | b ∈ M, (H b)1 < (H′ b)1}


 else
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init]A = {(((main, ∅), ∅), {a 7→ (0, ((main, ∅), ∅)) | a ∈ M})}
Ju, x=create(u1)K

]
A ((i, C), H) = {((i, C ∪ {〈u, u1〉}), H)}

Ju, g = xK]A ((i, C), H) =

{((i, C), {a 7→ ((H a)1, (H a)2, (H a)3 ∪ ({g} ∩ Ḡ[a])) | a ∈ M})}

Ju, unlock(a)K]A((i, C), H) =


{((i, C), H)} if (H a)3 = ∅{

((i, C), (H ⊕ {a 7→
((H a)1 + 1, (i, C), ∅)}))

}
else

Ju, actK]A ((i, C), H) = {((i, C), H)} (other non-observing)

new]
A u u1 (((d, s), C), H) =

let (d′, s′) = (d, s) ◦ 〈u, u1〉 in
if s′ = ∅ ∧ 〈u, u1〉 ∈ C then (((d, {〈u, u1〉}), ∅), H)

else (((d′, s′), ∅), H)

Figure 6.3: Modified instance of A tracking additional information on top of thread ids.
The definition of ◦ is the one given in Fig. 2.14.

where (·)k is shorthand for accessing the k-th component of a tuple and H̄ denotes setting
the 3-rd component of all H b to ∅. This definition is also used for Ju, x = join(x′)K]A
and Ju,wait(s)K]A. We remark that the may_run predicate here does not check for the
current (i′, C′) of the thread performing the respective unlock, but instead refers to the
(i, C) at the last thread-local write to a global protected by a.

The digest from Fig. 6.3 with the right-hand sides for observing actions as given above
is an admissible digest. The key step in the proof is showing that the may_run check can
soundly refer to the thread id at this earlier write. Intuitively, this holds as the predicate
may_run is monotonic in some sense. If the thread unlocking the mutex can be started
in the concrete, this also holds for any threads that thread has interacted with. We do
not provide a formal argument of admissibility here.

The concretization for abstract values at unknowns of the form [a, Q, ((i, C), H)] is
defined such that it contains any local trace ending in an unlock(a) in which the last
thread-local write to a global in Ḡ[a] was by the thread with the thread id (H a)2.

To define appropriate concretizations, we once again introduce a function β that
maps a local trace to some information extracted from it that can then be related to
the information computed by the analysis. To this end, we first define some additional
helper functions: The function jl_joins : T → 2E extracts from a local trace all calls
to join that are join-local. Let jl_unlock_after_writea : T → E ∪ {⊥} be a function to
extract, for a mutex a, the first join-local unlock(a) action that immediately succeeds the
last join-local write to a global in Ḡ[a]. If mutex a is currently held by the ego thread in
the argument trace, jl_unlock_after_writea only considers the subtrace that ends with
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the ego-thread acquiring a.
The function β then has the following type:

β : T → (2Vtid × (M→ (Vars→ V))× 2G × (Vars→ V))

We set:

β t = (J, L, W, r) where

J = {σi x′ | ((i, ui, σi), x=join(x′), _) ∈ jl_joins t}
L = {a 7→ ex t′ | a ∈ M, jl_unlock_after_writea t = ⊥, t′ =↓(u0,0,σ0) (t)}

∪{a 7→ ex t′ | a ∈ M, jl_unlock_after_writea t = (ūi, _, _), t′ =↓ūi (t)}
W =

⋃
a∈M{g | g ∈ Ḡ[a], last_tl_writeg t = (ūi, _, _),

((last_tl_unlocka t = (ūj, _, _) ∧ ūj ≤ ūi) ∨ last_tl_unlocka t = ⊥)}
r = ex t

where the helper function ex : T → (Vars→ V) is given by

ex t = {x 7→ t(x) | x ∈ X} ∪ {g 7→ 0 | g ∈ G,⊥ = last_writeg t}
∪ {g 7→ σj−1 x | g ∈ G, ((j− 1, uj−1, σj−1), g = x, _) = last_writeg t}

The abstraction function β is used to specify concretization functions for the values
of unknowns [u, S, ((i, C), H)] for program points, currently held locksets, and digests
as well as for the other unknowns, where A1 refers to the digests as considered in
Section 2.8.

γu,S,((i,C),H)(J], L], W], r]) = {t ∈ T | loc t = u, Lt = S, αA1 t = (i, C),
(J, L, W, r) = β t,
J] ⊆j J, L vt L], W ⊆W], r ∈ γR r]}

γi′,((i,C),H)(J], L], r]) = {t ∈ T | last t = return, αA1 t = (i, C), id t = i′,
(J, L, W, r) = β t,
J] ⊆j J, L vt L], r ∈ γR r]}

γa,((i,C),H)(r]) = {t ∈ T | last t = unlock(a),
unlock_after_writea t = (ūi, _, _),
t′ =↓ūi (t), αA1 t′ = (H a)2

(J, L, W, r) = β t′, r ∈ γR r]}
∪{t ∈ T | last t = unlock(a) ∨ last t = initMT,

unlock_after_writea t = ⊥}
γs,((i,C),H)(J], L], W], r]) = {t ∈ T | last t = signal(s), αA1 t = (i, C),

(J, L, W, r) = β t,
J] ⊆j J, L vt L], W ⊆W], r ∈ γR r]}
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where J] ⊆j J is shorthand for ∀i] ∈ J] : unique i] =⇒ γV ]tid,A
i] ⊆ J, i.e., checking that all

abstract thread ids that are known to be must-joined and are unique are indeed joined
in the local trace. By abuse of notation, let L vt L] denote checking that

∀a ∈ M : (jl_unlock_after_writea t = unlock_after_writea t =⇒
∀Q ∈ Qa : L a ∈ γR (L](a, Q)))

This predicate thus checks that, if the last unlock of a mutex a immediately succeeding
a write to a global protected by a is join-local to t, L] (a, Q) soundly abstracts the value
of locals and globals at the program point corresponding to that unlock for all Q ∈ Qa.

We remark that these concretization functions are monotonic. For a solution η] of C]
as considered in Section 4.2.4, we then construct a mapping η′mm by:

η′mm[u, S, ((i, C), H)] = γu,S,((i,C),H)(η
] [u, S, (i, C)]) u ∈ N , S ⊆M,

η′mm[a, Q, ((i, C), H)] = γa,((i,C),H)(η
] [a, Q, (H a)2]) a ∈ M, Q ∈ Qa

η′mm[i′, ((i, C), H)] = γi′,((i,C),H)(η
] [(i, C)]) i′ ∈ Vtid

η′mm[s, ((i, C), H)] = γs,((i,C),H)(η
] [s, (i, C)]) s ∈ S

for ((i, C), H) ∈ A. Altogether, correctness of C] follows from the following theorem:

Theorem 21. Every solution of C] is sound w.r.t. the local trace semantics.

Proof. Recall from Proposition 28, that the least solution of Cmm (refined with an admis-
sible digest) is sound w.r.t. the local trace semantics as specified by the constraint system
C. As the digest considered above is admissible, it suffices to prove that the mapping
η′mm as constructed above, is a solution of the constraint system Cmm. For that, we verify
by fixpoint induction that for the k-th approximation ηk to the least solution η of Cmm,
ηk ⊆ η′mm holds.

As in the proof for Theorem 20, we once again require an auxiliary property stating
that abstract values only speak about locals and protected globals (for unknowns
associated with program points), respectively those globals that form a part of a given
cluster (for unknowns associated with a mutex and a cluster). We call auxiliary property
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(a) that

∀t ∈ ηk [u, S, ((i, C), H)] : β t = (J, L, W, r), (J], L], W], r]) = η] [u, S, (i, C)] =⇒
r|X∪{g∈G,M̄[g]∩S 6=∅} ⊆ γR r] ∧ ∀a ∈ M :
jl_unlock_after_writea t = unlock_after_writea t =⇒
∀Q ∈ Qa : (L a)|Q ∈ γR (L] (a, Q))

(for u ∈ N , S ⊆M, ((i, C), H) ∈ A)

∀t ∈ ηk [a, Q, ((i, C), H)] : β t = (J, L, W, r) ∧ unlock_after_writea t 6= ⊥ =⇒
r|Q ∈ γR (η] [a, Q, (H a)2])

(for a ∈ M, Q ∈ Qa, ((i, C), H) ∈ A)

∀t ∈ ηk [i′, ((i, C), H)] : β t = (J, L, r), (J], L], W], r]) = η] [(i, C)] =⇒ ∀a ∈ M :
jl_unlock_after_writea t = unlock_after_writea t =⇒
∀Q ∈ Qa : (L a)|Q ∈ γR (L] (a, Q))

(for u ∈ N , S ⊆M, ((i, C), H) ∈ A)

For the zero-th iteration ηk is ∅ everywhere, and thus auxiliary property (a) holds.

We first consider the constraints for initialization, the start point u0 and the empty
lockset, and verify that for all A ∈ init]A:

(∅, {t | t ∈ init, A = αA(t)}) ⊆ (η′mm, η′mm [u0, ∅, A])

As no side-effects are triggered, it suffices to check that {t | t ∈ init, A = αA(t)} ⊆
η′mm [u0, ∅, A] holds.

init((i, C))] _ = let L (a, Q) = J{g← 0 | g ∈ Q}K]R> in
let r = Jself←] single iK]R> in
(∅, (∅, {(a, Q) 7→ L (a, Q) | a∈M, Q∈Qa} , ∅, r))

Let η] [u0, ∅, (i, C)] = (J], L], W], r]) the value provided by η] for the start point and the
empty lockset. Since η] is a solution of C], we have

∅ ⊇ J]

{(a, Q) 7→ J{g← 0 | g ∈ Q}K]R> | a∈M, Q∈Qa} v L]

∅ ⊆ W]

Jself←] single iK]R> v r]

By definition,

η′mm [u0, ∅, ((i, C), H)] = γu0,∅,((i,C),H)(η
] [u0, ∅, (i, C)])

= γu0,∅,((i,C),H)(J], L], W], r])
= {t ∈ T | loc t = u0, Lt = ∅, αA1 t = (i, C), (J, L, W, r) = β t,

J] ⊆j J, L vt L], W ⊆W], r ∈ γR r]}
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Consider a trace t from {t | t ∈ init, ((i, C), H) = αA(t)}. Then, loc t = u0, Lt = ∅, and
αA1 t = (i, C) all hold vacuously. Let β t = (J, L, W, r). By construction, we have J = ∅,
and since ∅ ⊇ J] implies J] = ∅, thus

⋃{γV ]tid,A
i] | i] ∈ J]} = ∅ ⊆ ∅ = J and thus J] ⊆j J

holds. For any mutex a, we have jl_unlock_after_writea t = unlock_after_writea t = ⊥
and for all Q ∈ Qa,

La = ({x 7→ t(x) | x ∈ X} ∪ {g 7→ 0 | g ∈ G})
∈ ({x 7→ t(x) | x ∈ X} ∪ {g 7→ 0 | g ∈ G})|Q
⊆ γR(J{g← 0 | g ∈ Q}K]R>) ⊆ (γRL](a, Q))

and thus L vt L] holds as does the auxiliary property (a) w.r.t. the requirements on
L. Further, we have W = ∅ ⊆ W]. We remark that, by construction, r self = i0, and
by Eq. (2.13) we have i0 ∈ γV ]tid,A

i. Then, by soundness of the operations on the base

domain and the relational domain, and the property of single we obtain

r ∈ r|X ⊆ γR
(
Jself←] single iK]R>

)
⊆ γR(r])

Altogether t ∈ η′mm [u0, ∅, A] holds for all t ∈ {t | t ∈ init, A = αA(t)} and the auxiliary
property (a) also holds for the next iteration.

For this analysis, the right-hand sides for reading from a global, computations on
locals, guards take the same form as for the analysis discussed in Section 6.2.1 and the
soundness argument carries over mostly unchanged (also for the auxiliary property (a)
for L as neither of these actions are observing). We thus do not provide the detailed
proof for these right-hand sides here.

Next, consider the constraints corresponding to locking a mutex a. Consider an
edge (u, lock(a), u′) ∈ E and digests A′ = ((i, C), H′), A0 = ((i, C), H0), and A1 =

((i1, C1), H1) such that ((i, C), H′) ∈ Ju, lock(a)K]A(((i, C), H0), ((i1, C1), H1)). We verify
that

J([u, S, ((i, C), H0)], lock(a), u′), ((i1, C1), H1)Kmm ηk ⊆
(η′mm, η′mm [u′, S ∪ {a}, ((i, C), H′)])

Let us call ((H1) a)2 = (ī1, C̄1). We have

J([u, S, A0], lock(a), u′), A1Kmm ηmm =

let T1 =
⋂{ηmm [a, Q, A1] | Q ∈ Qa} in

let T = J(u, lock(a), u′)KT (ηmm [u, S, A0], T1) in
(∅, T)
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J[u, S, (i, C)], lock(a), (ī1, C̄1)K]η] =

let (J], L], W], r]) = η] [u, S, (i, C)] in
let r]m = if unique ī1 ∧ (i = ī1 ∨ ī1 ∈ J]) thend

Q∈Qa
L] (a, Q)

else (d
Q∈Qa

η] [a, Q, (ī1, C̄1)]
)
t
(d

Q∈Qa
L] (a, Q)

)
in
let r]

′′
= r] u r]m in(

∅,
(

J], L], W], r]
′′
))

Let η] [u, S, (i, C)] = (J], L], W], r]) and η] [u′, S∪ {a}, (i, C)] = (J]
′
, L]′ , W]′ , r]

′
) the value

provided by η] for the endpoint of the given control-flow edge and the resulting lockset
and digest. Since η] is a solution of C], J] v J]

′
, L] v L]′ , W] ⊆ W]′ , and r]

′′ v r]
′

all
hold. Then, by definition:

η′mm[u′, S ∪ {a}, ((i, C), H′)] = γu′,S∪{a},((i,C),H′)((J]
′
, L]′ , W]′ , r]

′
))

= {t ∈ T | loc t = u′, Lt = S ∪ {a}, αA1 t = (i, C), (J, L, W, r) = β t,
J]
′ ⊆j J, L vt L]′ , W ⊆W]′ , r ∈ γR r]

′}

For every trace t ∈ ηk [u, S, A0], let β t = (J, L, W, r). By induction hypothesis, J] ⊆j J,
L vt L], W ⊆ W], and r ∈ γR (r]). For any trace t1 ∈

⋂{ηk [a, Q, ((i1, C1), H1)] |
Q ∈ Qa} for which we have J(u, lock(a), u′)KT ({t}, {t1}) 6= ∅ let (_, _, _, r1) = β t1. We
have by induction hypothesis that for every Q ∈ Qa, t1 ∈ η′mm [a, Q, ((i1, C1), H1)]. By
definition, we have

η′mm[a, Q, ((i1, C1), H1)]

= γa,((i,C),H)(η
] [a, Q, (H1 a)2]) = γa,((i,C),H)(η

] [a, Q, (ī1, C̄1)])

= {t ∈ T | last t = unlock(a), unlock_after_writea t = (ūi, _, _),
t′ =↓ūi (t), αA1 t′ = (H a)2

(J, L, W, r) = β t′, r ∈ γR (η] [a, Q, (ī1, C̄1)])}
∪{t ∈ T | last t = unlock(a) ∨ last t = initMT, unlock_after_writea t = ⊥}

Consider a cluster Q ∈ Qa and let η][a, Q, (ī1, C̄1)] = r]1. By induction hypothesis, we
thus have

(1) either

t1 ∈ {t′′ ∈ T | last t′′ = unlock(a) ∨ last t′′ = initMT, unlock_after_writea t′′ = ⊥}

Then jl_unlock_after_writea t = ⊥ as well, and by induction hypothesis, there is
an r0 (namely the one extracted from the local trace ending in (u0, 0, σ0)) such that
r0 ∈ γR (L] (a, Q)) for all Q ∈ Qa. r1 coincides with r0 on the values of globals,
and we thus get by auxiliary property (a):

r1|Ḡ[a] ⊆ r1|Q = r0|Q ⊆ γR (L] (a, Q))
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(2) Otherwise, we have

t1 ∈ {t′′ ∈ T | last t′′ = unlock(a), unlock_after_writea t′′ = (ūi, _, _),
t′′′ =↓ūi (t

′′), αA1 t′′′ = (ī1, C̄1), (J′′′1 1, L′′′1 , W ′′′1 , r′′′1 ) = β t′′′, r′′′1 ∈ γR r]1}

As r′′′1 and r1 coincide on the values of all protected globals, we obtain (once again
using the auxiliary property (a))

r1|Ḡ[a] ⊆ r1|Q = r′′′1
∣∣
Q ⊆ γR (r]1)

Let t′ ∈ J(u, lock(a), u′)KT ({t}, {t1}). Then loc t′ = u′, Lt′ = S∪ {a}, and αA1 t′ = αA1 t =
(i, C). Let (J′, L′, W ′, r′) = β t′.

• First, consider the r component. We first observe that once more ∀x ∈ X , r′ x = r x.
Let us first consider the case where unique ī1 ∧ (i = ī1 ∨ ī1 ∈ J]) does not hold: For
all globals protected by a, we then have either

– S ∩ M̄[g] 6= ∅, in which case r′ g = r g = r1 g, or

– S ∩ M̄[g] = ∅, in which case r′ g = r1 g.

Thus,

r′ ∈ (r′)|X∪{g∈G,M̄[g]∩(S∪{a}) 6=∅}
⊆ r|X∪{g∈G,M̄[g]∩S 6=∅} ∩ r1|Ḡ[a]
⊆ γR

(
r]
)
∩ (
⋂{γR(η] [a, Q, (ī1, C̄1)]) | Q ∈ Qa}
∪(⋂{γR(L] (a, Q)) | Q ∈ Qa})

⊆ γR
(

r] u
(
(
d

Q∈Qa
(η] [a, Q, (ī1, C̄1)])) t

(d
Q∈Qa

L] (a, Q)
)))

= γR r]
′′ ⊆ γR r]

′

where we use that the u operation in R is sound w.r.t. the intersection of con-
cretizations. Also, auxiliary property (a) holds for the next approximation for the
r component.

Now for the case where unique ī1 ∧ (i = ī1 ∨ ī1 ∈ J]) holds:

– unique ī1 ∧ i = ī1 implies that it was the ego thread of t itself that performed
the last write to a global protected by a and the following unlock or that
there was no such write. As a consequence, we have r′ g = r g for g ∈ Ḡ[a].
By induction hypothesis and the auxiliary property (a), we also have for all
clusters Q ∈ Qa, L (a, Q)|Q = r|Q ∈ γR(L] (a, Q)).

– In the other case, we have γV ]tid,A
ī ⊆ J, and thus the last write to a global

protected by a and the following unlock is join-local to t. The same argument
holds here.
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Thus,

r′ ∈ (r′)|X∪{g∈G,M̄[g]∩(S∪{a}) 6=∅}
⊆ r|X∪{g∈G,M̄[g]∩S 6=∅} ∩ r|Ḡ[a]
⊆ γR

(
r]
)
∩ (
⋂{γR(L] (a, Q)) | Q ∈ Qa})

⊆ γR
(

r] u
(d

Q∈Qa
L] (a, Q)

))
= γR r]

′′ ⊆ γR r]
′

where we use that the u operation in R is sound w.r.t. the intersection of con-
cretizations. Also, auxiliary property (a) holds for the next approximation for the
r component.

• Next for J: As t′ and t coincide on their join-local parts (save for the new edge
labeled lock(a) appearing in t′ only), jl_joins t = jl_joins t′ holds. Thus, we have
J] ⊆j J = J′, and as J] v J]

′
, also J]

′ ⊆j J′.

• By the same argument, we have that for all a ∈ M for which the last un-
lock directly following a write to a global protected by a is join-local to t′, i.e.,
jl_unlock_after_writea t′ = unlock_after_writea t′, that unlock was also join-local to
t, and L′ a = L a. Thus, for all such mutexes, we have L′ a = L a ∈ γR L] (a, Q) ⊆
γR L]′ (a, Q) for all Q ∈ Qa. Thus, auxiliary property (a) also holds w.r.t. the
requirements on L.

• Finally, using the same argument once more, we have W ′ = W ⊆W] ⊆W]′ .

Thus, t′ ∈ η′mm [u′, S ∪ {a}, A′] holds for all t ∈ ηk [u, S, A0] and t1 ∈
⋂{ηk [a, Q, A1] |

Q ∈ Qa}. We conclude that the return value of J([u, S, A0], lock(a), u′), A1Kmm ηk is
subsumed by the value η′mm [u′, S ∪ {a}, A′] and that auxiliary property (a) holds for
the next approximation as well for the unknown [u′, S ∪ {a}, A′]. Since the constraint
causes no side-effects, the claim holds.

Next, for constraints corresponding to unlock. Consider an edge (u, unlock(a), u′) ∈ E
and appropriate digests A′ = ((i, C), H′) and A0 = ((i, C), H0) such that ((i, C), H′) ∈
Ju, unlock(a)K]A((i, C), H0). We verify that

J([u, S, ((i, C), H0)], unlock(a), u′), ((i, C), H′)Kmm ηk ⊆
(η′mm, η′mm [u′, S \ {a}, ((i, C), H′)])

We have
J([u, S, ((i, C), H0)], unlock(a), u′), ((i, C), H′)Kmm ηmm =

let T = J(u, unlock(a), u′)KT (ηmm [u, S, ((i, C), H0)]) in
let ρ = {[a, Q, ((i, C), H′)] 7→ T | Q ∈ Qa} in
(ρ, T)
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J[u, S, (i, C)], unlock(a), (i, C)K]η] =

let (J], L], W], r]) = η] [u, S, (i, C)] in
let (L]′′ , ρ]) = if Ḡ[a] ∩W] = ∅ then

(L], ∅)

else
(L] ⊕ {(a, Q) 7→ r]

∣∣
Q | Q ∈ Qa}, {[a, Q, (i, C))] 7→ r]

∣∣
Q | Q ∈ Qa})

in
let r]

′′
= r]

∣∣
X∪⋃{Ḡ[a′]|a′∈(S\a)} in

let W]′′ = {g | g ∈W],M̄[g] ∩ S \ {a} 6= ∅}
in (ρ], (J], L]′′ , W] ′′, r]

′′
))

Let η] [u, S, (i, C)] = (J], L], W], r]) and η] [u′, S \ {a}, (i, C)] = (J]
′
, L]′ , W]′ , r]

′
) the value

provided by η] for the endpoint of the given control-flow edge and the resulting lockset
and digest. Since η] is a solution of C], J] v J]

′
, L]′′ v L]′ , W]′′ ⊆ W]′ , and r]

′′ v r]
′

all
hold. Then, by definition:

η′mm[u′, S \ {a}, ((i, C), H′)] = γu′,S\{a},((i,C),H′)((J]
′
, L]′ , W]′ , r]

′
))

= {t ∈ T | loc t = u′, Lt = S \ {a}, αA1 t = (i, C), (J, L, W, r) = β t,
J]
′ ⊆j J, L vt L]′ , W ⊆W]′ , r ∈ γR r]

′}

For every trace t ∈ ηk [u, S, A0], let β t = (J, L, W, r). By induction hypothesis, J] ⊆j J,
L vt L], W ⊆ W], and r ∈ γR (r]). Let t′ ∈ J(u, unlock(a), u′)KT {t}. Then loc t′ = u′,
Lt′ = S \ {a}, and αA1 t′ = αA1 t = (i, C). Let (J′, L′, W ′, r′) = β t′.

• As t′ and t coincide on their join-local parts (save for the new edge labeled unlock(a)
appearing in t′ only), jl_joins t = jl_joins t′ holds. Thus, we have J] ⊆j J = J′, and
as J] v J]

′
, also J]

′ ⊆j J′.

• For L and L′, we have

L′ = {b 7→ ex t′′ | b ∈ M, jl_unlock_after_writeb t′ = ⊥, t′′ =↓(u0,0,σ0) (t
′)}

∪{b 7→ ex t′′ | b ∈ M, jl_unlock_after_writeb t′ = (ūi, _, _), t′′ =↓ūi (t
′)}

= L⊕ ({a 7→ ex t′′ | jl_unlock_after_writea t′ = ⊥, t′′ =↓(u0,0,σ0) (t
′)}

∪{a 7→ ex t′′ | jl_unlock_after_writea t′ = (ūi, _, _), t′′ =↓ūi (t
′)})

For all mutexes b ∈ (M\ a), the last unlock directly following a write to a global
protected by it is the same in t and t′, and thus we have jl_unlock_after_writeb t′ =
unlock_after_writeb t′, only whenever the relationship jl_unlock_after_writeb t =
unlock_after_writeb t held before. In this case, we have

L b ∈ (L b)|Q ⊆ γR(L] (b, Q)) ⊆ γR(L]′′ (b, Q)) ⊆ γR(L]′ (b, Q))

for all Q ∈ Qb. Thus, auxiliary property (a) also continues to hold for any such
L b. It thus remains to consider the mutex a. Let us first consider the case where
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W] ∩ Ḡ[a] = ∅ and thus L]′′ (a, Q) = L] (a, Q) for all Q ∈ Qa. Then, as by induction
hypothesis W ⊆W], we also have W ∩ Ḡ[a] = ∅. Recall that

W =
⋃

a∈M{g | g ∈ Ḡ[a], last_tl_writeg t = (ūi, _, _),
((last_tl_unlocka t = (ūj, _, _) ∧ ūj ≤ ūi) ∨ last_tl_unlocka t = ⊥)}

Thus, no join-local write has happened since the last join-local unlock, and the
same argument as given above holds.

For the other case, if jl_unlock_after_writea t′ 6= unlock_after_writea t′ the property
holds trivially as does auxiliary property (a).

Consider now the case where jl_unlock_after_writea t′ = unlock_after_writea t′.
We then need to show that L′ a ∈ γR L]′ (a, Q) for Q ∈ Qa. As η] is a solution of C],
we have r]

∣∣
Q = L]′′ (a, Q) v L]′ (a, Q). We have L′ a = ex t′′ where t′′ =↓(u0,0,σ0) (t

′)
if jl_unlock_after_writea t′ = ⊥ and t′′ =↓ūi (t′) if jl_unlock_after_writea t′ =
(ūi, _, _). As the last unlock of a immediately following a write to a global protected
by a is join-local, we have (ex t′′) g = (ex t) g = (ex t′) g = r g for all g ∈ Ḡ[a]. By
induction hypothesis, we have r ∈ γR r], and thus (ex t′′) ∈ γR(r]

∣∣
Q) for Q ∈ Qa

as Q ⊆ Ḡ[a] holds for all such Q. All together, in this case, we have

L′ a ∈ L′ a
∣∣
Q ⊆ γR (r]

∣∣∣
Q
) ⊆ γR (L]′′ (a, Q)) = γR (L]′ (a, Q))

for all Q ∈ Qa. As a consequence, we obtain L′ vt L]′ and auxiliary property (a)
also holds for the next approximation.

• Next for W ′ and W]′ : We have

W ′ =
⋃

b∈M{g | g ∈ Ḡ[b], last_tl_writeg t′ = (ūi, _, _),
((last_tl_unlockb t′ = (ūj, _, _) ∧ ūj ≤ ūi) ∨ last_tl_unlockb t′ = ⊥)}

= (
⋃

b∈M{g | g ∈ Ḡ[b], last_tl_writeg t′ = (ūi, _, _),
((last_tl_unlockb t′ = (ūj, _, _) ∧ ūj ≤ ūi) ∨ last_tl_unlockb t′ = ⊥)})
\{g | g ∈ G,M̄[g] ∩ S′ = ∅}

⊆ W \ {g | g ∈ G,M̄[g] ∩ S′ = ∅}
⊆ W] \ {g | g ∈ G,M̄[g] ∩ S′ = ∅}
⊆ W] \ {g | g ∈W],M̄[g] ∩ S′ = ∅}
= {g | g ∈W],M̄[g] ∩ (S \ {a}) 6= ∅}
= W]′′ ⊆W]′

The second equality exploits that a global is only written when its protecting
mutexes are held, and if none of these mutexes are held by the ego thread currently,
they all must have been unlocked at least once since the last write.

• Lastly, we have from property (a) that r|X∪⋃{Ḡ[a′]|a′∈S} ∈ γR(r]) and

r′ = r ∈ γR(r]) ⊆ γR

(
r]
∣∣∣
X∪⋃{Ḡ[a′]|a′∈(S\a)}

)
= γR(r]

′′
) ⊆ γR(r]

′
)

and also r|X∪⋃{Ḡ[a′]|a′∈S\a} ⊆ γR(r]
′
) (auxiliary property (a)).
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Altogether, t′ ∈ η′mm [u′, S \ {a}, A′] holds for all t ∈ ηk [u, S, A0]. We conclude that the
return value of J([u, S, A0], unlock(a), u′)Kmm ηk is subsumed by the value η′mm [u′, S \
{a}, A′] and that auxiliary property (a) holds for the unknown on the left-hand side.
It remains to consider the side-effects. Consider some mutex a and associated cluster
Q ∈ Qa. First, consider the case where W] ∩ Ḡ[a] 6= ∅, and (H′ a)2 = (i, C). The
side-effects to the unknowns associated with a and Q are then given by

ρ1 = {[a, Q, ((i, C), H′)] 7→ T}
ρ]1 = {[a, Q, (i, C)] 7→ r]

∣∣
Q}

Let r]
′

ρ = η] [a, Q, (i, C)]. As η] is a solution of C], r]
∣∣
Q v r]

′
ρ holds. By construction, we

have

η′mm[a, Q, ((i, C), H′)] = γa,((i,C),H′)(η
] [a, Q, (H′ a)2])

= γa,((i,C),H′)(η
] [a, Q, (i, C)])

= γa,((i,C),H′)(r
]′
ρ )

= {t ∈ T | last t = unlock(a), unlock_after_writea t = (ūi, _, _), t′ =↓ūi (t),
αA1 t′ = (i, C), (J, L, W, r) = β t′, r ∈ γR r]

′
ρ }

∪{t ∈ T | last t = unlock(a) ∨ last t = initMT, unlock_after_writea t = ⊥}
Consider a t′ ∈ T as constructed before. Then, we have last t′ = unlock(a), and either

• for unlock_after_writea t′ = (ūi, _, _), t′′ =↓ūi (t
′) with αA1 t′′ = (i, C) as (H′ a)2 =

(i, C). Now consider (_, _, _, rρ) = β t′′. For g ∈ Q, since (H′ a)2 = (i, C) and that
last write thus was thread-local, we have rρ g = (ex t′) g = (ex t) g. By induction

hypothesis, (ex t) ∈ γR r], and thus rρ

∣∣
Q ∈ γR

(
r]
∣∣
Q

)
⊆ γR

(
r]
′

ρ

)
and auxiliary

property (a) continues to hold; or

• unlock_after_writea t′ = ⊥.

Therefore, t′ ∈ γa,((i,C),H′)(η
] [a, Q, (H′ a)2]) = η′mm[a, Q, ((i, C), H′)] holds for all t ∈

ηi [u, S, ((i, C), H0)] when W] ∩ M̄[a] 6= ∅ and (H′ a)2 = (i, C).
It thus remains to consider the case where W] ∩ Ḡ[a] = ∅ or (H′ a)2 6= (i, C). Both

conditions imply that the last unlock of the mutex a immediately following a write to
a global protected by a is not the unlock considered here. Let (i′, C′) = (H′ a)2 and let
r]
′

ρ = η] [a, Q, (i′, C′)]. The side-effects in the concrete for some cluster Q ∈ Qa are then
given by

ρ1 = {[a, Q, ((i, C), H′)] 7→ T}
whereas no (relevant) side-effects are caused in the abstract. By construction, we have

η′mm[a, Q, ((i, C), H′)] = γa,((i,C),H′)(η
] [a, Q, (H′ a)2])

= γa,((i,C),H′)(η
] [a, Q, (i′, C′)])

= γa,((i,C),H′)(r
]′
ρ )

= {t ∈ T | last t = unlock(a), unlock_after_writea t = (ūi, _, _), t′ =↓ūi (t),
αA1 t′ = (i′, C′), (J, L, W, r) = β t′, r ∈ γR r]

′
ρ }

∪{t ∈ T | last t = unlock(a) ∨ last t = initMT, unlock_after_writea t = ⊥}
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Consider a t′ ∈ T as constructed before. We have last t′ = unlock(a). Consider first the
case where unlock_after_writea t′ = ⊥: In this case we have t′ ∈ η′mm [a, Q, ((i, C), H′)].
Alternatively, consider unlock_after_writea t = unlock_after_writea t′ = (ūi, _, _), t′′ =↓ūi

(t′). We remark that this local trace was considered in some earlier iteration of
the fixpoint computation. By Proposition 29 and the induction hypothesis, we have
t′′ ∈ ηk [a, Q, ((i′, C′), H′′)] ⊆ η′mm [a, Q, ((i′, C′), H′′)] for αA(t′′) = ((i′, C′), H′′) where
(H′′ a)2 = (i′, C′). As

η′mm [a, Q, (i′, C′), H′′] = γa,((i′,C′),H′′)(η
] [a, Q, (i′, C′)]) = γa,((i′,C′),H′′)(r

]′
ρ )

we have for β t′′ = (_, _, _, r) that r ∈ γR r]
′

ρ and thus also t′ ∈ η′mm [a, Q, ((i, C), H′)].
Hence, all side-effects for unlock(a) of Cmm are accounted for in η′mm, and the claim
holds.

Next, consider the constraints corresponding to calling join. Consider an edge (u, x =

join(x′), u′) ∈ E and digests A′ = ((i, C), H′), A0 = ((i, C), H0), and A1 = ((i1, C1), H1)

such that ((i, C), H′) ∈ Ju, x = join(x′)K]A(((i, C), H0), ((i1, C1), H1)). We verify that

J([u, S, ((i, C), H0)], x = join(x′), u′), ((i1, C1), H1)Kmm ηk ⊆
(η′mm, η′mm [u′, S, ((i, C), H′)])

We have
J([u, S, A0], x = join(x′), u′), A1Kmm ηmm =

let T1 =
⋃{ηmm [t(x′), A1] | t ∈ ηmm [u, S, A0]} in

let T = J(u, x = join(x′), u′)KT (ηmm [u, S, A0], T1) in
(∅, T)

J[u, S, (i, C)], x = join(x′), (i1, C1)K]η] =

let (J], L], W], r]) = η] [u, S, (i, C)] in
if i1 6∈ ((unlift r]) x′) then

(∅,⊥)
elseif unique i1 ∧ (i = i1 ∨ i1 ∈ J]) then

(∅,⊥)
else

let (J]j , L]
j , v]j ) = η][(i1, C1)] in

let J]
′′
= J] ∪ J]j ∪ {i1} in

let L]′′ = L] t L]
j in

let r]
′′
= Jx ←] (unlift v]j ) retK

]
Rr] in

(∅, (J]
′′
, L]′′ , W], r]

′′
))

Let η] [u, S, (i, C)] = (J], L], W], r]) and η] [u′, S, (i, C)] = (J]
′
, L]′ , W]′ , r]

′
) the value pro-

vided by η] for the endpoint of the given control-flow edge and the resulting lockset
and digest. Since η] is a solution of C], one of the following holds:

(1) i1 6∈ ((unlift r]) x′); or
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(2) unique i1 ∧ (i = i1 ∨ i1 ∈ J]); or

(3) J]
′′ v J]

′
, L]′′ v L]′ , W] ⊆W]′ , and r]

′′ v r]
′

all hold.

Then, by definition:

η′mm[u′, S, ((i, C), H′)] = γu′,S,((i,C),H′)((J]
′
, L]′ , W]′ , r]

′
))

= {t ∈ T | loc t = u′, Lt = S, αA1 t = (i, C), (J, L, W, r) = β t,
J]
′ ⊆j J, L vt L]′ , W ⊆W]′ , r ∈ γR r]

′}

Further, let η] [(i1, C1)] = (J]j , L]
j , v]j ). For every trace t ∈ ηk [u, S, A0], let β t = (J, L, W, r).

By induction hypothesis, J] ⊆j J, L vt L], W ⊆W], and r ∈ γR (r]). Let

T′ = J(u, x = join(x′), u′)KT ({t},
⋃{ηk [(t′(x′)), A1] | t′ ∈ ηk [u, S, A0]})

= J(u, x = join(x′), u′)KT ({t}, ηk [(t(x′)), A1])

where the equality exploits that for a given local trace t, J(u, x = join(x′), u′)KT ({t}, {t′})
only yields a non-empty set if the thread id of the thread being joined is the one stored
in x′. We distinguish between whether (1), (2), or (3) holds.

First, assume that (3) holds. If T′ is empty, it is subsumed by η′mm [u′, S, A′] vacuously
and auxiliary property (a) also holds for the next approximation. Consider thus a t′ ∈ T′

and t′′ ∈ ηk [(t(x′)), A1] such that {t′} = J(u, x = join(x′), u′)KT ({t}, {t′′}). By induction
hypothesis, we have

t′′ ∈ γt(x′),((i1,C1),H1)(η
] [(i1, C1)]) = γt(x′),((i1,C1),H1)((J]j , L]

j , v]j )) =
{t′′ ∈ T | last t′′ = return, αA1 t′′ = (i1, C1), id t′′ = t(x′), (Jj, Lj, Wj, rj) = β t′′,

J]j ⊆j Jj, Lj vt L]
j , rj ∈ γR v]j}

Then loc t′ = u′, Lt′ = S, αA1 t′ = (i, C). Let (J′, L′, W ′, r′) = β t′.

• We have t(x′) ∈ γV ]tid,A
i1 and thus

J]
′′ ⊆ J]

′
= J] ∪ J]j ∪ {i1} ⊆j J ∪ Jj ∪ {t(x′)}

= {σi x′ | ((i, ui, σi), x=join(x′), _) ∈ jl_joins t′}
= J′

• For L′, we have for each mutex a,

L′a =

{
ex t′′′ if jl_unlock_after_writea t′ = ⊥, t′′′ =↓(u0,0,σ0) (t

′)

ex t′′′ if jl_unlock_after_writea t′ = (ūi, _, _), t′′′ =↓ūi (t
′)

Furthermore, we have either jl_unlock_after_writea t′ = jl_unlock_after_writea t or
jl_unlock_after_writea t′ = jl_unlock_after_writea t′′. Consider some mutex a. If
jl_unlock_after_writea t′ 6= unlock_after_writea t′, the property L′ vt L]′ w.r.t. a as
well auxiliary property (a) w.r.t. a hold trivially. Otherwise, first consider the case
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where jl_unlock_after_writea t′ = jl_unlock_after_writea t. Then, by induction
hypothesis we have L′ a = L a and by auxiliary property (a) thus

∀Q ∈ Qa : L′ a ∈ L′ a|Q = L a|Q ⊆ γR L] (a, Q) ⊆ γR (L] (a, Q) t L]
j (a, Q))

= γR L]′′ (a, Q) ⊆ γR L]′ (a, Q)

Analogously when jl_unlock_after_writea t′ = jl_unlock_after_writea t′′ for Lj a
and L]

j a. Altogether, we have L′ vt L]′ and auxiliary property (a) holds for the
next approximation.

• Next for W ′ and W]′ : As t and t′ coincide on their thread-local parts, (save for the
additional join edge), we have

W ′ =
⋃

a∈M{g | g ∈ Ḡ[a], last_tl_writeg t′ = (ūi, _, _),
((last_tl_unlocka t′ = (ūj, _, _) ∧ ūj ≤ ūi) ∨ last_tl_unlocka t′ = ⊥)}

=
⋃

a∈M{g | g ∈ Ḡ[a], last_tl_writeg t = (ūi, _, _),
((last_tl_unlocka

′ = (ūj, _, _) ∧ ūj ≤ ūi) ∨ last_tl_unlocka t = ⊥)}
= W ⊆W] ⊆W]′

• Lastly, for r′: Then, ∀y ∈ X \ {x}, r′ y = r y. For all globals protected by some
currently held mutex {g | g ∈ G, S ∩ M̄[g] 6= ∅}, we also have t′(g) = t(g) and
thus r′ g = r g. For x, on the other hand, we have r′ x = t′(x) = t′′(ret). It thus
remains to relate v]j to t′′(ret). By induction hypothesis, we have rj ∈ γR v]j and

thus r′ ret = rj ret ∈ γV ]
(
(unlift v]j ) ret

)
. Altogether, we have

r′ ∈ r′|X∪∪{g∈G|S∩M̄[g] 6=∅}
⊆ {r̂⊕ {x 7→ rj ret} | r̂ ∈ r|X∪{g∈G|S∩M̄[g] 6=∅}}
⊆ {r̂⊕ {x 7→ rj ret} | r̂ ∈ γR r]}
⊆ {r̂⊕ {x 7→ v} | r̂ ∈ γR r], v ∈ γV ]

(
(unlift v]j ) ret

)
}

⊆ γR (Jx ←] (unlift v]j ) retK
]
Rr]) = γR (r]

′′
) ⊆ γR (r]

′
)

It thus remains to consider the cases where (3) does not hold, but (1) or (2) hold. We
show that, in this case, T′ = ∅.

First, consider the case where i1 6∈ ((unlift r]) x′). Consider for a contradiction a
t′ ∈ T′ and t′′ ∈ ηk [(t(x′)), A1] such that {t′} = J(u, x = join(x′), u′)KT ({t}, {t′′})
as considered before. By induction hypothesis, we have t′′(self) ∈ γV ]tid,A

i1 and also

t(x′) ∈ γV ]tid
((unlift r]) x′). For J(u, x = join(x′), u′)KT ({t}, {t′′}) to yield a non-empty

set, t′′(self) = t(x′) needs to hold. This implies that γV ]tid,A
i1 ∩ (γV ]tid

((unlift r]) x′)) 6= ∅

and thus by Eq. (4.3) from Section 4.2.3, i1 ∈ ((unlift r]) x′), which is a contradiction.
Next, for unique i1 ∧ (i = i1 ∨ i1 ∈ J]): Consider for a contradiction a t′ ∈ T′ and t′′ ∈

ηk [(t(x′)), A1] such that {t′} = J(u, x = join(x′), u′)KT ({t}, {t′′}) as considered before.
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If unique i1 holds, the concretization of i1 is a singleton set. By induction hypothesis, we
have t′′(self) ∈ γV ]tid,A

i1 and t(self) ∈ γV ]tid,A
i. If i = i1 holds, we thus have t′′(self) = t(self).

Since a thread cannot be joined into itself, we have J(u, x = join(x′), u′)KT ({t}, {t′′}) = ∅
and thus a contradiction. On the other hand unique i1 and i1 ∈ J], implies γV ]tid,A

(i1) ∈ J

by induction hypothesis, i.e., a thread with the concrete thread id corresponding to i1
has already been joined into t at some point. As a consequence, we once more have
J(u, x = join(x′), u′)KT ({t}, {t′′}) = ∅ and thus a contradiction.

Thus, if (1) or (2) hold, the concrete right-hand side causes no contribution to
η′mm [u′, S, A′]. Altogether, the return value of J([u, S, A0], x = join(x′), u′), A1Kmm ηk

is always subsumed by the value η′mm [u′, S, A′] in both cases and auxiliary property (a)
also holds for the next approximation. As neither constraint causes any side-effects, the
statement holds.

For thread creation, return, initMT, signal, and wait the proof proceeds analogously
to the one outlined in Section 6.2.1. We do not detail this here.

This concludes the case distinction for the inductive step and, thus, the soundness
proof for this analysis.

Remark 28. An analysis actually using the precise digests ((i, C), H) as described in this
section would also be sound and would consider all the different interleavings of critical sections.
It would thus be very precise. However, it would, e.g., fail to terminate in the presence of
(potentially non-terminating) loops in which globals are modified due to the counter components
in H. Thus, this instance is ill-suited for usage in an over-approximating analysis and is mostly
of interest as an ingredient of the proof — or potentially for analyses where termination is not a
concern. Nevertheless, it may be a good base for an instance of the generalized digest framework
that allows further abstractions of digests.

6.2.3 Mutex-Meet with Joins and Clusters

We refer to the constraint system of the analysis from Section 4.2.5 by C], and to the
constraint system introduced in Section 4.2.2 by Cmm once again. We further refer to
the A to compute thread ids (see Fig. 2.14) by A1. The proof once again makes use of
a modified digest that tracks the same information as before, but now per mutex and
associated cluster.

A = (V ]
tid,A × 2P )× ((M×Qa)→ (N0 × (V ]

tid,A × 2P )× 2G))

The right-hand sides are then given in Fig. 6.4 with the function Ju, lock(a)K]A for a mutex
a given by

Ju, lock(a)K]A((i, C), H) ((i′, C′), H′) ={
∅ ∃Q ∈ Qa : ¬may_run (i, C) (H′ (a, Q))2

{((i, C),merge H H′)} else
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init]A = {(((main, ∅), ∅), {(a, Q) 7→ (0, ((main, ∅), ∅)) | a ∈ M, Q ∈ Qa})}
Ju, x=create(u1)K

]
A ((i, C), H) = {((i, C ∪ {〈u, u1〉}), H)}

Ju, g = xK]A ((i, C), H) = {((i, C),
{(a, Q) 7→ ((H (a, Q))1, (H (a, Q))2, (H (a, Q))3 ∪ ({g} ∩ Ḡ[a]))
| a ∈ M, Q ∈ Qa})}

Ju, unlock(a)K]A((i, C), H) = {((i, C),
H ⊕ {(a, Q) 7→ ((H (a, Q))1 + 1, (i, C), ∅)

| Q ∈ Qa, (H (a, Q))3 6= ∅})}
Ju, actK]A ((i, C), H) = {((i, C), H)} (other non-observing)

Figure 6.4: Modified instance of A used in the proof tracking additional information on
top of thread ids. The definition of ◦ is the one given in Fig. 2.14 and the
definition of new]

A u u1 A is reused from Fig. 6.3.

where

merge(H, H′) = {(b, Q) 7→ H (b, Q) | b ∈ M, Q ∈ Qb, (H (b, Q))1 ≥ (H′ (b, Q))1}
∪{(b, Q) 7→ H̄′ (b, Q) | b ∈ M, Q ∈ Qb, (H (b, Q))1 < (H′ (b, Q))1}

where once more (·)k is shorthand for accessing the k-th component of a tuple and H̄
denotes setting the 3-rd component of all H (b.Q) to ∅. This definition is also used for
Ju, x = join(x′)K]A and Ju,wait(s)K]A. One again, the may_run predicate here does not
check for the current (i′, C′) of the thread performing the respective unlock, but instead
refers to the (i, C) at the last thread-local write to a global protected by a in cluster Q.

The concretization for abstract values at unknowns [a, Q, ((i, C), H)] is defined such
that it contains any local trace ending in an unlock(a) in which the last thread-local write
to a global in the cluster Q, was by the thread with the thread id (H (a, Q))2.

As before, we once again introduce a function β that maps a local trace to some infor-
mation extracted from it that can then be related to the information computed by the anal-
ysis. For this, per cluster counterparts of jl_unlock_after_writea and unlock_after_writea
are needed. Let jl_unlock_after_writea,Q and unlock_after_writea,Q denote these coun-
terparts referring to the respective cluster only.

The function β then has the following type here:

β : T → (2Vtid × ((M×Q)→ (Vars→ V))× 2G × (Vars→ V))

We set:
β t = (J, L, W, r) where

J = {σi x′ | ((i, ui, σi), x=join(x′), _) ∈ jl_joins t}

266



6.2 Soundness Proofs for Analyses Considering Clusters of Globals

L = {(a, Q) 7→ ex t′ | a ∈ M, Q ∈ Qa,
jl_unlock_after_writea,Q t = ⊥, t′ =↓(u0,0,σ0) (t)}∪

{(a, Q) 7→ ex t′ | a ∈ M, Q ∈ Qa,
jl_unlock_after_writea,Q t = (ūi, _, _), t′ =↓ūi (t)}

W =
⋃

a∈M{g | g ∈ Ḡ[a], last_tl_writeg t = (ūi, _, _),

((last_tl_unlocka t = (ūj, _, _) ∧ ūj ≤ ūi) ∨ last_tl_unlocka t = ⊥)}
r = ex t

where the helper function ex is defined as in the previous chapter. We remark that J, W,
and r are also identical to the definition from the previous section.
The abstraction function β is used to specify concretization functions for the values
of unknowns [u, S, ((i, C), H)] for program points, currently held locksets, and digests
as well as for the other unknowns, where A1 refers to the digests as considered in
Section 2.8.

γu,S,((i,C),H)(J], L], W], r]) = {t ∈ T | loc t = u, Lt = S, αA1 t = (i, C),
(J, L, W, r) = β t,
J] ⊆j J, L vt L], W ⊆W], r ∈ γR r]}

γi′,((i,C),H)(J], L], r]) = {t ∈ T | last t = return, αA1 t = (i, C), id t = i′,
(J, L, W, r) = β t,
J] ⊆j J, L vt L], r ∈ γR r]}

γa,Q,((i,C),H)(r]) = {t ∈ T | last t = unlock(a),
unlock_after_writea,Q t = (ūi, _, _),
t′ =↓ūi (t), αA1 t′ = (H (a, Q))2

(J, L, W, r) = β t′, r ∈ γR r]}
∪{t ∈ T | last t = unlock(a) ∨ last t = initMT,

unlock_after_writea,Q t = ⊥}
γs,((i,C),H)(J], L], W], r]) = {t ∈ T | last t = signal(s), αA1 t = (i, C),

(J, L, W, r) = β t,
J] ⊆j J, L vt L], W ⊆W], r ∈ γR r]}

where ⊆j is defined as in the previous section. Here, let L vt L] denote checking that

∀a ∈ M : ∀Q ∈ Qa : (jl_unlock_after_writea,Q t = unlock_after_writea,Q t =⇒
L (a, Q) ∈ γR (L](a, Q)))

This predicate thus checks that if the last unlock of a mutex a immediately succeeding
a write to a global in Q is join-local to t, L] (a, Q) soundly abstracts the value of locals
and globals at the program point corresponding to that unlock. We remark that these
concretizations are once more monotonic and that, except for the unknowns for mutexes
and the slightly modified meaning of vt, they are identical to the concretizations
proposed in the previous section.
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For a solution η] of C] as considered in Section 4.2.5, we then construct a mapping
η′mm by:

η′mm[u, S, ((i, C), H)] = γu,S,((i,C),H)(η
] [u, S, (i, C)]) u ∈ N , S ⊆M,

η′mm[a, Q, ((i, C), H)] = γa,Q,((i,C),H)(η
] [a, Q, (H (a, Q))2]) a ∈ M, Q ∈ Qa

η′mm[i′, ((i, C), H)] = γi′,((i,C),H)(η
] [(i, C)]) i′ ∈ Vtid

η′mm[s, ((i, C), H)] = γs,((i,C),H)(η
] [s, (i, C)]) s ∈ S

for ((i, C), H) ∈ A where we remark that the difference to the definition in the previous
section is that we now consider the information associated with a specific cluster
associated with a mutex. Altogether, correctness of C] follows from the following
theorem:

Theorem 22. Every solution of C] is sound w.r.t. the local trace semantics.

Proof. Recall from Proposition 28, that the least solution of Cmm is sound w.r.t. the local
trace semantics as specified by the constraint system C. It thus suffices to prove that the
mapping η′mm as constructed above, is a solution of the constraint system Cmm. For that,
we verify by fixpoint induction that for the k-th approximation ηk to the least solution η

of Cmm, ηk ⊆ η′mm holds.
As in previous proofs, we require some auxiliary property stating that abstract values

only speak about locals and protected globals (for unknowns associated with program
points), respectively those globals that form a part of a given cluster (for unknowns
associated with a mutex and a cluster). Let us call auxiliary property (a) that

∀t ∈ ηk [u, S, ((i, C), H)] : β t = (J, L, W, r), (J], L], W], r]) = η] [u, S, (i, C)] =⇒
r|X∪{g∈G,M̄[g]∩S 6=∅} ⊆ γR r] ∧ ∀a ∈ M, ∀Q ∈ Qa :
jl_unlock_after_writea,Q t = unlock_after_writea,Q t

=⇒ (L (a, Q))|Q ∈ γR (L] (a, Q))

(for u ∈ N , S ⊆M, ((i, C), H) ∈ A)

∀t ∈ ηk [a, Q, ((i, C), H)] : β t = (J, L, W, r) ∧ unlock_after_writea,Q t 6= ⊥ =⇒
r|Q ∈ γR (η] [a, Q, (H (a, Q))2])

(for a ∈ M, Q ∈ Qa, ((i, C), H) ∈ A)

∀t ∈ ηk [i′, ((i, C), H)] : β t = (J, L, r), (J], L], W], r]) = η] [(i, C)] =⇒
∀a ∈ M, ∀Q ∈ Qa :
jl_unlock_after_writea,Q t = unlock_after_writea,Q t

=⇒ (L (a, Q))|Q ∈ γR (L] (a, Q))

(for u ∈ N , S ⊆M, ((i, C), H) ∈ A)

For the zero-th iteration ηk is ∅ everywhere, and thus auxiliary property (a) hold.
The proof proceeds largely analogously to the proof in the previous section. We only

exemplify it for the case of locking a mutex here:
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Consider the constraints corresponding to locking a mutex a. Consider an edge
(u, lock(a), u′) ∈ E and digests A′ = ((i, C), H′), A0 = ((i, C), H0), and A1 = ((i1, C1), H1)

such that ((i, C), H′) ∈ Ju, lock(a)K]A(((i, C), H0), ((i1, C1), H1)). We verify that

J([u, S, ((i, C), H0)], lock(a), u′), ((i1, C1), H1)Kmm ηk ⊆
(η′mm, η′mm [u′, S ∪ {a}, ((i, C), H′)])

We have

J([u, S, A0], lock(a), u′), A1Kmm ηmm =

let T1 =
⋂{ηmm [a, Q, A1] | Q ∈ Qa} in

let T = J(u, lock(a), u′)KT (ηmm [u, S, A0], T1) in
(∅, T)

J[u, S, (i, C)], lock(a), IK]η] =

let (J], L], W], r]) = η] [u, S, (i, C)] in
let B](Q) =

⊔{if unique ī1 ∧ (i = ī1 ∨ ī1 ∈ J]) then ⊥ else η] [a, Q, (ī1, C̄1)]

| (ī1, C̄1) ∈ I} t L] (a, Q)

in
let r]m =

d
Q∈Qa

(B](Q)) in
let r]

′′
= r] u r]m in(

∅,
(

J], L], W], r]
′′
))

Let η] [u, S, (i, C)] = (J], L], W], r]) and η] [u′, S∪ {a}, (i, C)] = (J]
′
, L]′ , W]′ , r]

′
) the value

provided by η] for the endpoint of the given control-flow edge and the resulting lockset
and digest. Since η] is a solution of C], J] v J]

′
, L] v L]′ , W] ⊆ W]′ , and r]

′′ v r]
′

all
hold. Then, by definition:

η′mm[u′, S ∪ {a}, ((i, C), H′)] = γu′,S∪{a},((i,C),H′)((J]
′
, L]′ , W]′ , r]

′
))

= {t ∈ T | loc t = u′, Lt = S ∪ {a}, αA1 t = (i, C), (J, L, W, r) = β t,
J]
′ ⊆j J, L vt L]′ , W ⊆W]′ , r ∈ γR r]

′}
For every trace t ∈ ηk [u, S, A0], let β t = (J, L, W, r). By induction hypothesis, J] ⊆j J,
L vt L], W ⊆ W], and r ∈ γR (r]). Consider some trace t1 ∈

⋂{ηk [a, Q, ((i1, C1), H1)] |
Q ∈ Qa} such that J(u, lock(a), u′)KT ({t}, {t1}) 6= ∅ and let (_, _, _, r1) = β t1. Consider
further a cluster Q ∈ Qa, and a Ī ∈ A1 and let η][a, Q, Ī] = r]Q, Ī .

By induction hypothesis, we thus have

(1) either

t1 ∈ {t′′ ∈ T | last t′′ = unlock(a) ∨ last t′′ = initMT, unlock_after_writea,Q t′′ = ⊥}

Then jl_unlock_after_writea,Q t = ⊥ as well, and by induction hypothesis, there is
an r0 (namely the one extracted from the local trace ending in (u0, 0, σ0)) such that
r0 ∈ γR (L] (a, Q)) for all Q ∈ Qa. r1 coincides with r0 on the values of globals
from this cluster, and we thus get by auxiliary property (a):

r1|Q = r0|Q ⊆ γR (L] (a, Q))
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(2) Otherwise, we have

t1 ∈ {t′′ ∈ T | last t′′ = unlock(a), unlock_after_writea,Q t′′ = (ūi, _, _),
t′′′ =↓ūi (t

′′),
Ī = (H1 (a, Q))2, αA1 t′′′ = Ī, (_, _, _, r′′′1,Q) = β t′′′, r′′′1,Q ∈ γR r]Q, Ī}

As r′′′1,Q and r1,Q coincide on the values of all globals in cluster Q, we obtain (once
again using auxiliary property (a)),

r1|Ḡ[a] ⊆ r1|Q = r′′′1
∣∣
Q ⊆ γR (r]1)

Let t′ ∈ J(u, lock(a), u′)KT ({t}, {t1}). Then loc t′ = u′, Lt′ = S∪ {a}, and αA1 t′ = αA1 t =
(i, C). Let (J′, L′, W ′, r′) = β t′.

• First, consider the r component: We first observe that once more ∀x ∈ X , r′ x = r x.
For all globals protected by a, we either have

– S ∩ M̄[g] 6= ∅, in which case r′ g = r g = r1,Q g for all Q ∈ Qa for which
g ∈ Q.

– S ∩ M̄[g] = ∅, in which case r′ g = r1,Q g for all Q ∈ Qa for which g ∈ Q.

Next, we relate B](Q) to the values of the globals protected by a in cluster Q. First,
let us assume that for a cluster Q, no unlock of a succeeding a write to a global in
Q has happened in t and thus also in t1 and t′. Then,

jl_unlock_after_writea,Q t = jl_unlock_after_writea,Q t1

= unlock_after_writea,Q t = unlock_after_writea,Q t1

= ⊥

and thus L (a, Q) ∈ γR(L] (a, Q)). Also, we have r′ g = r g = L (a, Q) g = 0 for all
g ∈ Q. By auxiliary property (a), we have

r′ ⊆ r′
∣∣
Q = L (a, Q)|Q ∈ γR (L](a, Q))

and thus r′ ∈ γR(B](Q)).

Now, assume that such an unlock succeeding a write to a global in Q has happened:
Let ĪQ = (H1(a, Q))2 = (ī1, C̄1) be the thread id that performed the last unlock of
a in t1 immediately succeeding a write to a global in Q. We remark that ĪQ ∈ I
holds by definition of A1.

First, assume that unique ī1 ∧ (i = ī1 ∨ ī1 ∈ J]) does not hold. We have r1,Q ∈
γR
(

r]Q, Ī

)
and thus by auxiliary property (a),

r′ ⊆ r′
∣∣
Q = r1|Q ⊆ r′ ∈ γR

(
r]Q, Ī

)
and thus r′ ∈ γR(B](Q)).

Next, for the case where unique ī1 ∧ (i = ī1 ∨ ī1 ∈ J]) holds.
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6.2 Soundness Proofs for Analyses Considering Clusters of Globals

– unique ī1 ∧ i = ī1 implies that it was the ego thread of t itself that performed
the last write to a global protected by a in Q and the following unlock or
that there was no such write. As a consequence, we have r′ g = r g for g ∈ Q,
and remark that in this case r g = L (a, Q) g. By induction hypothesis and the
auxiliary property (a) we also have L (a, Q)|Q = r|Q ∈ γR(L] (a, Q)).

– In the other case, we have γV ]tid,A
ī ⊆ J, and thus the last write to a global in Q

and the following unlock is join-local to t. The same argument holds here.

Thus, we have r′ ∈ γR(B](Q)) for all Q ∈ Qa, and thus, by the property of meets
of R,

r′ ∈ r′
∣∣
Ḡ[a] ⊆ γR

 l

Q∈Qa

(B](Q))

 = γR(r
]
m)

By induction hypothesis, auxiliary property (a), and the soundness of u w.r.t. the
intersection of concretizations, we have

r′ ∈ (r′)|X∪{g∈G,M̄[g]∩(S∪{a}) 6=∅}
⊆ r|X∪{g∈G,M̄[g]∩S 6=∅} ∩ r′|Ḡ[a]
⊆ γR

(
r]
)
∩ γR

(
r]m
)

⊆ γR
(

r] u r]m
)

= γR r]
′′ ⊆ γR r]

′

and thus auxiliary property (a) continues to hold w.r.t. r.

• As t′ and t coincide on their join-local parts (save for the new edge labeled lock(a)
appearing in t′ only), jl_joins t = jl_joins t′ holds. Thus, we have J] ⊆j J = J′, and
as J] v J]

′
, also J]

′ ⊆j J′.

• By the same argument, we have that for all a ∈ M and Q ∈ Qa, for which the
last unlock directly following a write to a global protected by a is join-local to
t′, i.e., jl_unlock_after_writea,Q t′ = unlock_after_writea,Q t′, that unlock was also
join-local to t, and L′ a = L a. Thus, for all such mutexes and clusters, we have
L′ (a, Q) = L (a, Q) ∈ γR L] (a, Q) ⊆ γR L]′ (a, Q) and the auxiliary property (a)
continues to hold w.r.t. L.

• Finally, using the same argument once more, we have W ′ = W ⊆W] ⊆W]′ .

Altogether, t′ ∈ η′mm [u′, S ∪ {a}, A′] holds for t ∈ ηk [u, S, A0] and t1 ∈
⋂{ηk [a, Q, A1] |

Q ∈ Qa}. We conclude that the return value of J([u, S, A0], lock(a), u′), A1Kmm ηk is
subsumed by the value η′mm [u′, S∪ {a}, A′] and that auxiliary property (a) holds for the
next approximation as well. Since the constraint causes no side-effects, the claim holds.

The proof proceeds analogously to the proof from the previous section for the other
constraints. The case for unlocking a mutex once again relies on Proposition 29. We do
not detail this here.
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7 Related Work

To allow for easier reference, we order our related work thematically. This leads to work
being listed more than once in some instances, but makes for a more consistent overall
structure.

Local Traces. To prove our thread-modular analyses correct, we rely on a trace seman-
tics of the concurrent system. Here, we insist on maintaining the local perspectives of
executing threads (ego threads) only. The idea of tracking the events possibly affecting
a particular local thread configuration goes back to Lamport [74] (see also [125]), and
is also used extensively for the verification of concurrent systems via separation logic
[21–23, 71, 76, 90, 91, 116, 117]. Accordingly, we collect all attained local configurations
of threads affecting a thread-local configuration ū of an ego thread into the local trace
reaching ū. A thread-local concrete semantics was also used in Mukherjee et al. [89] for
proving the correctness of their thread-modular analyses. The semantics there, however,
is based on interleaving and permits stale values for unread globals. In contrast, we
consider a partial order of past events and explicitly exclude the values of globals from
local traces. These are instead recovered from the local trace by searching for the last
preceding write at the point when the value of the global is accessed. Miné [85] proposes
a thread-modular concrete semantics which also is used as the basis of later work [87].
There, thread-modularity is attained by introducing auxiliary variables tracking the
control locations of other threads. The local trace semantics does not introduce such
auxiliary variables, and instead only expresses facts about the execution that the ego
thread has observed by executing observable actions. In this way, the exact program
point that some other thread is at is information that cannot be expressed in the local
trace semantics — unless it is of relevance for the local perspective of the ego thread.
We do not show the equivalence between our local trace semantics and an interleaving
semantics; such a proof is provided by Erhard et al. [42].

(Weakly) Relational Domains and Clusters. Since its introduction, the weakly rela-
tional numerical domain of Octagons [81, 82] has found wide-spread application for
the analysis and verification of programs [18, 33]. Since tracking relations between all
variables may be expensive, pre-analyses have been suggested to identify clusters of
numerical variables whose relationships may be of interest [18, 33, 59, 95]. A dynamic
approach to decomposing relational domains into non-overlapping clusters based on
learning is proposed by Singh et al. [122]. While these approaches trade (unnecessary)
precision for efficiency, others try to partition the variables into clusters without compro-
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mising precision [34, 56, 57, 94, 121, 123]. These types of clustering are orthogonal to
the clustering in our relational analyses and could, perhaps, be combined with it.

Inspired by the notion of 2-decomposability, we have recently also worked on more
elegant normalization for Octagons, identifying the stronger notion of 2-projectivity [109]
as well as on other, non-numerical, weakly relational domains [112]. Their integration
into our thread-modular analysis of globals remains an open topic, in particular for
our weakly relational heap domain [52, 110], as such an integration would require
developing a different notion of protection.

Thread-Modular Static Analyses of Values of Globals. As there is a wealth of related
work, we limit ourselves to discussing automatic thread-modular approaches based on
abstract interpretation endeavoring to compute values of globals in a shared memory
setting. We do thus not outline work that targets similar problems but is not thread-
modular (e.g., [16, 20, 63]), is not based on abstract interpretation (e.g., [16, 124]), does
not target a shared memory setting (e.g., [80]), or is only concerned with other properties
such as data-race freedom, determinism, or memory safety.

The thread-modular value analyses by Miné [83, 84] are based on interferences:
Synchronized interferences are propagated from a lock to an unlock, provided that some
side conditions, e.g., on the background locksets, are met. Weak interferences are used to
account for asynchronous variable accesses. For a more detailed account of this work,
see also Section 4.1.3. Stiévenart et al. [128] also use the concept of interferences [25,
83, 84] and nested fixpoints, though their abstractions are coarser, and accumulate
all writes to globals, regardless of any mutexes held. Their analysis supports thread
joins and dynamic thread creation — as do our analyses. The approach suggested by
Vojdani [133, 134] is similar in that it also accumulates written values per global variable.
However, instead of accumulating all writes, it uses privatization, a concept inspired by
the thread-modular shape analysis by Gotsman et al. [55], to only publish those writes
that are potentially visible to other threads. To this end, for each global, a set of mutexes
is computed that is held whenever this global is accessed. The inferred invariants for
globals thus are resource invariants associated with the mutex in the sense of Owicki and
Gries [98], as used later in concurrent separation logic [96].

Turning from inherently non-relational approaches to those that allow for tracking
relational abstractions of globals, Miné [85] generalizes the setting using synchronized
and weak interferences to analyses that can be relational for global variables as well.
There, background locksets are abandoned and the synchronized interferences thus
roughly correspond to lock invariants, determining for each mutex a relation which holds
whenever the mutex is not held, which is similar to our approach. While, in principle,
relational abstractions of both weak interferences and the lock invariants are supported,
for practical analyses, a relational abstraction only for lock invariants is proposed, while
using a coarse, non-relational abstraction for the weak interferences. Our relational
analysis, on the other hand, maintains, at each mutex a, only relations between variables
write-protected by a. For these relations more precise results can be obtained, since they
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are incorporated into the local state at locks by meet (while [85] uses join).
Monat and Miné [87] present an analysis framework which is orthogonal to our

approach. It is tailored to the verification of algorithms that do not rely on explicit
synchronization via mutexes such as the Bakery algorithm. Such an analysis is, e.g.,
useful when one wants to verify that an algorithm actually ensures mutual exclusion,
while our analyses target higher-level code where mutexes as provided by the system
are used to ensure mutual exclusion. Suzanne and Miné [130] extend [87] to handle
weak memory effects (PSO, TSO) by incorporating memory buffers into the thread-local
semantics. The notion of interferences is also used by Sharma and Sharma [119] for the
analysis of programs under the Release/Acquire Memory Model of C11 by additionally
tracking abstractions of modification sequences for global variables. They consider fixed
finite sets of threads only, and do not deal with thread creation or joining.

Earlier work by Ferrara [48, 50] considers the (non-relational) analysis of programs
under the Happens-Before Memory Model, which is an overapproximation of the Java

memory model. The analysis description is generic in the programming language and
the semantics of local computations, and focuses on the effects of concurrency, where a
key step is reasoning about which values written by other threads may be visible to the
current thread. The implementation [49, 50] supports the dynamic creation of threads as
well as the dynamic creation of monitors, whereas our analyses support dynamic thread
creation but assume a fixed set of mutexes.

Another line of work on thread-modular relational analysis combines different tech-
niques: It relies on Datalog rules to model interferences in combination with abstract
interpretation applied to the Data-Flow Graph [45] or the Control-Flow Graph [72]
(later extended to weak memory [73]), respectively. Both settings are more specific than
ours: [45] considers parameterized systems (where multiple instances of each given
thread may exist), whereas [72] assumes a fixed finite set of threads. In our setting,
thread ids are analyzed to deal with both cases appropriately. [72] treats interferences
flow-sensitively, by identifying pairs of interferences that may not coexist in a single
execution.

In all these approaches clusters of variables, if there are any, are predefined and
not treated specially by the analysis. This is different in the thread-modular analysis
proposed by Mukherjee et al. [89]. It propagates information from unlocks to locks. It
is relational for the locals of each thread, and within disjoint subsets of globals, called
regions. These regions must be determined beforehand and must satisfy region-race
freedom. In contrast, the only extra a priori information required by our analysis, are
the sets of (write-) protecting mutexes of globals – which can be computed during the
analysis itself. The closest concept within our approach to a region is the set of globals
jointly protected by mutexes. However, unlike regions, these sets may overlap — which
the analysis explicitly exploits.

Digests. In a sequential setting, splitting control locations according to some abstrac-
tion of reaching traces, e.g., which branch was taken at a conditional, or having a
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domain maintain disjunctions of abstract values based on such trace information, is
a well-known technique for improving the precision of dataflow analyses [19, 37, 60]
or abstract interpretation [11, 58, 79, 88, 97, 101] where it is usually referred to as trace
partitioning. Associating different information to different copies of program points can
— instead of being understood as creating new unknowns — alternatively be described
as an instance of the reduced cardinal power domain [28, 32, 53], and potentially also be
implemented this way. Our implementation uses this insight for unknowns associated
with mutexes. The reduced cardinal power domain also lies at the foundation of the
view-sensitivity framework proposed by Kim et al. [69] for a sequential setting. In this
setting, the notion of views as proposed there is closely related to digests. While the
view-sensitivity framework has an operation similar to computing the successor digest
for a unary operation, there are no operations that incorporate the histories of other
threads for single-threaded programs, and thus there is also no notion of compatibil-
ity. For the analysis of multi-threaded programs, Miné [85] applies the techniques of
Mauborgne and Rival [79] to single threads, i.e., independently of the actions of all other
threads. Our approach, on the other hand, may take arbitrary properties of local traces
into account, and thus is more general. We have recently proposed an extension of the
digest framework [105], where we coin the term concurrency-sensitivity for digests and
propose several novel digests, e.g., for a more detailed analysis of condition variables.
That work builds on the local trace semantics with support for signal/wait, which is
proposed in this thesis.

Thread Ids & MHP. While we cast thread ids and MHP analysis as an instance of our
digest framework, there is a wealth of independent work on this specific topic: The
thread id analysis perhaps most closely related to ours, is by Feret [46] who computes ids
for agents in the π-calculus as abstractions of sequences of encountered create edges and
in later work proposes techniques to partition threads into different classes [47]. Might
and Horn [80] propose techniques to identify certain threads as unique in the context of
a small-step abstract interpreter for the static analysis of high-order functional programs.
Another line of analysis of concurrent programs deals with determining which critical
events may happen in parallel (MHP) [1, 3–5, 13, 39, 92, 136] to detect programming
errors such as, e.g., data races, or — in the context of compilers — for identifying
opportunities for optimization. Mostly, MHP analyses are obtained as abstractions of a
global trace semantics [41]. We apply related techniques for improving thread-modular
analyses – but based on a local trace semantics. Like MHP analyses, we take thread
creation and joining histories as well as sets of held mutexes into account.
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We have presented a concrete semantics based on local traces, which consider program
execution from the local perspective of one special thread, the ego thread. In this semantics,
communication happens based on executing observable and observing actions. We have
described a way in which the concrete semantics can be refined by taking abstractions
(digests) of the history of the thread into account and have proposed a limited version of
such digests, which can be computed based only on the information available along the
(creation-extended) ego lane. We have provided instances of this scheme to, e.g., compute
thread ids in a setting with dynamic thread creation. When turning to the analysis of
the values of global variables, we have first investigated thread-modular non-relational
analyses based on the observation that a relatively simplistic analysis offered in the
Goblint system is incomparable to a more sophisticated analysis in literature. We have
offered improved versions of either of these analyses and have described how additional
precision can be gained by taking ego-lane digests into account. We have further presented
relational analyses of the values of global variables tailored to decomposable domains,
where, in some instances, more precise results can be achieved by considering smaller
clusters. For 2-decomposable domains, however, we have shown that the optimal result
can already be obtained by considering clusters of size at most 2. These relational
analyses also admit refinement according to digests, and we have used this framework
to justify analyses that take the creation as well as joining of threads into account. We
have provided a comprehensive evaluation of the precision and runtimes of all the
analyses presented in this thesis, showing our analyses to be competitive with analyses
from literature regarding precision and performance. Furthermore, we have provided
novel principled soundness proofs w.r.t. the local trace semantics.

Subsequently, we outline some possible future directions in which the work presented
in this thesis can be extended. Here, we focus mostly on discussing extensions that go
beyond enhancing the framework for local traces to handle features such as procedures,
pointers, or dynamically allocated memory that are already supported by our imple-
mentation but not supported by the local trace semantics yet. The list of ways in which
the implementation extends on the local trace semantics provided in the introduction
of Chapter 5 gives an overview of such extensions and also lists some challenges that
would be encountered there. By the same token, we omit a discussion of how the
analyses could be extended with context-sensitivity after enhancing the language with
procedures.
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Weak Memory. Unlike some earlier work by others (e.g., [48, 73, 119, 129, 130]), we
do not consider the effects of weak memory for this thesis. In fact, by introducing
additional mg mutexes for each global g to enforce atomicity of accesses, we have
effectively encoded sequential consistency into the local trace semantics. To consider
weaker memory models, one would have to give up the notion of a uniquely identifiable
last write and replace this notion with a weaker notion of possibly last writes. Similarly,
the consistency conditions on the local traces and their corresponding orders would also
need to be relaxed.

When it comes to the analyses, the situation is not the same for all of them: The
non-relational analyses based on the notion of protection (e.g., Protection-based Reading)
should naturally be sound also w.r.t. weaker memory models, following the results
of Alglave et al. [6] on the soundness of non-relational analyses w.r.t. weak memory
semantics. Since ego-lane digests only track the (creation-extended) history of the actions
taken by the ego thread, and most weak memory models do still guarantee that each
thread observes its own actions in sequence, the refined analyses should arguably also
still be sound for weak memory models, in so far as they guarantee that created threads
have a sequentially consistent view of the actions of their parents up to their creation.
This claim, though, does not directly follow from the results of Alglave et al. [6] and
would require a dedicated argument.

For the relational analyses, such a guarantee no longer holds in general: The digest
framework can be used to encode arbitrary abstractions of the history, such as sequences
of already observed actions of other threads. Exclusions based on this information
will, while sound w.r.t. the local trace semantics and thus for sequential consistency, in
general, be unsound for weaker memory models. The analyses without refinement, on
the other hand, only relate globals that are commonly protected by at least one mutex.
Provided that locks, unlocks, and thread joins act as fences, these analyses should also
be sound w.r.t. at least some forms of weak memory, though dedicated proofs would
need to be conducted to confirm this intuition.

Using Local Traces for Model Checking. Another interesting use case for the local
trace semantics is as a basis for performing (bounded) model checking. The appeal
of this approach is that the local trace semantics provides some (simple) notion of
partial order reduction [99] for free, as it does not consider interleavings but only those
parts of the computation history that may influence a given configuration. Basing a
model checker on the local trace semantics would also allow for fine-grained interfacing
with Goblint and thus benefitting from the information the abstract interpretation has
established about the program to guide the model checker towards possible violations.
Such an approach could be considered an instance of co-operative verification in the sense
of Beyer [15]. We have advised two student theses [36, 44] on this idea. However, the
preliminary results hinted at significant engineering challenges that would need to be
overcome before the approach can be evaluated in practice.
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Generalization of the Digest Framework. The digest framework, while useful as
demonstrated in the previous sections, is still quite rigid in the sense that we demand
that digests are computed as an abstraction of a single local trace, and that information
associated with different digests is always kept apart. This effectively means that the
analysis is required to be path-sensitive in the digest information, limiting which digests
can be used in practice without running into scalability issues. At times, it would thus
be convenient to further abstract digests — while still using the insights preserved after
abstraction to gain precision over an analysis that does not use digests at all. We propose
such an abstract version of the digest framework and elaborate on the corresponding
design space as part of a forthcoming paper [105]. To allow leveraging such an extension
in analyses that admit only ego-lane digests, an ego-lane version of abstract digests is
conceivable as well, though such a generalization is not discussed in that paper.

Precision Improvements by Better Widening. One of the practical hurdles for achiev-
ing a higher precision is that the solvers available in the Goblint framework apply
widening to global unknowns, i.e., unknowns that receive their values by side-effects,
quite eagerly. This situation is exasperated by the lack of a narrowing iteration for these
global variables in the solvers currently supported by Goblint. While some precision
may be retained by employing techniques that delay the application of widening or
prevent the loss of relationships of interest (e.g., threshold widening using the constants
or expressions appearing in the program as thresholds), the analyses presented in this
thesis would potentially greatly benefit from principled approaches that either allow for
a narrowing iteration on globals (as was, to some extent, realized in some earlier variants
of the SLR solvers [7, 10]), or ensuring the widening operator is applied less often. It
may be of interest to design and study such extensions of the solvers, whether such
strategies may be considered applications of the A2 I framework by Cousot et al. [34]
(along the lines of [131]), and their practical impact on precision. We have co-advised a
thesis on such techniques [126]. It resulted in approaches [127] for applying narrowing
to globals in a way that is applicable not only to side-effecting constraint systems, but to
other frameworks for mixed-flow sensitivity as well.
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Symbols

X Set of Unknowns
C Constraint System
Vars Set of variables
X Set of local variables
G Set of global variables
self Local variable containing thread id of ego thread
ret Local variable used for return values
V Set of concrete values
Vtid Set of concrete values of type thread id
Vint Set of concrete integer values
i0 Concrete thread id of initial thread (i0 ∈ Vtid)
Σ Local program states (σ : (X → V) ∈ Σ)
Act Set of actions
Exp Expression language
N Set of program points
E Set of CFG edges (E = N ×Act×N )
T Set of local traces
M Set of mutexes
UM Set of all upwards-closed subsets ofM
S Set of signals
ν Computes a new thread id based on the local trace

reaching the predecessor node of the create action
(ν : T → Vtid)

τAct Function to get type of an action (τAct : Act →
{local, creating, observing, observable})

Actlocal Set of local actions, i.e., of type local (Actlocal ⊂ Act)
Actcreating Set of creating actions
Actobserving Set of observing actions
Actobservable Set of observable actions
main Thread template with which execution begins
sink Extract sink from local trace (sink : T → N × Σ)
last Extract the last action (of the ego thread) from local

trace (last : T → {Act∪⊥})
id Extract thread id of ego thread from local trace (id :

T → Vtid)
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Symbols

loc Extract program point of sink from local trace (loc :
T → N )

init Set of initial local traces (init ⊆ T )
observes Set of observable actions potentially observed by an

observing action (observes : Act→ 2Act)
↓ ↓w (t) ∈ T refers to the local sub-trace from t ∈ T

that ends in node w
J·KT JeKT is the right-hand side for an edge e
J·KLT JeKLT is the right-hand side for an edge e in the

localized constraint system
J·KLTA JeKLTA is the right-hand side for an edge e in the

constraint system refined according to a digest
J·KExp JeKExp is the function for concrete evaluation of ex-

pressions
A Set of digests
new]

A Function to compute a new digest for a thread being
created along an edge originating at u being execu-
tion at u1 from initial digest A0 (new]

A : N → N →
A → 2A)

J·K]A Right-hand side for a digest
init]A Initial digests (init]A ⊆ A)
compat]A compat]A : A → A → bool checks whether two di-

gests are compatible, where the digest of the ego-
thread is the first argument; Usually not symmetric.

acc acc : (A × DS)→A→bool takes the digest of the
ego-thread and the abstract value associated with
that program point and decides if the contributions
associated with another digest are already taken into
account.

V ]
tid,A Thread Ids as digests
P Set of pairs relating thread creation nodes with the

starting points of the created threads
single Turns a thread id computed as digest into an abstract

thread id of the value domain (single : V ]
tid,A → V

]
tid)

unique Checks whether a thread id computed as a digest rep-
resents one concrete thread only (unique : V ]

tid,A →
bool)

lcu_anc Computes the last common unique ancestor for two
thread ids (lcu_anc : V ]

tid,A → V
]
tid,A → V

]
tid,A)
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Symbols

may_create Checks whether a thread with the thread id pro-
vided as the first argument may start a thread with
the thread id provided as the second argument.
(may_create : V ]

tid,A → V
]
tid,A → bool)

may_run Overapproximates whether a given thread may al-
ready be started and have preceded to the encoun-
tered set of create edges have been started based on
a thread id and encountered create edges of the ego
thread. (may_run : (V ]

tid,A × P) → (V ]
tid,A × P) →

bool)
d|Q d|Q restricts an element d from an abstract domain

to only talk about variables in Q
V ] Abstract value domain
V ]

τ Abstract value domain for type τ

V ]
tid Abstract value domain (powerset domain) for vari-

ables of type thread id
SV ]tid

Finite carrier set of V ]
tid

V̄ ] Non-relational domain (Mappings from variables to
abstract values extended with bottom (Vars→⊥ V ]))

J·K]V̄ ] Abstract transfer function for assignments and
guards a (JaK]V̄ ] : V̄ ] → V̄ ])

J·K]Exp Abstract expression evaluation (JeK]Exp : V̄ ] → V ])
R Relational domain
J·K]R Abstract transfer function for assignments and

guards a (JaK]R : R → R)
lift Turns a non-relational abstract value from V̄ ] into

a corresponding relational abstract value from R
(lift : V̄ ] → R)

unlift Turns a relational abstract value from R into a cor-
responding non-relational abstract value from V̄ ]

(unlift : R → V̄ ])
[Vars]k Set of all subsets of Vars of size at most k ({Y | Y ⊆

Vars, 1 ≤ |Y| ≤ k})
M̄[g] Set of mutexes protecting some global g. Contains at

least mg

Ḡ[a] Globals that are protected by a mutex a
Qa Clusters associated with some mutex a (Qa ⊆ 2Ḡ[a])
⊥ ⊥-element to denote dead code
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Symbols

ν] Computes a new abstract thread id based on the
program point of the creator, the abstract state, and
the program point at which program execution starts.
(ν] : N → V̄ ] → N → V ]

tid)
V Vertices of a (raw) global trace
E Edges of (raw) global trace

last_write last_writeg : T → E extracts the last write to g ap-
pearing in a local trace

last_tl_write last_tl_writeg : T → E extracts the last thread-local
write to g appearing in a local trace

eval_tl eval_tlg : T → V extracts the value written at the
last thread-local write to g appearing in a local trace

init_v init_v t : T → V∪ {⊥} extracts the node from a local
trace in which the call to initMT ends if it exists, and
returns ⊥ otherwise

Lt[ū] Extracts the lockset held by in local trace t at node ū
by the respective thread

Lt Extracts the lockset held by the ego thread at the sink
node in a local trace t

min_lockset_since min_lockset_since : T → V → UM extracts the
upwards-closed set of minimal locksets the ego
thread has held since a given node of the raw ego
trace

last_tl_lock last_tl_locka : T → V∪ {⊥} extracts the last thread-
local lock of a if it exists, and returns ⊥ otherwise

last_tl_unlock last_tl_unlocka : T → V ∪ {⊥} extracts the last
thread-local unlock of a if it exists, and returns ⊥
otherwise

jl_joins jl_joins : T → 2E extracts from a local trace all calls
to join that are join-local

jl_unlock_after_write jl_unlock_after_writea : T → E ∪ {⊥} extracts, for
a mutex a, the first join-local unlock(a) action that
immediately succeeds the last join-local write to a
global in Ḡ[a]. jl_unlock_after_writea,Q extracts this
unlock for a global in the cluster Q ∈ Qa

unlock_after_write unlock_after_writea : T → E ∪ {⊥} extracts, for
a mutex a, the first unlock(a) action that imme-
diately succeeds the last write to a global in
Ḡ[a]. unlock_after_writea,Q extracts this unlock for a
global in the cluster Q ∈ Qa
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